
Page 1 of 4

Computer Science Foundation Exam

September 5, 2020

Section I A

DATA STRUCTURES

SOLUTION

Directions: You may either directly edit this document, or write out your

answers in a .txt file, or scan your answers to .pdf and submit them in the

COT 3960 Webcourses for the Assignment "Section I A". Please put your

name, UCFID and NID on the top left hand corner of each document you

submit. Please aim to submit 1 document, but if it's necessary, you may

submit 2. Clearly mark for which question your work is associated with. If

you choose to edit this document, please remove this cover page from the

file you submit and make sure your name, UCFID and NID are on the top

left hand corner of the next page (first page of your submission).

Question # Max Pts Category Score

1 10 DSN

2 10 DSN

3 5 ALG

TOTAL 25

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that

particular question have been made.

Fall 2020 Data Structures Exam, Part A

Page 2 of 4

1) (10 pts) DSN (Dynamic Memory Management in C)

Suppose we are planning a party and we would like to create an array to store our list of supplies. Currently

our list is stored in a text file with the name of each item to be purchased on a line by itself. Write a

function called make_grocery_list that reads these items from a file and stores them in a two-dimensional

character array. Your function should take 2 parameters: a pointer to the file and an integer indicating the

number of grocery items in the file. It should return a pointer to the array of items. Be sure to allocate

memory for the array dynamically and only allocate as much space as is needed. You may assume that all

of the strings stored in the file representing grocery items are alphabetic strings of no more than 127

characters (so the buffer declared is adequate to initially read in the string).

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

char ** make_grocery_list (FILE *ifp, int numItems) {

 char buffer[128];

 char **list = NULL;

 int i;

 // Grading – 2 pts

list = malloc(sizeof(char *) * numItems);

 // Grading: 6 pts - 1 pt loop, 1 pt read, 4 pts malloc,

 // 1 pt strcpy

 for(i = 0; i < numItems; i++) {

 fscanf(ifp, "%s", buffer);

 list[i] = malloc(sizeof(char) * (strlen(buffer) + 1));

 strcpy(list[i], buffer);

 }

 // Grading – 1 pt

 return list;

 // Grading notes - 1 pt off for = vs strcpy, 1 pt off for

 // forgetting the +1 in the inner malloc.

}

Fall 2020 Data Structures Exam, Part A

Page 3 of 4

2) (10 pts) ALG (Linked Lists)

Suppose we have a queue implemented as a doubly linked list using the structures shown below. Use

head for the front of the queue and tail for the end of the queue.

struct node {

 int data;

 struct node* next, *prev;

}

struct queue {

 int size;

 struct node *head, *tail;

}

Write a dequeue function for this queue. If the queue is NULL or is already empty, return 0 and take no

other action. If the queue isn't empty, dequeue the appropriate value, make the necessary adjustments, and

return the dequeued value. (Note: You must free the node that previously stored the dequeued value.)

int dequeue(queue *thisQ) {

if(thisQ == NULL) // Grading – 1 pt

 return 0;

 if(thisQ->size == 0) // Grading – 1 pt

 return 0;

 int retval = thisQ->head->data; // Grading – 1 pt

 node *temp = thisQ->head; // Grading – 1 pt

thisQ->head = thisQ->head->next; // Grading – 1 pt

if (this->size > 1) // Grading – 1 pt

 thisQ->head->prev = NULL;

 else

 thisQ->tail = NULL;

 free(temp); // Grading – 2pts

 thisQ->size--; // Grading – 1 pt

 return retval; // Grading – 1 pt

}

Fall 2020 Data Structures Exam, Part A

Page 4 of 4

3) (5 pts) DSN (Stacks)

Convert the following infix expression to postfix using a stack. Show the contents of the stack at the

indicated points (1, 2, and 3) in the infix expression.

 1 2 3

 A * B - C + (D – ((E * F) / G)) + H

 (

 (

 -

 (

- + +

 1 2 3

Resulting postfix expression:

A B * C - D E F * G / - + H +

Grading: 1 point for each stack, 2 points for the whole expression (partial credit allowed.)

