
Page 1 of 6

Computer Science Foundation Exam

December 14, 2012

Section I A

COMPUTER SCIENCE

NO books, notes, or calculators may be used,

and you must work entirely on your own.

SOLUTION

Question # Max Pts Category Passing Score

1 11 DSN 7

2 10 ANL 7

3 10 ALG 7

4 9 ALG 6

5 10 ALG 7

TOTAL 50

 You must do all 5 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and

not graded based on the answer alone. Credit cannot be given unless all work

is shown and is readable. Be complete, yet concise, and above all be neat.

Fall 2012 Computer Science Exam, Part A

Page 2 of 6

1) (11 pts) DSN (Recursion)

Write a recursive function that takes in a linked list and returns a pointer to the node with the

highest value. Head, representing the head of the list, and max, representing the current maximal

node, are parameters to the function. Your function should make use of the following struct

node and function prototype:

struct node {

 int data;

 struct node *next;

};

struct node * maxNode(struct node * head, struct node * max) {

if (head == NULL) //2 points

 return max;

 if (max == NULL) //2 points

 max = head;

 if (head->data > max->data) //2 points

 max = head; //1 point

 max = maxNode(head->next, max); //3 points

 return max; //1 point

}

Fall 2012 Computer Science Exam, Part A

Page 3 of 6

2) (10 pts) ANL (Summations)

Determine a simplified, closed-form solution for the following summation in terms of n. You

MUST show your work.

 //2 points for changing limits

 //3 points for reducing this half to 46

 //2 points for separating the constants

 //1 point for multiplying by n+3

 //1 point for substituting (n)(n+1) / 2

= (3/2)[(n+3)(n+4)] + 4(n+3) – 46 //1 point for algebraic simplification

= (3/2)(n
2
 + 3n + 4n + 12] + 4n + 12 – 46

= (3/2)(n
2

+ 7n + 12) + 4n – 34

= (3/2)n
2
 + (21/2)n + 18 + 4n – 34

= (3/2)n
2
 + (29/2)n – 16

Fall 2012 Computer Science Exam, Part A

Page 4 of 6

3) (10 pts) Stack Applications.

Convert the following infix expression to postfix. Show the contents of the stack at the indicated

points (1, 2, and 3) in the infix expression.

 1 2 3

 A + B * C / ((D + E) + F * G)

 + *

 (+

 ((

* / /

+ + +

 1 (1 point) 2 (3 points) 3 (2 points)

Resulting postfix expression:

A B C * D E + F G * + / +

Grading: 4 points for the whole expression (partial credit allowed.)

 Points for stacks are marked individually.

Fall 2012 Computer Science Exam, Part A

Page 5 of 6

4) (9 pts) ALG (Binary Trees)

Give the preorder, inorder, and postorder traversals of the binary tree shown above.

Preorder:

55, 11, 35, 41, 86, 8, 72, 63, 2, 23, 53, 26, 68

Inorder:

41, 35, 86, 8, 11, 55, 2, 63, 23, 72, 26, 68, 53

Postorder

41, 8, 86, 35, 11, 2, 23, 63, 68, 26, 53, 72, 55

Grading: 3 points per traversal (partial credit allowed.)

If two traversals are switched (ex: the preorder traversal is labeled inorder) take off 3

points total. If all three are switched, take off 6 points total.

55

72

53

23

63

2

68

10

26

11

35

8

86

8

41

Fall 2012 Computer Science Exam, Part A

Page 6 of 6

5) (10 pts) ALG (AVL Trees)

Draw the resulting AVL tree after inserting the following items (in this order) into an initially

empty AVL tree: 67, 24, 60, 72, 32, 26, 49. Show the tree after each step that requires a

rebalance. (There are 2 of these steps) Show the final tree after all items have been added

After first rebalance (3 pts): 60 (1 pt for root, 1 pt for 24,

 / \ 1 pt for 67)

 24 67

 After second rebalance(4 pts): 60 (1 pt for root, 1 pt for 26,

 / \ 2 pts for rest)

 26 67

 / \ \

 24 32 72

 Final Tree: 60 (1 pt for root, 1 pt for left,

 / \ subtree, 1 pt for right

 26 67 subtree)

 / \ \

 24 32 72

 \

 49

