
Discrete structure solutions for August, 6, 2001 Foundation Exam 
 
Part A.  

 
1.  a) Use Euclid’s Algorithm to find the greatest common divisor of 1029 and 602. 
     
1029 = 1x602 + 427 
  602 = 1x427 + 175 
  427 = 2x175 + 77 
  175 = 2x77 + 21 
    77 = 3x21 + 14 
    21 = 1x14 + 7 
    14 = 2x7, so GCD(1029, 602) = 7. 
 

b)  Two integers a and b are called relatively prime if gcd(a, b)=1. For example, 
35 and 12 are relatively prime because they share no common factors. Show that the 
number of integers in the set {1, 2, 3, ..., 2n–1} that are relatively prime to 2n is 2n-1.    
(Hint : In order for gcd(x, y) ≠ 1, x and y HAVE TO SHARE at least one prime number 
factor. Similarly, if x and y share no common prime factor gcd(x, y)=1. Before you start 
this problem, list all the distinct prime factors of 2n.) 
 
The only prime factor of 2n is 2 because the number is already written in its prime 
factorization. Thus, if a number m is not divisible by 2, gcd(2n, m) = 1, because the 
two numbers do not share any common factors. (m has a factor of 2 if and only if it 
is divisible by 2.) By definition, each odd number does not have a factor of 2. So, for 
all odd numbers m, gcd(2n, m) = 1. In the set listed above, the odd values are 1, 3, ..., 
2n-1. If we add 1 to all these values, we get the list 2, 4, ..., 2n. The number of values 
in this list is the same as the previous list. The number of values in the latter list is 
2n/2 = 2n-1. This is because we have listed every other value from the list 1, 2, ..., 2n. 
 
Now, we must also show that all of the other numbers in the set {1,  2, ... 2n-1} are 
not relatively prime to 2n. But, each of these numbers must be even, since we already 
counted all of the odd values in the original set. The gcd of two even numbers can 
not be 1, because they share a common factor of 2. Thus, we should not count any of 
these numbers. 
 
It follows that the number of values from the set {1, 2, ... 2n-1} that are relatively 
prime to 2n is 2n-1. In particular, these values are 1, 3, ..., 2n-1, all of the odd values in 
the set. 
 
2. Harmonic numbers Hk , k =1, 2, 3, …  are defined by 
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Use mathematical induction to prove that nHnHHH nn −+=+++ )1(...21  
for all n ≥ 1.  



 
Use induction on n to prove the assertion. 
 
Base case: n=1: LHS = H1 = 1 
     RHS = (1+1)H1 - 1 = 2(1) - 1 = 1 
     Thus, the formula is true for n=1. 
 
Inductive Hypothesis: Assume for an aribtrary value of n=k that 
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Inductive Step: Prove for n=k+1 that 
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This proves the inductive step using the inductive hypothesis. Thus, we can conclude 
that for all integers n ≥  1, nHnHHH nn −+=+++ )1(...21 . 
 
 
  



Part B 
 
3. Let R and S be two relations on set A, i.e. R , S ⊆ A × A . Prove or disprove each of the 
following propositions. 
 

a) If both R and S are symmetric, then (R − S) ⊆ A × A is symmetric. 
 

The proposition is true, so it should be proved.  
 
Proof. Let R  and S  be symmetric relations on A. To prove that R − S is symmetric 
we must show for any ordered pair (x,y), if  (x, y) ∈ R −  S, where x and y are distinct 
elements of A, then (y, x) ∈ R −  S. The assumption (x, y) ∈ R −  S implies that (x, y) ∈ 
R and (x, y) ∉S by the definition of set difference. Then (y, x) ∈ R  by the symmetric 
property of R. Since we have that (x,y) ∉S, and S is symmetric, it is impossible for 
(y,x)∈S, since if (y,x)∈S, the symmetry of S would imply (x,y)∈S. Thus, we must 
have that (y,x)∉S. (y, x)∈ R  and (y, x) ∉S  imply that (y, x) ∈ R −  S. Thus we showed 
that if (x, y) ∈ R −  S then (y, x) ∈ R −  S, i.e.  R −  S is symmetric.  

 
b) If both R and S are transitive, then (R − S) ⊆ A × A is transitive.  
 

The proposition is false and can be disproved by the following counterexample.  
 
Let A = {1, 2, 3}, R ={(1, 2), (2, 3), (1, 3)} and S = {(1, 3)}, so R and S  are transitive 
relations on A. But R −  S ={ (1, 2), (2, 3)} is not transitive.  
 
4. Suppose A ⊆ B − C and A ≠∅.  
 

a) Prove or disprove that B can not be a subset of C. 
 

The proposition is true, i.e. if A ⊆  B −  C and A ≠∅ then B cannot be a subset of C. 
 
Since A is not empty, it must contain at least one element. Let this be x. Using the 
given information that A ⊆  B - C , it follows that x∈ B - C, by the definition of 
subset. Thus, x∈B and x∉C, by the definition of set difference. But the existence of 
such an element x that is in B but not C shows that B ⊆  C is impossible as desired. 
 

b) Prove or disprove that | B |  > | C | .   
 