Page 1 of 5

Computer Science Foundation Exam

 September 5, 2020

Section I B

DATA STRUCTURES

ONLINE EXAM

Directions: You may either directly edit this document, or write out your

answers in a .txt file, or scan your answers to .pdf and submit them in the

COT 3960 Webcourses for the Assignment "Section I B". Please put your

name, UCFID and NID on the top left hand corner of each document you

submit. Please aim to submit 1 document, but if it's necessary, you may

submit 2. Clearly mark for which question your work is associated with. If

you choose to edit this document, please remove this cover page from the

file you submit and make sure your name, UCFID and NID are on the top

left hand corner of the next page (first page of your submission).

Question # Max Pts Category Score

1 10 DSN

2 10 ALG

3 5 ALG

TOTAL 25

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that

particular question have been made.

Fall 2020 Data Structures Exam, Part B

Page 2 of 5

1) (10 pts) DSN (Binary Search Trees)

Complete the function on the next page so that it takes the root of a binary search tree (root) and an integer

(key) and, if key is in the tree, returns the smallest integer in the BST that is strictly greater than key. If

key is not present, or if there is no integer in the tree greater than key, simply return INT_MIN (which is

defined in limits.h).

Your function must be iterative (not recursive), with a worst-case runtime that does not exceed O(n) (so,

you can’t drop the elements into an array and sort them in order to solve the problem).

You may assume the tree does not contain any duplicate values. However, root could be NULL.

For example:

 18 next_up(root, 18) would return 20

 / \ next_up(root, 1) would return 4

 4 20 next_up(root, 4) would return 7

 / \ next_up(root, 10) would return 18

 1 10 next_up(root, 20) would return INT_MIN

 / next_up(root, 9) would return INT_MIN

 7

In your solution, you may make as single call to either of the following functions. Assume they’re

already written and that they each have a worst-case runtime of O(n):

 // Takes the root of a binary search tree (possibly the root of a

 // subtree within a larger BST) and returns the smallest value in that

 // (sub)tree. If the tree is empty, it returns INT_MAX.

 int find_min(node *root);

 // Takes the root of a binary search tree (possibly the root of a

 // subtree within a larger BST) and returns the largest value in that

 // (sub)tree. If the tree is empty, it returns INT_MIN.

 int find_max(node *root);

An incomplete version of the function and node struct are provided on the following page, along with ten

blanks for you to fill in to complete the solution. Note that one of these blanks ought to be left blank

and has been included so that part of the solution isn't given away. Thus, each blank is worth one

point, and for at least one of the ten blanks, leaving it blank is the only way to get credit for it.

Fall 2020 Data Structures Exam, Part B

Page 3 of 5

(…continued from previous page)

// Assume these are included from limits.h.

#define INT_MAX 2147483647

#define INT_MIN -2147483648

typedef struct node

{

 struct node *left;

 struct node *right;

 int data;

} node;

int next_up(node *root, int key)

{

 node *parent = NULL ; // Grading: 1 pt per slot, blank slot can

 // be either of the two slots for else if

 while (root != NULL)

 {

 if (key < root->data)

 {

 parent = root ;

 root = root->left ;

 }

 else if (key > root->data)

 {

 root = root->right ;

 ______________________ ;

 }

 else

 {

 if (root->right != NULL)

 return find_min(root->right) ;

 else if (parent != NULL)

 return parent->data ;

 else

 return INT_MIN ;

 }

 }

 return INT_MIN ;

}

Fall 2020 Data Structures Exam, Part B

Page 4 of 5

2) (10 pts) ALG (Heaps)

a. (3 pts) Fill in the array representation of a heap that meets all of the following conditions:

i. The minheap contains exactly eight integer values, without any duplicate values.

ii. The minheap does not contain the value 14.

iii. Inserting 14 into the minheap would cause us to incur the best-case possible runtime for

insertion.

Note: Index 0 is omitted because in the traditional storage of a heap using an array, that index is not

used.

Index 1 2 3 4 5 6 7 8

Value 1 2 4 12 9 7 6 16

Grading Note: Many, many answers work. Any answer that is a valid heap with a value less than

14 in index 4 should receive full credit. 1 pt for any valid heap, 2 more points if index 4 is less than

14.

b. (3 pts) Fill in the array representation of a heap that meets all of the following conditions:

i. The minheap contains exactly eight integer values, without any duplicate values.

ii. The minheap does not contain the value 98.

iii. Inserting 98 into the minheap would cause us to incur the worst-case possible runtime for

insertion.

