
Computer Science Foundation Exam 

May 3, 2001 

Section II A 

DISCRETE STRUCTURES 

NO books, notes, or calculators may be used,  
and you must work entirely on your own. 

 

Name:  _______________________________ 

SSN:  ________________________________ 

 
In this section of the exam, there are two (2) problems. 

You must do both of them.  

Each counts for 25% of the total exam grade. 

Show the steps of your work carefully.   

Problems will be graded based on the completeness of 
the solution steps and not graded based on the answer alone  

 
Credit cannot be given when your results are unreadable. 



FOUNDATION EXAM (DISCRETE STRUCTURES) 
 
Answer two problems of Part A and two problems of Part B.  Be sure to show the steps of 
your work including the justification.  The problem will be graded based on the 
completeness of the solution steps (including the justification) and not graded based on 
the answer alone.  NO books, notes, or calculators may be used, and you must work 
entirely on your own.  
 

PART A: Work both of the following problems (1 and 2). 
 
1) Use induction on n to prove the following inequality for all positive integers n:  
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(Hint: Remember that √(x2 – y) ≤ x for all positive integers x and non-negative 
integers y ≤ x2.) 

 
2) Suppose A, B and C are sets.  Prove that A – (B – C) ⊆  (A – B) ∪ C.   

Note:  You may not use the “truth table” or “membership” method for the proof.  
 
 



Solution to Problem 1: 
Use induction on n to prove the following inequality for all positive integers n: 
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Base Case: n=1. LHS = √√√√(1) = 1 
      RHS = 1(1+1)(4(1) – 1)/6 = 1  
 
Assume for an arbitrary value of n=k that 
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Under this assumption, prove for n=k+1 that 
 

6
)34)(2)(1(

6
)1)1(4)(1)1)((1(

2)1(

1

+++=−++++≤∑
+

=

kkkkkki
k

i
  

 
 

∑∑∑
+

+==

+

=

+=
2

2

22 )1(

11

)1(

1

k

ki

k

i

k

i
iii    

 
 

   ≤ ∑
+

+=

+−+
2

2

)1(

16
)14)(1( k

ki

ikkk
, using the inductive hypothesis.  

 

   ≤≤≤≤ ∑
+

+=

++−+
2

2

)1(

1

2)1(
6

)14)(1( k

ki

kkkk , because each term in the summation is 

      less than or equal to that last term when 
      i = (k+1)2.  
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       the IH contains k2 terms while 
       the summation from the IS 
       contains (k+1)2, leaving the  
       difference for this summation. 
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Solution to Problem 2: 
Suppose A, B and C are sets.  Prove that A – (B – C) ⊆  (A – B) ∪ C. 
 
We must prove the following: 
 
Let x be an arbitrary element from the set A – (B – C).  
We need to prove that x ∈∈∈∈  (A – B) ∪∪∪∪ C. 
 
A – (B – C) = A – (B ∩∩∩∩ ¬¬¬¬C)  defn of – (here, ¬¬¬¬  denotes the complement of a set.) 
                    = A ∩∩∩∩ ¬¬¬¬ (B ∩∩∩∩ ¬¬¬¬C)  defn of – 
                    = A ∩∩∩∩ (¬¬¬¬B ∪∪∪∪  ¬¬¬¬¬¬¬¬C) DeMorgan’s 
         = A ∩∩∩∩ (¬¬¬¬B ∪∪∪∪  C)  Law of Double Complement 
         = (A ∩∩∩∩ ¬¬¬¬B) ∪∪∪∪  (A ∩∩∩∩ C) Distributive 
         = (A – B) ∪∪∪∪  (A ∩∩∩∩ C) defn of – 
 
This shows that iff x ∈∈∈∈  A – (B – C), x∈∈∈∈ (A – B) ∪∪∪∪  (A ∩∩∩∩ C). 
 
We can now break our proof down into two parts: 
 
1) Prove if x∈∈∈∈ (A – B), then x∈∈∈∈ (A – B) ∪∪∪∪ C. 
2) Prove if x∈∈∈∈ (A ∩∩∩∩ C), then x∈∈∈∈ (A – B) ∪∪∪∪ C. 
 
To show 1, notice, that by the definition of union, we MUST have x∈∈∈∈ (A – B) ∪∪∪∪ C if 
x∈∈∈∈ (A – B). 
 