It is not always the case that | B | > | C |, so the general proposition is false. The 
following counterexample is sufficient to disprove it. Let B = {1, 2, 3}, C = {3, 4, 5, 6}, 
and A = {1}. Then B −C ={1, 2}, A ⊆  B −C and A ≠∅ , but | B | < | C |.  
 
5. How many 6-letter words can be formed by ordering the letters ABCDEF if A appears 
before C and E appears before C?  

 



Under given restrictions there are two possible arrangements for letters A, C  
and  E between themselves: either A appears before E , or E before A, i.e. AEC or 
EAC, so we have two choices for this task. After that we can choose 3 slots to place 
letters A, C and E out of 6 possible slots in a 6-letter word. If the order of A, C and E 
is fixed, we count C (6, 3) selections. After we fill 3 slots with the letters A, C and E, 
we can make 3! permutations of the letters B, D and F using remaining 3 slots. By 
the product rule the total number of orderings will be 2⋅C(6, 3)⋅3! =2⋅6⋅5⋅4=240. 
 
6.  Let x1, x2, ..., x2n be boolean variables, where n is a positive integer. Consider the 
following boolean expression Yn =  (x1 ∧ x2) ∨  (x3 ∧  x4) ∨  (x5 ∧  x6) ∨  ... ∨ (x2n-1 ∧ x2n). 
An assignment of variables that makes the boolean expression true is known as a 
satisfying assignment. For example, x1 = True, x2 = True, ... x2n = True, is a satisfying 
assignment of the boolean expression Yn. For any positive integer n, there are 4n – 3n 
satisfying assignments of Yn. Prove this result, either through a counting argument or 
induction on n. (Hint: There are a total of 22n total possible assignments because there are 
2n variables, each of which can take two different values. Let Sn equal the total number 
of satisfying assignments of Yn, and Tn equal the total number of assignments that do 
NOT satisfy Yn. Thus, Sn + Tn = 22n. If you are using induction it will be useful to show 
that Sn+1 = 4Sn + Tn.) 
 
 
Counting argument: 
 
Let us count the non-satisfying assignments of the given expression. For an 
assignment to be non-satisfying, each clause must be false. Out of 4 possible truth 
assignments to variables x1 and x2, three make x1 ∧  x2 false. (The ordered pairs (x1, 
x2) are (F,F), (F,T) and (T,F).) Similarly, for each of the n indepedent clauses, three 
possible truth assignments make the clause false. Since these are each independent 
clauses, (the value of one does not affect the value of another), use the product rule 
to find the total number of non-satisfying assignments is 3n, (3x3...x3, n times for the 
n clauses.) 
 
The total number of assignments for the clauses stated in the hint is 22n. This is 
equal to (22)n = 4n. To get the total number of satisfying assignments, we can 
subtract the value above from the total number of assignments.Thus the total 
number of satisfying assignments is 4n - 3n. 
 
Induction:  
 
Using the hint, let Sn equal the total number of satisfying assignments of Yn, and Tn 
equal the total number of assignments that do NOT satisfy Yn.  
 
First we will show that Sn+1 = 4Sn + Tn. 
 
Consider counting the satisfying assignments of Yn+1. Clearly, any satisfying 
assignment of Yn will lead to a corresponding satisfying assignment of Yn+1, 



regardless of what x2n+1 and x2n+2  are assigned. (This is because only one clause has 
to be true to make all of Yn+1 true.) Thus, for each satisfying assignment of Yn, there 
are four corresponding satisfying assignments of Yn+1, or 4Sn of these. Now, we must 
try to count other satisfying assignments. The only ones we haven't considered are 
assignments that correspond to assignments that do not satisfy Yn. For each of these, 
we must set both x2n+1  and x2n+2  to true in order to satisfy Yn+1. Thus, for each non-
satisfying assignment of Yn, there is exactly one satisfying assignment of Yn+1. There 
are Tn of these. Since we have counted all satisfying assignments of Yn+1 exactly 
once, it follows that Sn+1  is the sum of the two calculated values or 4Sn + Tn. 
 
Now, our goal is to prove that Sn = 4n - 3n using induction on n. 
 
 
Base case: n=1,  
LHS = S1  = 1, since there is only one satisfying assignment of x1 ∧  x2. 
RHS = 41 - 31 = 1 
So, the formula is true for n=1. 
 
Inductive hypothesis: Assume that for an arbitrary positive integer value of n=k 
that Sk = 4k - 3k. 
 
Inductive step: We need to prove for n=k+1 that Sk+1 = 4k+1  - 3k+1 . 
 
Sk+1  = 4Sk + Tk, using the result proved above. 
      = 4Sk + (22k -  Sk), since Tk + Sk = 22k. 
      = 22k + 3Sk 
      = 4k + 3(4k - 3k), using the inductive hypothesis 
      = 4k + 3(4k) - 3(3k) 
      = (1+3)(4k) - 3k+1 
      = 4(4k) - 3k+1  

      = 4k+1  - 3k+1 , completing the inductive step. 
 
Thus, for all positive integers n, Sn = 4n - 3n, proving that the number of satisfying 
assignments of Yn is4n - 3n. 


