
Computability &
Complexity Theory

Charles E. Hughes
COT 6410 – Spring 2014

Notes

4/10/14 © UCF EECS 2

Who, What, Where and When
•  Instructor: Charles Hughes;

Harris Engineering 247C; 823-2762
(phone is not a good way to get me);
charles.e.hughes@knights.ucf.edu
(e-mail is a good way to get me)
Subject: COT6410

•  Web Page: http://www.cs.ucf.edu/courses/cot6410/spr20124
•  Meetings: TR 1:30PM-2:45PM, CB1-120;

28 periods, each 75 minutes long.
Final Exam (Tuesday, April 29 from 1:00PM to 3:50PM) is
separate from class meetings

•  Office Hours: TR 3:00PM-4:15PM

2

4/10/14 © UCF EECS 3

Text Material
•  This and other material linked from web site.
•  References:

–  Arora&Barak, Computational Complexity: A Modern Approach, Cambridge University Press,
2009. http://www.cs.princeton.edu/theory/complexity/

–  Sipser, Introduction to the Theory of Computation 3rd Ed., Cengage Learning, 2013.
–  Garey&Johnson, Computers and Intractability: A guide to the Theory of NP-Completeness,

W. H. Freeman & Co., 1979.
–  Papadimitriou & Lewis, Elements of the Theory of Computation, Prentice-Hall, 1997.
–  Hopcroft, Motwani&Ullman, Intro to Automata Theory, Languages and Computation 3rd Ed.,

Prentice-Hall, 2006.
–  Davis, Sigal&Weyuker, Computability, Complexity and Languages 2nd Ed, Acad. Press

(Morgan Kaufmann), 1994.
–  Oded Goldreich, Computational Complexity: A Conceptual Approach, Cambridge University

Press, 2008. http://www.wisdom.weizmann.ac.il/~odedg/cc-drafts.html
–  Oded Goldreich, P, NP, and NP-Completeness: The Basics of Complexity Theory,

Cambridge University Press, 2010. http://www.wisdom.weizmann.ac.il/~odedg/bc-drafts.html

3

Goals of Course
•  Introduce Computability and Complexity Theory, including

–  Simple notions in theory of computation
•  Algorithms and effective procedures
•  Decision and optimization problems
•  Decision problems have yes/no answer to each instance

–  Limits of computation
•  Turing Machines and other equivalent models
•  Determinism and non-determinism
•  Undecidable problems
•  The technique of reducibility
•  The ubiquity of undecidability (Rice’s Theorem)
•  The notions of semi-decidable (re) and of co-re sets

–  Complexity theory
•  Order notation (quick review)
•  Polynomial reducibility
•  Time complexity, the sets P, NP, co-NP, NP-complete, NP-hard, etc., and the question

does P=NP? Sets in NP and NP-Complete.

4/10/14 © UCF EECS 4 4

4/10/14 © UCF EECS 5

Expected Outcomes
•  You will gain a solid understanding of various types of

computational models and their relations to one another.
•  You will have a strong sense of the limits that are

imposed by the very nature of computation, and the
ubiquity of unsolvable problems throughout CS.

•  You will understand the notion of computational
complexity and especially of the classes of problems
known as P, NP, co-NP, NP-complete and NP-Hard.

•  You will (hopefully) come away with stronger formal
proof skills and a better appreciation of the importance of
discrete mathematics to all aspects of CS.

5

4/10/14 © UCF EECS 6

Keeping Up
•  I expect you to visit the course web site regularly

(preferably daily) to see if changes have been made or
material has been added.

•  Attendance is preferred, although I do not take roll.
•  I do, however, ask lots of questions in class and give lots

of hints about the kinds of questions I will ask on exams.
It would be a shame to miss the hints, or to fail to
impress me with your insightful in-class answers.

•  You are responsible for all material covered in class,
whether in the notes or not.

6

4/10/14 © UCF EECS 7

Rules to Abide By
•  Do Your Own Work

–  When you turn in an assignment, you are implicitly telling me
that these are the fruits of your labor. Do not copy anyone else's
homework or let anyone else copy yours. In contrast, working
together to understand lecture material and solutions to
problems not posed as assignments is encouraged.

•  Late Assignments
–  I will accept no late assignments, except under very unusual

conditions, and those exceptions must be arranged with me in
advance unless associated with some tragic event.

