
Page 1 of 6 

 

 

Computer Science Foundation Exam 

 December 13, 2013 

Section I B 

COMPUTER SCIENCE  

NO books, notes, or calculators may be used,  

and you must work entirely on your own. 

 

SOLUTION 

 
 

Question # Max Pts Category Passing Score 

1 10 ANL 7  

2 10 DSN 7  

3 10 DSN 7  

4 10 ALG 7  

5 10 ALG 7  

TOTAL 50  35  
  

  

You must do all 5 problems in this section of the exam. 
 

Problems will be graded based on the completeness of the solution steps and not 

graded based on the answer alone. Credit cannot be given unless all work is shown 

and is readable. Be complete, yet concise, and above all be neat.       

 
 

 

 

 



Fall 2013 Computer Science Exam, Part B  

 

Page 2 of 6 

 

1) (10pts) ANL (Algorithm Analysis)   

 

Consider two competing ideas to calculate class rank for students on exams. Assume the possible grades 

on the exam are all of the integers 0 through m, and that there are n exam takers, where both m and n are 

positive integers. 

 

 1) Create an integer array of size m+1, where index i will store the number of students who 

 scored i points or less on the exam. 

 

 2) Create an integer array of size n, where the array stores each student’s score in sorted order. 

 

(a) (3 pts) In implementing idea #1, what is the run-time of generating the array from the process of 

reading in the n values? Assume an efficient implementation. Provide a Big-Oh run-time in terms of n 

and m. Justify your answer. 

 

The run time is O(n) (2 pts). To implement this idea, read through each piece of data, 

incrementing that array index. Each increment takes O(1) time and there are n of them. Then, 

sweep through the array a second time, iteratively adding each array element to a running sum 

and store this total back in each array index. This is a second loop of n iterations with O(1) work 

in each iteration. Adding everything, we get O(n) time. (1 pt – award this point if there’s some 

awareness that we can efficiently create the cumulative frequency array, or if they answered O(n
2
) 

and their justification matches that run time.) 

 

(b) (3 pts) In implementing idea #2, what is the run-time of generating the array from the process of 

reading in the n values into the array followed by a Merge Sort of the values? Assume an efficient 

implementation. Provide a Big-Oh run-time in terms of n and m. Justify your answer. 

 

The run time is O(nlgn). (2 pts) Reading in the values takes O(n) time and sorting those values 

takes O(nlgn), the worst case time of Merge Sort. Adding, we get O(nlgn). (1 pt) 

 

(c) (2 pts) If we are using idea #1 and we’ve already populated our data, what is the run-time of 

determining the number of exams scores less than or equal to some given score S? Assume an efficient 

implementation. Provide a Big-Oh run-time in terms of n and m. Justify your answer. 

 

The query is precisely what is stored at index S, so all we have to do is return the value stored 

there, which we can do in O(1) time. (1 pt answer, 1 pt justification, give 1 pt to incorrect 

consistent responses.) 

 

(d) (2 pts) If we are using idea #2 and we’ve already populated our data, what is the run-time of 

determining the number of exams scores less than or equal to some given score S? Assume an efficient 

implementation. Provide a Big-Oh run-time in terms of n and m. Justify your answer. 

 

One way to solve the problem would be to do a binary search in the array for the maximal index 

storing a score of S or less. Though an adaptation of a regular binary search, this binary search 

also takes O(lg n) time. (1 pt answer, 1 pt justification, give 1 pt to incorrect consistent responses.) 

 

 

  



Fall 2013 Computer Science Exam, Part B  

 

Page 3 of 6 

 

2) (10 pts) DSN (Recursive Algorithms – Binary Trees) 

 

Write a recursive function averageValue that returns the average value of all the nodes in a 

binary tree pointed to by its input parameter root. Assume that in each node, there is a component called  

numNodes which correctly stores the total number of nodes (including itself) that are in the subtree 

with it as a root. (Note: If n1 values have an average of A1, and n2 values have an average of A2, then the 

average if those n1 +n2 values is 
         

     
.) You are guaranteed that the pointer passed to the 

function will point to a non-empty tree. 

 

Use the following struct definition: 
 

struct treeNode { 

    int data; 

    int numNodes; 

    struct treeNode *left; 

    struct treeNode *right; 

}; 

 

 

double averageValue(struct treeNode* root) { 

 

    // 2 pts 

    if (root->left == NULL && root->right == NULL) 

        return root->data; 

 

    // 1 pt set up. 

    double sum = root->data; 

    int totalNodes = 1; 

 

    // 3 pts left 

    if (root->left != NULL) { 

        int size = root->left->numNodes; 

        totalNodes += size; 

        sum += (averageValue(root->left)*size); 

    } 

 

    // 3 pts right 

    if (root->right != NULL) { 

        int size = root->right->numNodes; 

        totalNodes += size; 

        sum += (averageValue(root->right)*size); 

    } 

 

    // 1 pt return 

    return sum/totalNodes; 

} 



Fall 2013 Computer Science Exam, Part B  

 

Page 4 of 6 

 

3) (10 pts) DSN (Linked Lists) 

 

Write a function, delLast, that deletes the last node in the list pointed to by the input parameter 

front. Your function should return the front of the resulting list. If the given list is empty, make no 

changes and return NULL. 