To show 2, notice, that by the definition of intersection, we MUST have x∈∈∈∈ C if x∈∈∈∈ (A 
∩∩∩∩ C). If this is the case, then by definition of union, clearly x∈∈∈∈ (A – B) ∪∪∪∪ C. 
 
Thus, we have shown that for any arbitrary x such that x∈∈∈∈  A – (B – C), that x ∈∈∈∈ (A – 
B) ∪∪∪∪ C. It follows that A – (B – C) ⊆⊆⊆⊆  (A – B) ∪∪∪∪ C. 
 
 
 
 
 
 
 
 



Computer Science Foundation Exam 
May 3, 2001 

Section II B 

DISCRETE STRUCTURES 

NO books, notes, or calculators may be used,  
and you must work entirely on your own. 

 

Name:  _______________________________ 

SSN:  ________________________________ 

In this section of the exam, there are two (4) problems. 

You must do two (2) of them.  

Each counts for 25% of the total exam grade. 

You must clearly identify the problems you are solving. 

Show the steps of your work carefully.   

Problems will be graded based on the completeness of 
the solution steps and not graded based on the answer alone  

 
Credit cannot be given when your results are unreadable. 



PART B: Work any two of the following problems (3 through 6). 
 
3)  Let ? be an unknown Boolean logical operator. The logical statement  

[(p ∧  q) ∨  r] ⇒  (q ? r) is equivalent to [¬ (p ∧  q) ∨  r].  
Given this information, there are 2 possible truth tables for the Boolean logical 
operator ?. List both of these truth tables. 

 
 
p q r (p ∧  q) ∨  r (q ? r) [(p ∧  q) ∨  r] ⇒  (q ? r) [¬ (p ∧  q) ∨  r]. 
0 0 0 0 xxx 1 1 
0 0 1 1 1 1 1 
0 1 0 0 xxx 1 1 
0 1 1 1 1 1 1 
1 0 0 0 xxx 1 1 
1 0 1 1 1 1 1 
1 1 0 1 0 0 0 
1 1 1 1 1 1 1 
 
Here we see that based on the values of (p ∧∧∧∧  q) ∨∨∨∨  r and [(p ∧∧∧∧  q) ∨∨∨∨  r] ⇒⇒⇒⇒  (q ? r), we 
can definitively fill out five slots for our unknown column. These 5 slots specify the 
operation (q ? r) for all possibilities where at least one of the two values is 1. (Notice 
that we can deduce that 1?0 = 0 from row 7 and fill in that value in row 3, so that we 
really only have 2 unknown values, both of which must be 1 or 0.) Thus, the only 
ambiguity possible for the operator is that 0?0=0 OR 0?0=1. Thus, we have the two 
following truth tables for ?: 
 
? r=0 r=1 
q=0 0 1 
q=1 0 1 
 
? r=0 r=1 
q=0 1 1 
q=1 0 1 
 
 
 
4) a) Prove or disprove: If R1 ⊂  R2 and S1 ⊂  S2, then R1° S1 ⊂  R2° S2. 
  
     This statement is true. We must prove the following statement: 
 
     If (x,y)∈∈∈∈  R1°°°° S1, then (x,y) ∈∈∈∈  R2°°°° S2, for any arbitrary element (x,y). 
 
 Using our given information, we know there must exist an element z such 
     that (x,z) ∈∈∈∈  R1 and (z,y) ∈∈∈∈  S1, by definition of relation composition. 
 
 Then, by definition of subsets, we can deduce that (x,z) ∈∈∈∈  R2 and (z,y) ∈∈∈∈  S2,  



     since we are given that R1 ⊂⊂⊂⊂  R2 and S1 ⊂⊂⊂⊂  S2. 
 
 Now, by definition of relation composition, we can conclude that (x,y) ∈∈∈∈  R2°°°° S2 
 as desired. 
 
    b) Prove or disprove: If R1 ≠ R2 and S1 ≠ S2, then R1° S1 ≠ R2° S2. 
 
  Let each relation be a subset of Z x Z. 
  This claim is false. Let R1 = {(1,2)}, R2 = {(1,3)}, S1 = {(2,1)}, and S2 = {(3,1)}. 
 
  In this counter example, all four relations are different but R1°°°° S1 = R2°°°° S2. 
  
  
 
5) a) How many permutations of the word FOUNDATION are there? 
 