Note: Index 0 is omitted because in the traditional storage of a heap using an array, that index is not

used.

Index 1 2 3 4 5 6 7 8

Value 101 102 104 112 109 107 106 116

Grading Note: Many, many answers work. Any answer that is a valid heap with all values greater

than 98 should receive full credit. 1 pt for any valid heap, 2 more points all values exceed 98.

c. (4 pts) Is it possible to draw a single minheap that simultaneously meets all of the conditions

given in parts (a) and (b) of this problem? If so, draw such a minheap. If not, explain why not. If

you’re giving an explanation, be brief and clear, but also complete.

No, it’s not possible. In order for this to happen, the parent of 14 (at the bottom level of the tree)

needs to be less than 14. That means the root is also less than 14. If the root is less than 14, then

the root is also less than 98 (obviously), and so there’s no way for 98 to achieve the worst-case

runtime when we insert it (which would require the 98 to percolate all the way up to the root node

position).

Grading: 2 pts for saying it's not possible, 2 pts for the reason given.

Fall 2020 Data Structures Exam, Part B

Page 5 of 5

3) (5 pts) ALG (Tries)

Consider inserting the following words into an initially empty trie, where nodes are created ONLY if they

are necessary. Note that an empty trie is a NULL pointer and has zero nodes. How many nodes will be

created after all these words are inserted, including the root node?

cat

part

do

art

cart

car

dog

dart

ark

park

No need to include any drawing, just give your final answer, but be very careful, since the grading is

completely based on your numeric answer and no work at all.

Here is a text drawing of the resulting trie:

 root node

 / | | \

 a c d p

 | | / \ |

 r a a o a

 / \ / \ | | |

 k t t r r g r

 | | / \

 t t k t

Total number of nodes = 21 (1 + 4 + 5 + 7 + 4)

Grading: 5 pts for 21

 4 pts for 20 or 22

 3 pts for 19 or 23

 2 pts for 18 or 24

 1 pt for 17 or 25

 0 pts otherwise

Page 1 of 4

Computer Science Foundation Exam

 September 5, 2020

Section II A

ALGORITHMS AND ANALYSIS TOOLS

SOLUTION

Directions: You may either directly edit this document, or write out your

answers in a .txt file, or scan your answers to .pdf and submit them in the

COT 3960 Webcourses for the Assignment "Section II A". Please put

your name, UCFID and NID on the top left hand corner of each document

you submit. Please aim to submit 1 document, but if it's necessary, you

may submit 2. Clearly mark for which question your work is associated

with. If you choose to edit this document, please remove this cover page

from the file you submit and make sure your name, UCFID and NID are

on the top left hand corner of the next page (first page of your

submission).

Question # Max Pts Category Score

1 10 ANL

2 10 ANL

3 5 ANL

TOTAL 25

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib.h, stdio.h, math.h,

string.h) for that particular question have been made.

Fall 2020 Algorithms and Analysis Tools Exam, Part A

Page 2 of 4

1) (10 pts) ANL (Algorithm Analysis)

Consider the following function that takes a list of unique integers for input

1. The list is empty return 0

2. Choose a random integer, x, from the list

3. Place every value from the list less than the value x in list 1 every value greater than x in list 2.

4. Run this function on list 1 and store the result in a variable called left_answer.

5. Run this function on list 2 and store the result a variable called right_answer.

6. Add to the answer the function run on list 2

7. Return the value left_answer + right_answer + x

What is the best case runtime and the worst case runtime for the above function, in terms of the input list

size, n? What standard algorithm taught in COP 3502 is this algorithm closest to? In terms of that

standard algorithm, what does the return value of this function represent? Provide proof of the runtimes,

but in doing so, you may use results about known algorithms from COP 3502 without proving those

results.