 

Use the struct definition provided below. 
 

struct node { 

    int data; 

    struct node *next; 

}; 

 

struct node* delLast(struct node *front) { 

 

    // 2 pts 

    if (front == NULL) 

        return NULL; 

 

    // 3 pts 

    if (front->next == NULL) { 

        free(front); 

        return NULL; 

    } 

 

    // 4 pts 

    front = delLast(front->next); 

     

    // 1 pt 

    return front; 

} 

 

Note: For an iterative solution, map the points shown above. 2 pts 

for the empty list case, 3 pts for the 1 node case, and 5 pts for the 

multiple node case. 

  



Fall 2013 Computer Science Exam, Part B  

 

Page 5 of 6 

 

4) (10 pts) ALG (Heaps) 

 

Consider inserting the following items into a minimum heap, in this order: 10, 3, 8, 1, 7, 6, 5, 4, 2, and 9. 

Draw the tree representation of the heap after each insertion. Clearly label each answer by putting a box 

around it. 

 

1
st
 insert: 10  2

nd
 insert:   3  3

rd
 insert:  3   4

th
 insert:   1 

                     /        /   \                    /    \ 

       10               10     8      3      8 

             / 

                     10 

 

5
th

 insert:  1  6
th

 insert: 1  7
th

 insert:  1   8
th

 insert:   1 

    /    \                 /    \       /     \        /      \ 

              3     8               3       6               3       5     3        5 

             /  \             /   \     /                           /  \     / \    /  \      /  \ 

          10   7                     10    7  8            10   7  8   6              4   7   8   6 

                    / 

                  10 

 

9
th

 insert:    1   10
th

 insert:    1 

      /      \                     /      \ 

              2         5                   2         5 

            /   \      /   \      /   \      /   \ 

           3   7    8    6               3     7   8    6 

          /  \               /  \   / 

       10   4                                        10  4  9 

 

Grading: 1 pt per heap, give credit only if the structure is perfectly correct.    

                
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Fall 2013 Computer Science Exam, Part B  

 

Page 6 of 6 

 

5) (10 pts) ALG (Sorting)  

 

(a) (5 pts) Consider sorting the array below using Bubble Sort. Show the contents of the array, after each 

iteration of the outer loop. (Note: After each iteration, the maximal element iterated over should be in its 

correct location.) 

 

Original 3 5 4 6 1 2 

1
st
 iteration 3 4 5 1 2 6 

2
nd

 iteration 3 4 1 2 5 6 

3
rd

 iteration 3 1 2 4 5 6 

4
th

 iteration 1 2 3 4 5 6 

5
th

 iteration 1 2 3 4 5 6 

 

Grading: 1 pt per row, only award a point if the row is fully correct. 

 

(b) (5 pts) In a typical Merge Sort, our base case is an array of size 1. Consider changing the base case of 

Merge Sort so that we attempt to see if the subarray we seek to sort is already sorted. If it is, we return 

immediately instead of following the recursive algorithm. In code, assuming isSorted and Merge 

functions were already written, it would look like this: 

 
void MergeSort(int* array, int low, int high) { 

    if (!isSorted(array, low, high)) { 

        MergeSort(array, low, (low+high)/2); 

        MergeSort(array, (low+high)/2+1, high); 

        Merge(array, low, (low+high)/2, high); 

    } 

} 

 

(b – i) (2 pts) Assuming that isSorted and Merge are written efficiently, what is the best case run time of 

this modified Merge Sort, in terms of n, the size of its input array? 

 

It’s O(n), because if we pass an already sorted array to it, the isSorted function, which will just 

iterate through the array once in O(n) time, will return 1/true, and the sort will be finished. (2 pts 

for the answer, no justification necessary) 

 

 

(b – ii) (3 pts) Assuming that isSorted and Merge are written efficiently, what is the worst case run time 

of this modified Merge Sort, in terms of n, the size of its input array? 

 

It’s O(nlgn), the same as regular Merge Sort. To see this, note that by adding the call to isSorted, 

we are adding O(n) work to the recursive function, compared to the original. If we let T(n) be the 

function for the run time of this Merge Sort for an input size of n, we find that T(n) satisfies the 

following recurrence: 

 

T(n) = 2T(n/2) + O(n) + O(n), for the 2 recursive calls, the isSorted call and the Merge call. 

 

Simplifying, we get T(n) = 2T(n/2) + O(n), the same recurrence as regular Merge sort. It follows 

that its solution is the same, O(nlgn). (3 pts for the answer, no justification necessary) 