  10!/(2!2!), since there are 10 letters total with 2Os and 2Ns. 
 
 b)  A valid password is 5 letters long and uses a selection of the letters in the word 

FOUNDATION. (Thus, a password may have at most 2 N’s, at most 2 O’s, and at 
most 1 copy of each of the other letters {A, D, F, I, U, T} in FOUNDATION.)  
How many valid passwords are there? 

 
  Split up the counting into three separate categories: 
 
  1) Passwords with 5 distinct letters 
  2) Passwords with 4 distinct letters 
  3) Passwords with 3 distinct letters 
 
  1) We have 8 distinct letters to choose from and we are choosing 5. 
              There are P(8,5) = 8!/3! ways to do this. 
 
  2) We first choose either two Ns or two Os. This can be done in 2 ways. 
       Then we choose three distinct letters out of the 7 remaining. We can  
              choose the three letters in C(7,3) ways. Thus, we have 
     C(7,3)x2 = 70 ways to choose our letters. Each of these choices gives 
       rise to 5!/2! = 60 permutations. 
 
  3)  We have to choose all Ns and Os, which leaves us one choice out of the  
      remaining 6 letters. We can choose this letter is 6 ways. For each of these 
      choices, we can make 5!/(2!2!) = 30 permutations. So there is a total of 
      180 permutations of this kind to count. 
 
  Adding up, we get the total number of valid passwords to be 
 
  8!/3! + 70x60 + 180 = 6720 + 4200 + 180 = 11100. 



 
 c) An ascending word is one where the letters of the word appear in alphabetical order. 

Thus, for example, AFNNT is a valid password that is ascending.  
How many of the valid passwords are ascending? 

 
  Using the logic from above, but just counting combinations, we get the answer 

to be C(8,3) + 70 + 6 = 56 + 70 + 6 = 132. 
     Note: The reason we only count combinations here is that each distinct  
     combination of letters gives rise to exactly one valid password. (For each set 
     of letters, there is one and only one way to alphabetize them.) 
 
 
6) Consider the relation R on the set of integers Z={…−2, −1, 0, 1, 2, …}: 

R ={(x, y) | x, y ∈ A and x ≡ y (mod 5)}.  
i) Prove that this relation is an equivalence relation. 

 
 

We need to prove that this relation is reflexive, symmetric and transitive. 
 
The relation is reflexive because for all integers a, (a,a) ∈∈∈∈  R. To see this, 
note that 5 | (a – a), for all values of a since a – a = 0. 
 
To show the relation in symmetric, we must prove the following: 
 
If (x,y)∈∈∈∈ R, then (y,x)∈∈∈∈ R. 
 
Using our given information, we have that x ≡≡≡≡ y (mod 5). Using mod rules we 
have the following: 
 
x ≡≡≡≡ y (mod 5) 
x – y ≡≡≡≡ y – y (mod 5) 
x – y ≡≡≡≡ 0 (mod 5) 
–x + x – y ≡≡≡≡ –x (mod 5) 
– y ≡≡≡≡ –x (mod 5) 
(–1)( –y) ≡≡≡≡ (–1)( –x) (mod 5) 
y ≡≡≡≡ x (mod 5) 
(y,x) ∈∈∈∈  R. 
 
 
To show that R is transitive, we must show the following: 
 
If (x,y)∈∈∈∈ R and (y,z)∈∈∈∈ R, then (x,z)∈∈∈∈ R. 
 
Using our given information, we have the following: 
 
x ≡≡≡≡ y (mod 5) 



y ≡≡≡≡ z (mod 5) 
 
Adding these two equations, we get 
(x + y) ≡≡≡≡ (y + z) (mod 5) 
 
Subtracting y from both sides, we get 
x ≡≡≡≡ z (mod 5) 
Thus, we have shown that (x,z)∈∈∈∈ R. 
 
Since R is reflexive, symmetric and transitive, we conclude that it is an 
equivalence relation. 
 
 

ii) How many equivalence classes are induced by this relation on Z? 
(Recall that: x ≡ y (mod 5) means that 5 | (x−y), i. e. there exists an integer k, such that 
x−y = 5⋅k For instance, 1 ≡ 6 (mod 5) or 8 ≡ 3 (mod 5)). 
 
 
There are 5 of them. They are [0], [1], [2], [3], [4], corresponding to the different 
remainders you get when you divide by 5.  



Solution to Problem ____ (Please write in the problem number 3,4,5 or 6 you are solving) 



Solution to Problem ____ (Please write in the problem number 3,4,5 or 6 you are solving) 
 
 
 