The above method recursively partitions the list into two pieces after removing one element. This

behavior is similar to how quick sort works. The random number selected is like the pivot/partition

element. When the pivot is close to the middle the algorithm has the best performance which is O(nlogn)

where n is the size of the array, because the recurrence relation governing the run-time is T(n) = 2T(n/2)

+ O(n), which is the same recurrence relation for Merge Sort, which has a solution of O(nlgn). The

worst case behavior is if the pivot/partition element chosen each time is either the smallest or largest in

the list. This gives a recurrence relation of T(n) = T(n-1) + O(n) for the worst case behavior, which leads

to a worst case run time of O(n2). The return value of the function is simply the sum of all the values in

the array.

Grading: 2 pts for best case result w/o any proof

 2 pts for worst case result w/o any proof

 2 pts for identifying quick sort as the similar algorithm

 2 pts for stating that the return value is the sum of all the values in the input list

 2 pts for the justification of the run-times, which can simply be stating the best

 and worst case run times of quick sort, since the structure is the same.

Fall 2020 Algorithms and Analysis Tools Exam, Part A

Page 3 of 4

2) (10 pts) ANL (Algorithm Analysis)

For a certain known data structure a lookup takes O(√𝑛) time, where n is the number of stored items.

For a data set of 8,000,000 items the runtime for a look up was approximately 10ms. On a different data

set the look up took 40ms. About how many items do you expect to be stored in the second data set?

The runtime is in milliseconds can be expressed as c√𝑛 where c is some constant. We can find the c by

plugging in n=8,000,000 10ms. We find that

10𝑚𝑠 = 𝑐√8,000,000
10𝑚𝑠

2000√2
= 𝑐

𝑐 =
1

200√2
𝑚𝑠

Let m equal the size of the data set for which a search takes 40 ms. This gives us the following equation:

40𝑚𝑠 =
1

200√2
√𝑚

40 × 200 × √2 = √𝑚

Square both sides

40220022 = 𝑚

1600(40000)(2) = 𝑚

𝟏𝟐𝟖, 𝟎𝟎𝟎, 𝟎𝟎𝟎 = 𝒎

It follows that the number of items expected is 128 million.

Grading:

Find c, 4 pts.

Setting up a variable for the answer, 2 pts

Plugging in 40ms, 1 pt.

Square both side, 2 pts.

Correct answer, 1 pts.

Fall 2020 Algorithms and Analysis Tools Exam, Part A

Page 4 of 4

3) (5 pts) ANL (Summations)

What is the closed form of the following summation? Express your result as a polynomial, in n, in

standard form.

∑6𝑖

𝑛4

𝑖=0

∑6𝑖

𝑛4

𝑖=0

= 6∑𝑖

𝑛4

𝑖=1

=
6𝑛4(𝑛4 + 1)

2
= 3𝑛4(𝑛4 + 1) = 𝟑𝒏𝟖 + 𝟑𝒏𝟒

Grading: 1 pt for factoring out 6 or equivalent, 2 pts for applying the summation formula, 1 pt for

dividing 6 by 2, 1 pt for multiplying out

Page 1 of 4

Computer Science Foundation Exam

 September 5, 2020

Section II B

ALGORITHMS AND ANALYSIS TOOLS

SOLUTION

Directions: You may either directly edit this document, or write out your

answers in a .txt file, or scan your answers to .pdf and submit them in the

COT 3960 Webcourses for the Assignment "Section II B". Please put

your name, UCFID and NID on the top left hand corner of each document

you submit. Please aim to submit 1 document, but if it's necessary, you

may submit 2. Clearly mark for which question your work is associated

with. If you choose to edit this document, please remove this cover page

from the file you submit and make sure your name, UCFID and NID are

on the top left hand corner of the next page (first page of your

submission).

Question # Max Pts Category Score

1 10 DSN

2 5 ALG

3 10 DSN

TOTAL 25

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Fall 2020 Algorithms and Analysis Tools Exam, Part B

Page 2 of 4

1) (10 pts) DSN (Recursive Coding)

If Annabelle plays a video game for t minutes, she’ll earn f(t) points. (The function f is provided below.) f is a

non-decreasing function. (This means that if a < b, then f(a) ≤ f(b).) Annabelle wants to earn at least target
number of points, but since she gets in trouble if she plays too much, she would like to play the least number of

minutes that allows her to score at least target number of points. Complete the function below to be recursive and

efficient (max # of recursive calls should be around 30) to solve the problem. You may assume that 0 < target <
60000, thus it’s guaranteed that 0 < t < 109 (for the function f given below.)

