
Page 1 of 6

Computer Science Foundation Exam

 December 17, 2010

Section I B

COMPUTER SCIENCE

NO books, notes, or calculators may be used,

and you must work entirely on your own.

SOLUTION

Question # Max Pts Category Passing Score

1 10 ANL 7

2 10 DSN 7

3 10 DSN 7

4 10 ALG 7

5 10 ALG 7

TOTAL 50

You must do all 5 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat.

1) (10 x 1 pt): Order Analysis

Page 2 of 6

Indicate the time complexity for each of the following operations in terms of Big-O notation,

assuming that efficient implementations are used. Give the worst case complexities. Following

notations are being used:

AINC is an array containing n integers arranged in increasing order.

AD is an array containing n integers arranged in decreasing order.

AR is an array containing n integers in random order.

Q is a queue implemented as a linked list and containing p elements.

LINK is a linked list containing n nodes.

CIRC is a circular linked list containing n elements, where C points to the last element.

T is a binary search tree containing n nodes.

AVL-T is an AVL tree containing n nodes.

a) Deleting a single item from AVL-T O(lg n)

b) Deleting a single item from T. O(n)

c) Executing x consecutive enqueue functions in Q O(x)

d) Inserting an element at the front of CIRC. O(1)

e) Using an insertion sort to sort AD in increasing order O(n
2
)

f) Printing out all elements of T. O(n)

g) Using a Merge Sort to sort AR in increasing order O(nlgn)

h) Inserting an item to the back of LINK. O(n)

i) Inserting an item to the front of LINK. O(1)

j) Multiplying two n-digit numbers using the typical grade-school

 algorithm. O(n
2
)

Grading: 1 pt each no partial credit.

Page 3 of 6

2) (10 points) Binary Trees

Write a recursive function that will return the k
th

 smallest value stored in a binary search tree. You may

assume that all the values stored in the tree are distinct and that there are at least k values stored in the

tree pointed to by ptr. You are also given a helper function (which you should call) below. (Note: If k =

1, then the function should find the smallest value in the tree.)

struct treeNode {

 int data;

 struct treeNode *left, *right:

};

 int rank(struct treeNode* ptr, int k) {

 int nodeRank = numnodes(ptr->left); // 3 pts

 if (nodeRank == k-1) // 1 pt

 return ptr->data; // 1 pt

 else if (nodeRank > k-1) // 1 pt

 return rank(ptr->left, k); // 2 pts

 else

 return rank(ptr->right, k-nodeRank-1); // 2 pts

 }

 int numnodes(struct treeNode* ptr) {

 if (ptr == NULL) return 0;

 return 1 + numnodes(ptr->left) + numnodes(ptr->right);

 }

Page 4 of 6

3) (10 points) Linked Lists

Write a function which accepts a linear linked list J and deletes the second node from the list. If the

original list has fewer than two items, nothing should be done. The function prototype is provided for

you below.

The node structure is as follows:

struct listNode {

 int data;

 struct listNode *next;

};

void delSecondNode(struct listNode* J) {

 if (J != NULL && J->next != NULL) { // 2 pts

 struct listNode* temp = J->next; // 3 pts

 J->next = J->next->next; // 3 pts

 free(temp); // 2 pts

 }

}

Page 5 of 6

4) (10 points) Binary Trees

Given the binary tree shown below, determine what gets printed when the function A(root) is called.

Assume that the struct used is defined as shown below. Assume that root is of type struct treeNode*

and is a pointing to the node containing 20 in the tree below. Place your answers in the boxes provided.

struct treeNode{

 int data;

 struct treeNode *left, *right:

}

void A(struct treeNode *node_ptr){

 if (node_ptr != NULL){

 printf(“%d ,”,node_ptr->data);

 B(node_ptr->left, 10);

 B(node_ptr->right, 20);

 }

}

void B(struct treeNode *node_ptr, int key){

 if (node_ptr != NULL) {

 A(node_ptr->left);

 printf(“%d ,”,key + node_ptr->data);

 A(node_ptr->right);

 }

}

ANSWER:

Grading: 1 pt per slot, no partial credit.

5) (10 points) Sorting In a Merge Sort of 8 items, the Merge function gets called 7 times. Show the

contents of the array below after EACH of the calls to the Merge function. (The last answer is filled in

for you, since it’s just the sorted array.)

20

15 40

5 19 30

8 25 34 16

20 5 28 25 19 26 30 35 54 60

Page 6 of 6

Index 0 1 2 3 4 5 6 7

Original 19 3 14 17 2 1 10 9

After 1
st
 Merge 3 19 14 17 2 1 10 9

After 2
nd
 Merge 3 19 14 17 2 1 10 9

After 3
rd
 Merge 3 14 17 19 2 1 10 9

After 4
th
 Merge 3 14 17 19 1 2 10 9

After 5
th
 Merge 3 14 17 19 1 2 9 10

After 6
th
 Merge 3 14 17 19 1 2 9 10

After 7
th
 Merge 1 2 3 9 10 14 17 19

Grading: 1
st
 and 2

nd
 Merge: 1 pt each

 3
rd

 Merge: 3 pts

 4
th

, 5
th

 Merge: 1 pt each

 6
th

 Merge: 3 pts

If they do all 4 pairs first, then left 4, then right 4, give them 6/10.