•  Exams
–  No communication during exams, except with me or a

designated proctor, will be tolerated. A single offense will lead to
termination of your participation in the class, and the assignment
of a failing grade.

7

4/10/14 © UCF EECS 8

Grading
•  Grading of Assignments

–  I will grade harder than my actual expectations run. In
general, I will award everyone 110% of the grade they
are assigned on the returned papers when it comes to
final grade computation.

•  Exam Weights
–  The weights of exams will be adjusted to your

personal benefits, as I weigh the exam you do well in
more than one in which you do less well.

8

4/10/14 © UCF EECS 9

Important Dates

•  Midterm – Tues., February 25 (tentative)
•  Spring Break – March 3-8
•  Withdraw Deadline – Tuesday, March 18
•  Final – Tues., April 29, 1:00PM–3:50PM

9

4/10/14 © UCF EECS 10

Evaluation (tentative)
•  Mid Term – 125 points ; Final – 175 points
•  Assignments – 100 points;

Paper and Presentation – 75 points
•  Extra – 25 points used to increase weight of

exams or assignments, always to your benefit
•  Total Available: 500 points
•  Grading will be A >= 90%, B+ >= 85%,

B >= 80%, C+ >= 75%, C >= 70%,
D >= 50%, F < 50% (Minuses might be used)

10

What We are Studying
Computability Theory

 The study of what
can/cannot be done
via purely
computational means.

Complexity Theory

 The study of what
can/cannot be done
well via purely
computational means.

4/10/14 © UCF EECS 11

Decision Problems
•  A set of input data items (input "instances” or domain)
•  Each input data item defines a question with an answer

Yes/No or True/False or 1/0.
•  A decision problem can be viewed as a relation between

its domain and its binary range
•  A decision problem can also be viewed as a partition of

the input domain into those that give rise to true
instances and those that give rise to false instances.

•  In each case, we seek an algorithmic solution (in the
form of a predicate) or a proof that none exists

•  When an algorithmic solution exists, we seek an efficient
algorithm, or proofs of problem’s inherent complexity

4/10/14 © UCF EECS 12

Graph Coloring
•  Instance: A graph G = (V, E) and an integer k.
•  Question: Can G be "properly colored" with at most k colors?

•  Proper Coloring: a color is assigned to each vertex so that adjacent
vertices have different colors.

•  Suppose we have two instances of this problem (1) is True (Yes)
and the other (2) is False (No).

•  AND, you know (1) is Yes and (2) is No. (Maybe you have a secret
program that has analyzed the two instance.)

4/10/14 © UCF EECS 13

Checking a “Yes” Answer
•  Without showing how your program works (you may not even know), how

can you convince someone else that instance (1) is, in fact, a Yes instance?

•  We can assume the output of the program was an actual coloring of G. Just
give that to a doubter who can easily check that no adjacent vertices are
colored the same, and that no more than k colors were used.

•  How about the No instance?

•  What could the program have given that allows us to quickly "verify" (2) is a
No instance?

•  No One Knows!!

4/10/14 © UCF EECS 14

Checking a “No” Answer
•  The only thing anyone has thought of is to have it test all

possible ways to k-color the graph – all of which fail, of
course, if “No” is the correct answer.

•  There are an exponential number of things (colorings) to
check.

•  For some problems, there seems to be a big difference
between verifying Yes and No instances.

•  To solve a problem efficiently, we must be able to solve
both Yes and No instances efficiently.

4/10/14 © UCF EECS 15

Hard and Easy
•  True Conjecture: If a problem is easy to solve, then it is

easy to verify (just solve it and compare).

•  Contrapositive: If a problem is hard to verify, then it is
(probably) hard to solve.

•  There is nothing magical about Yes and No instances –
sometimes the Yes instances are hard to verify and No
instances are easy to verify.

•  And, of course, sometimes both are hard to verify.
4/10/14 © UCF EECS 16

Easy Verification
•  Are there problems in which both Yes and No instances

are easy to verify?

•  Yes. For example: Search a list L of n values for a key x.
•  Question: Is x in the list L?

•  Yes and No instances are both easy to verify.

•  In fact, the entire problem is easy to solve!!

4/10/14 © UCF EECS 17

Verify vs Solve
•  Conjecture: If both Yes and No instances are easy to verify, then the

problem is easy to solve.

•  No one has yet proven this claim, but most researchers believe it to
be true.

