

Computer Science Foundation Exam

 December 18, 2009

Computer Science

Section 1B

SOLUTION

PID:

 Max

Pts

Type Passing

Threshold

Student

Score

Q1 11 ANL 8

Q2 10 DSN 7

Q3 10 DSN 7

Q4 9 ALG 6

Q5 10 ALG 7

Total 50 35

You must do all 5 problems in this section of the exam.

Partial credit cannot be given unless all work is shown and is readable.

Be complete, yet concise, and above all be neat. Do your rough work on

the last page.

1) (11 points) Order Notation Assume that the operations below are implemented as

efficiently as possible. Using Big-O notation, indicate the time complexity in terms of the

appropriate variables for each of the following operations:

a) Popping off one element of a stack with n items. O(1)

b) Inserting three items into an AVL tree of n nodes. O(lg n)

c) Finding the maximum value in an unsorted array of n items. O(n)

d) Finding the maximum value in a sorted array of n items. O(1)

e) Sorting n integers using Insertion Sort (best case) O(n)

f) Sorting n integers using Insertion Sort (worst case) O(n
2
)

g) Sorting n integers using Quick Sort (worst case) O(n
2
)

h) Deleting the fifth node (if it exists) from a linked list of n items. O(1)

i) Multiplying a n digit number by a m digit number using the O(nm)

 standard grade school algorithm.

j) Determining the height of a binary tree of n elements. O(n)

 (Note: No extra information is stored in a node except

 for the data in the node and pointers to the left

 and right children.)

k) The number of moves necessary to solve the Towers of Hanoi O(2
n
)

 with n disks.

Grading: 1 pt each, all or nothing, if they include leading consts, 1 pt off total, for all

instances

2) (10 points) Linked Lists Write a function that deletes every other node in the linked

list pointed to by the input parameter head. (In particular, the second, fourth, sixth, etc.

nodes are deleted.)

struct listnode {

 int data;

 struct listnode* next;

};

void delEveryOther(struct listnode* head)

{

 // 3 pts

 if (head == NULL || head->next == NULL)

 return;

 // 1 pt

 struct listnode* tmp = head->next;

 // 2 pts

 head->next = tmp->next;

 // 2 pts

 free(tmp);

 // 2 pts

 delEveryOther(head->next);

}

Note: Alternate solutions exist, such as an iterative solution. To map the grading

criteria from this solution to another, do as follows:

1) Works for lists of size 0 or 1: 3 pts

2) Sets up tmp ptr for iteration: 1 pt

3) Patching around the second node: 2 pts

4) Freeing the second node: 2 pts

5) Some mechanism for repetition: 2 pts

3) (10 points) Binary Trees Write a function that operates on a binary tree. (Note: the

tree may NOT be a binary search tree.) Your function should return the number of values

in the tree less than the input parameter n. Make use of the tree node struct and function

header below.

struct treenode

{

 int data;

 struct treenode* left;

 struct treenode* right;

}

int numLessThan(struct treenode* root, int n)

{

 if (root == NULL) return 0; // 2 pts

 int sum = 0;

 if (root->data < n) // 1 pt

 sum++; // 1 pt

 return sum + numLessThan(root->left, n) +

 numLessThan(root->right, n);

 // return = 1 pt, root node maybe = 1 pt, each

 // recursive call is worth 2 pts.

}

4) (9 points) Binary Trees Examine the function below that makes use of the tree node

struct from question 3. Let root be the pointer to the root of the tree shown below. What

is the output of the function call mystery(root)?

void mystery(struct treenode* root) {

 if (root == NULL) return;

 mystery(root->right);

 mystery(root->left);

 if (root->data%2 == 0)

 root->data /= 2;

 else {

 int sum = 0;

 if (root->left != NULL) sum += root->left->data;

 if (root->right != NULL) sum += root->right->data;

 root->data += sum;

 }

 printf(“%d “, root->data);

}

32 , 53 , 94 , 8, 95, 16 , 43 , 106 , 177 (Grading: 1 pt per slot no exceptions)

5) (10 points) Recursion Consider the following recursive function:

void mysterious(int x) {

 if (x == 0) return;

 printf(“%d ”, x);

 mysterious(x-1);

 mysterious(x-1);

}

a) What would be printed by the call to mysterious(4)?

4 3 2 1 1 2 1 1 3 2 1 1 2 1 1

Grading: 1 pt for having 15 values, 2 pts, for having the correct frequencies of each,

2 pts for the right order of the values.

b) How many digits will be printed by the call to mysterious(9)?

#digits = same as Towers of Hanoi = 2
9
 – 1 = 511.

Grading: 1 pt for recognizing similarity to Hanoi, 3 pts for general formula, 1 pt for

correctly plugging in 9.

