EEL 4890 Class Demo #3 Fall 2011

A single tank with cross-sectional area A ft<sup>2</sup> receives an inflow of  $f_1(t)$  in ft<sup>3</sup>/min at a temperature of  $T_1(t)$ , measured in deg F. Outflow  $f_0(t)$  is in ft<sup>3</sup>/min and at temperature T(t), in deg F. The liquid level and temperature in the tank at time t is H(t) and T(t), respectively.



The tank is modeled by the following differential and algebraic equations:

$$A\frac{dH}{dt} + f_0 = f_1$$

$$f_0 = \alpha H^{1/2}$$

$$cf_1 T_1 - cf_0 T = c\frac{d}{dt} (AHT)$$

The last equation reflects a conservation of energy, i.e.

Rate of energy in - rate of energy leaving = rate of accumulation of energy where c is the specific heat of the liquid measured in Btu / deg F per  $ft^3$ .

$$\frac{Btu}{ft^3 - \deg F} \cdot \frac{ft^3}{\min} \cdot \deg F - \frac{Btu}{ft^3 - \deg F} \cdot \frac{ft^3}{\min} \cdot \deg F = \frac{Btu}{ft^3 - \deg F} \cdot \frac{1}{\min} \cdot \left(ft^2 \cdot ft \cdot \deg F\right)$$

$$\frac{Btu}{\min} - \frac{Btu}{\min} = \frac{Btu}{\min}$$

The right hand side of the last equation is expanded to

$$cf_1T_1 - cf_0T = cA\frac{d}{dt}(HT) = cA\left(H\frac{dT}{dt} + T\frac{dH}{dt}\right)$$

## After solving for $\frac{dT}{dt}$ in the last equation, the Simulink diagram is obtained as shown.



```
% class_demo_3A.m
% example of a tank with two inputs, flow and temperature
clc, close all, clear all
A=10; % tank area
F1=12; % amplitude of step flow in
alpha=4; % discharge flow constant
H_init=10;
T_init=70;
delta_T=50; % change in temp step flow in above T_init
step_size=0.025; % RK-4 integration step size
tfinal=500;
estop=0.01; % stop condition for |dH/dt| and |dT/dt|
sim('class_demo_3A')
t=t_H(:,1);
H=t_H(:,2);
T=t_T(:,2);
subplot(2,1,1)
plot(t,H)
ylabel('H (ft)')
title('H vs t')
subplot(2,1,2)
plot(t,T)
xlabel('t (min)')
ylabel('T (deg F)')
title('T vs t')
```