•  Note: It is usually relatively easy to prove something is easy – just
write an algorithm for it and prove it is correct and that it is fast
(usually, we mean polynomial).

•  But, it is usually very difficult to prove something is hard – we may
not be clever enough yet. So, you will often see "appears to be
hard."

4/10/14 © UCF EECS 18

Instances vs Problems
•  Each instance has an 'answer.‘

– An instance’s answer is the solution of the
instance - it is not the solution of the problem.

– A solution of the problem is a computational
procedure that finds the answer of any
instance given to it – the procedure must halt
on all instances – it must be an 'algorithm.'

4/10/14 © UCF EECS 19

Three Classes of Problems
 Problems can be classified to be in one of
three groups (classes):

 Undecidable, Exponential, and Polynomial.

 Theoretically, all problems belong to exactly
one of these three classes and our job is often
to find which one.

4/10/14 © UCF EECS 20

Why do we Care?
 When given a new problem to solve (design an algorithm
for), if it's undecidable, or even exponential, you will
waste a lot of time trying to write a polynomial solution
for it!!

 If the problem really is polynomial, it will be worthwhile
spending some time and effort to find a polynomial
solution.

 You should know something about how hard a problem
is before you try to solve it.

4/10/14 © UCF EECS 21

Procedure (Program)
–  A finite set of operations (statements) such that

•  Each statement is formed from a predetermined finite set
of symbols and is constrained by some set of language
syntax rules.

•  The current state of the machine model is finitely
presentable.

•  The semantic rules of the language specify the effects of
the operations on the machine’s state and the order in
which these operations are executed.

•  If the procedure (eventually) halts when started on some
input, it produces the correct answer to this given
instance of the problem.

4/10/14 © UCF EECS 22

Algorithm

•  A procedure that
– Correctly solves any instance of a given

problem.
– Completes execution in a finite number of

steps no matter what input it receives.

4/10/14 © UCF EECS 23

Sample Algorithm/Procedure
{ Example algorithm:

 Linear search of a finite list for a key;
 If key is found, answer “Yes”;
 If key is not found, answer “No”; }

{ Example procedure:
 Linear search of a finite list for a key;
 If key is found, answer “Yes”;
 If key is not found, try this strategy again; }

Note: Latter is not unreasonable if the list can be
changed by some concurrent thread.

4/10/14 © UCF EECS 24

Procedure vs Algorithm
 Looking back at our approaches to “find a key in a finite
list,” we see that the algorithm always halts and always
reports the correct answer. In contrast, the procedure
does not halt in some cases, but never lies.

 What this illustrates is the essential distinction between
an algorithm and a procedure – algorithms always halt in
some finite number of steps, whereas procedures may
run on forever for certain inputs. A particularly silly
procedure that never lies is a program that never halts
for any input.

4/10/14 © UCF EECS 25

Notion of Solvable
•  A problem is solvable if there exists an algorithm that

solves it (provides the correct answer for each instance).
•  The fact that a problem is solvable or, equivalently,

decidable does not mean it is solved. To be solved,
someone must have actually produced a correct
algorithm.

•  The distinction between solvable and solved is subtle.
Solvable is an innate property – an unsolvable problem
can never become solved, but a solvable one may or
may not be solved in an individual’s lifetime.

4/10/14 © UCF EECS 26

An Old Solvable Problem
Does there exist a set of positive whole numbers, a, b,
c and an n>2 such that an+bn = cn?

 In 1637, the French mathematician, Pierre de Fermat, claimed that
the answer to this question is “No”. This was called Fermat’s Last
Theorem, despite the fact that he never produced a proof of its
correctness.
 While this problem remained unsolved until Fermat’s claim was
verified in 1995 by Andrew Wiles, the problem was always solvable,
since it had just one question, so the solution was either “Yes” or
“No”, and an algorithm exists for each of these candidate solutions.

4/10/14 © UCF EECS 27

Research Territory
 Decidable – vs – Undecidable
 (area of Computability Theory)

 Exponential – vs – polynomial
 (area of Computational Complexity)

 For “easy” problems, we want to
determine lower and upper bounds on
complexity and develop best Algorithms
 (area of Algorithm Design/Analysis)

4/10/14 © UCF EECS 28

A CS Grand Challenge
Does P=NP?