#include <math.h>

int f(int t) {

 return (int)(2*sqrt(t)+log(t));

}

int minPlay(int target) {

 return minPlayRec(target, 0, 1000000000);

}

int minPlayRec(int target, int low, int high) {

 if (low == high) return low; // Grading: 2 pts

 int mid = (low+high)/2; // Grading: 1 pt

 int pts = f(mid); // Grading: 2 pt

 if (pts < target) // Grading: 1 pt

 return minPlayRec(target, mid+1, high); // Grading: 2 pts

 return minPlayRec(target, low, mid); // Grading: 2 pts

}

Grading Notes: Many ways to express the ideas above. One pt off per off by one error. Check

these by tracing the low = 2, high = 3 case. One pt total off if target is forgotten in both recursive

calls.

Fall 2020 Algorithms and Analysis Tools Exam, Part B

Page 3 of 4

2) (5 pts) ALG (Sorting)

Show the result after each iteration of performing Insertion Sort on the array shown below. For

convenience, the result after the first and last iteration are provided. The first row of the table contains

the original values of the array.

Iteration Index 0 Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7

0 13 6 9 27 3 15 1 12

1 6 13 9 27 3 15 1 12

2 6 9 13 27 3 15 1 12

3 6 9 13 27 3 15 1 12

4 3 6 9 13 27 15 1 12

5 3 6 9 13 15 27 1 12

6 1 3 6 9 13 15 27 12

7 1 3 6 9 12 13 15 27

Grading: 1 pt per row, must get the whole row correct to get the point.

Fall 2020 Algorithms and Analysis Tools Exam, Part B

Page 4 of 4

3) (10 pts) DSN (Bitwise Operators)

A company is looking to hire an employee based on answers to a questionnaire. The questionnaire has

20 yes/no questions (labeled from question 0 to question 19) and an applicant’s set of responses is stored

as a single integer such that the ith bit is set to 1 if the response to question i is yes, and it’s set to 0 if the

response to question i is no. For example, if an applicant answered yes to questions 0, 2, 3, 5, 8, and 10

and no to the other 14 questions, her responses would be stored as the single integer 1325, since

000000000101001011012 = 1325. For all questions, the company prefers yes answers to no answers.

However, since it’s unlikely that a candidate will answer yes to all of the questions, they have developed

a modified scoring system for each candidate. The company has ranked each of the 20 questions in order

of preference from most important to least important. This ranking is an array, preferences, that stores a

permutation of the integers from 0 to 19, inclusive. For example, if preferences[0] = 8, preferences[1] =

10 and preferences[2] = 1, then the company cares most about the answer to question 8, second most

about the answer to question 10 and third most about the answer to question 1. A candidate's score is

simply the maximum number of the most important questions they answered yes without a single no.

For example, the sample candidate described above would have a score of 2, because she said yes to

questions 8 and 10, but no to question 1, which was third on the preference list. Any candidate who said

no to question 8 would be assigned a score of 0. Complete the function below so it returns the score of

the applicant whose answers are stored in the formal parameter applicant. The formal parameter

preferences is an array of size 20 which stores the order of importance of the questions as previously

described. (Note: You must use bitwise operators to earn full credit for this question.)

#define SIZE 20

int score(int preferences[], int applicant) {

 int res = 0; // Grading: 1 pt

 for (res=0; res<SIZE; res++) // Grading: 2 pts

 if ((applicant & (1<<preferences[res])) == 0) // 5 pts

 break; // Grading: 1 pt

 return res; // Grading: 1 pt

}

Grading Note: Student answers may look different than this. 4 pts are awarded for the general set

up of having an variable keeping track of the answer, returning it and loop through the search

space. 6 pts are allocated for the logic of deciding when to stop. We can break down those points

as follows:

2 pts for accessing the right question preference

1 pt for bit shifting this value or equivalent (could right shift applicant…)

2 pts for taking the former and bitwise anding it with applicant

1 pt for stopping the loop at the appropriate time