 There are many equivalent ways to describe P and NP. For now, we
will use the following.
 P is the set of decision problems (those whose instances have
“Yes”/ “No” answers) that can be solved in polynomial time on a
deterministic computer (no concurrency or guesses allowed).
 NP is the set of decision problems that can be solved in polynomial
time on a non-deterministic computer (equivalently one that can
spawn an unbounded number of parallel threads; equivalently one
that can be verified in polynomial time on a deterministic computer).
 Again, as “Does P=NP?” has just one question, it is solvable, we
just don’t yet know which solution, “Yes” or “No”, is the correct one.

4/10/14 © UCF EECS 29

Computability vs Complexity
 Computability focuses on the distinction between
solvable and unsolvable problems, providing tools that
may be used to identify unsolvable problems – ones that
can never be solved by mechanical (computational)
means. Surprisingly, unsolvable problems are
everywhere as you will see.
 In contrast, complexity theory focuses on how hard it is
to solve problems that are known to be solvable. Hard
solvable problems abound in the real world. We will
address computability theory for the first part of this
course, returning to complexity theory later in the
semester.

4/10/14 © UCF EECS 30

History

The Quest for Mechanizing
Mathematics

4/10/14 © UCF EECS 32

Hilbert, Russell and Whitehead

•  Late 1800’s to early 1900’s
•  Axiomatic schemes

– Axioms plus sound rules of inference
– Much of focus on number theory

•  First Order Predicate Calculus
– ∀x∃y [y > x]

•  Second Order (Peano’s Axiom)
– ∀P [[P(0) && ∀x[P(x) ⇒P(x+1)]] ⇒ ∀xP(x)]

32

4/10/14 © UCF EECS 33

Hilbert
•  In 1900 declared there were 23 really

important problems in mathematics.
•  Belief was that the solutions to these

would help address math’s complexity.
•  Hilbert’s Tenth asks for an algorithm to

find the integral zeros of polynomial
equations with integral coefficients. This is
now known to be impossible (In 1972,
Matiyacevič showed this undecidable).

33

4/10/14 © UCF EECS 34

Hilbert’s Belief

•  All mathematics could be developed within
a formal system that allowed the
mechanical creation and checking of
proofs.

34

4/10/14 © UCF EECS 35

Gödel
•  In 1931 he showed that any first order theory

that embeds elementary arithmetic is either
incomplete or inconsistent.

•  He did this by showing that such a first order
theory cannot reason about itself. That is, there
is a first order expressible proposition that
cannot be either proved or disproved, or the
theory is inconsistent (some proposition and its
complement are both provable).

•  Gödel also developed the general notion of
recursive functions but made no claims about
their strength.

35

4/10/14 © UCF EECS 36

Turing (Post, Church, Kleene)
•  In 1936, each presented a formalism for computability.

–  Turing and Post devised abstract machines and
claimed these represented all mechanically
computable functions.

–  Church developed the notion of lambda-computability
from recursive functions (as previously defined by
Gödel and Kleene) and claimed completeness for this
model.

•  Kleene demonstrated the computational equivalence of
recursively defined functions to Post-Turing machines.

•  Church’s notation was the lambda calculus, which later
gave birth to Lisp.

36

4/10/14 © UCF EECS 37

More on Emil Post
•  In the 1920’s, starting with notation developed by Frege

and others in 1880s, Post devised the truth table form
we all use now for Boolean expressions (propositional
logic). This was a part of his PhD thesis in which he
showed the axiomatic completeness of the propositional
calculus.

•  In the late 1930’s and the 1940’s, Post devised symbol
manipulation systems in the form of rewriting rules
(precursors to Chomsky’s grammars). He showed their
equivalence to Turing machines.

•  In 1940s, Post showed the complexity (undecidability) of
determining what is derivable from an arbitrary set of
propositional axioms.

37

Computability
The study of what can/cannot be

done via purely mechanical
means

Goals on Computability
•  Provide characterizations (computational models) of the

class of effective procedures / algorithms.

•  Study the boundaries between complete (or so it seems)
and incomplete models of computation.

•  Study the properties of classes of solvable and
unsolvable problems.

•  Solve or prove unsolvable open problems.

•  Determine reducibility and equivalence relations among
unsolvable problems.

•  Apply results to various other areas of CS.

4/10/14 © UCF EECS 39

Basic Definitions
The Preliminaries

4/10/14 © UCF EECS 41

Effective Procedure
•  A process whose execution is clearly specified to the

smallest detail
•  Such procedures have, among other properties, the

following:
–  Processes must be finitely describable and the language used to

describe them must be over a finite alphabet.
–  The current state of the machine model must be finitely

presentable.
–  Given the current state, the choice of actions (steps) to move to

the next state must be easily determinable from the procedure’s
description.

–  Each action (step) of the process must be capable of being
carried out in a finite amount of time.

–  The semantics associated with each step must be clear and
unambiguous.

41

4/10/14 © UCF EECS 42

Algorithm

•  An effective procedure that halts on all
input

•  The key term here is “halts on all input”
•  By contrast, an effective procedure may

halt on all, none or some of its input.
•  The domain of an algorithm is its entire

domain of possible inputs.

42

4/10/14 © UCF EECS 43

Sets, Problems & Predicates

•  Set -- A collection of atoms from some
universe U. Ø denotes the empty set.

•  (Decision) Problem -- A set of questions,
each of which has answer “yes” or “no”.

•  Predicate -- A mapping from some
universe U into the Boolean set {true,
false}. A predicate need not be defined
for all values in U.

43

4/10/14 © UCF EECS 44

How They relate
•  Let S be an arbitrary subset of some universe U. The

predicate χS over U may be defined by:
	
 	
χS(x) = true if and only if x ∈ S
	
 	
χS is called the characteristic function of S.

•  Let K be some arbitrary predicate defined over some
universe U. The problem PK associated with K is the
problem to decide of an arbitrary member x of U,
whether or not K(x) is true.

•  Let P be an arbitrary decision problem and let U denote
the set of questions in P (usually just the set over which
a single variable part of the questions ranges). The set
SP associated with P is
 { x | x ∈ U and x has answer “yes” in P }

44

4/10/14 © UCF EECS 45

Categorizing Problems (Sets)
•  Solvable or Decidable -- A problem P is said to

be solvable (decidable) if there exists an
algorithm F which, when applied to a question q
in P, produces the correct answer (“yes” or “no”).

•  Solved -- A problem P is said to solved if P is
solvable and we have produced its solution.

•  Unsolved, Unsolvable (Undecidable) --
Complements of above

45

4/10/14 © UCF EECS 46

Existence of Undecidables
•  A counting argument

–  The number of mappings from ℵ to ℵ is at least as
great as the number of subsets of ℵ. But the number
of subsets of ℵ is uncountably infinite (ℵ1). However,
the number of programs in any model of computation
is countably infinite (ℵ0). This latter statement is a
consequence of the fact that the descriptions must be
finite and they must be written in a language with a
finite alphabet. In fact, not only is the number of
programs countable, it is also effectively enumerable;
moreover, its membership is decidable.

•  A diagonalization argument
–  Will be shown later in class

46

4/10/14 © UCF EECS 47

Categorizing Problems (Sets) # 2
•  Recursively enumerable -- A set S is recursively

enumerable (re) if S is empty (S = Ø) or there
exists an algorithm F, over the natural numbers
ℵ, whose range is exactly S. A problem is said
to be re if the set associated with it is re.

•  Semi-Decidable -- A problem is said to be semi-
decidable if there is an effective procedure F
which, when applied to a question q in P,
produces the answer “yes” if and only if q has
answer “yes”. F need not halt if q has answer
“no”.

47

4/10/14 © UCF EECS 48

Immediate Implications

•  P solved implies P solvable implies P
semi-decidable (re).

•  P non-re implies P unsolvable implies P
unsolved.

•  P finite implies P solvable.

48

Slightly Harder Implications

•  P enumerable iff P semi-decidable.
•  P solvable iff both SP and (U — SP) are re

(semi-decidable).

•  We will prove these later.

4/10/14 © UCF EECS 49

Hilbert’s Tenth

Diophantine Equations are
Unsolvable

 One Variable Diophantine
Equations are Solvable

4/10/14 © UCF EECS 51

Diophantine Equations

•  Polynomial equation: P(x1, x2, …, xn) = 0
•  Coefficients and exponents in P must be positive

integer constants
•  Implied existential quantifier for each variable,

indicating a selection of integral values for each
of x1, x2, …, xn

•  Answer is “yes” if P(a1, a2, …, an) evaluates to 0,
for some integer assignment x1=a1, x2=a2, …,
xn=an

51

4/10/14 © UCF EECS 52

Hilbert’s 10th is Semi-Decidable

•  Consider over one variable: P(x) = 0
•  Can semi-decide by plugging in

0, 1, -1, 2, -2, 3, -3, …
•  This terminates and says “yes” if P(x) evaluates

to 0, eventually. Unfortunately, it never
terminates if there is no x such that P(x) =0

•  Can easily extend to P(x1,x2,..,xk) = 0
Think about how to do this correctly and
what the pitfalls are

52

4/10/14 © UCF EECS 53

P(x) = 0 is Decidable

•  cn xn + cn-1 xn-1 +… + c1 x + c0 = 0
•  xn = -(cn-1 xn-1 + … + c1 x + c0)/cn
•  |xn| ≤ cmax(|xn-1| + … + |x| + 1|)/|cn|
•  |xn| ≤ cmax(n |xn-1|)/|cn|, since |x|≥1
•  |x| ≤ n×cmax/|cn|

53

4/10/14 © UCF EECS 54

P(x) = 0 is Decidable
•  Can bound the search to values of x in range

[± n * (cmax / cn)], where
n = highest order exponent in P(x)
cmax = largest absolute value coefficient
cn = coefficient of highest order term

•  Once we have a search bound and we are
dealing with a countable set, we have an
algorithm to decide if there is an x.

•  Cannot find bound when more than one variable,
so cannot extend to P(x1,x2,..,xk) = 0.

54

Undecidability

We Can’t Do It All

Classic Unsolvable Problem
 Given an arbitrary program P, in some language L, and
an input x to P, will P eventually stop when run with input
x?
 The above problem is called the “Halting Problem.” It is
clearly an important and practical one – wouldn't it be
nice to not be embarrassed by having your program run
“forever” when you try to do a demo?
 Unfortunately, there’s a fly in the ointment as one can
prove that no algorithm can be written in L that solves
the halting problem for L.

4/10/14 56 © UCF EECS

Some terminology
 We will say that a procedure, f, converges on input x if it eventually
halts when it receives x as input. We denote this as f(x)↓.

 We will say that a procedure, f, diverges on input x if it never halts
when it receives x as input. We denote this as f(x)↑.

 Of course, if f(x)↓ then f defines a value for x. In fact we also say
that f(x) is defined if f(x)↓ and undefined if f(x)↑.

 Finally, we define the domain of f as {x | f(x)↓}.
The range of f is {y | f(x)↓ and f(x) = y }.

4/10/14 57 © UCF EECS

4/10/14 © UCF EECS 58

Halting Problem
 Assume we can decide the halting problem. Then there exists some total
function Halt such that
 1 if ϕx (y) ↓
 Halt(x,y) =

 0 if ϕx (y) ↑
 Here, we have numbered all programs and ϕx refers to the x-th program in
this ordering. Now we can view Halt as a mapping from ℵ into ℵ by
treating its input as a single number representing the pairing of two numbers
via the one-one onto function

 pair(x,y) = <x,y> = 2x (2y + 1) – 1

 with inverses
 <z>1 = log2(z+1)

 <z>2 = (((z + 1) // 2 <z>1) – 1) // 2

4/10/14 © UCF EECS 59

The Contradiction
 Now if Halt exist, then so does Disagree, where
 0 if Halt(x,x) = 0, i.e, if ϕx (x) ↑
 Disagree(x) =

 µy (y == y+1) if Halt(x,x) = 1, i.e, if ϕx (x) ↓

 Since Disagree is a program from ℵ into ℵ , Disagree can be
reasoned about by Halt. Let d be such that Disagree = ϕd, then
 Disagree(d) is defined ⇔ Halt(d,d) = 0

 ⇔ ϕd (d) ↑
 ⇔ Disagree(d) is undefined
 But this means that Disagree contradicts its own existence. Since
every step we took was constructive, except for the original
assumption, we must presume that the original assumption was in
error. Thus, the Halting Problem is not solvable.

Halting is recognizable
 While the Halting Problem is not solvable, it is re, recognizable or
semi-decidable.
 To see this, consider the following semi-decision procedure. Let P
be an arbitrary procedure and let x be an arbitrary natural number.
Run the procedure P on input x until it stops. If it stops, say “yes.” If
P does not stop, we will provide no answer. This semi-decides the
Halting Problem. Here is a procedural description.

 Semi_Decide_Halting() {
 Read P, x;
 P(x);
 Print “yes”;
 }

4/10/14 60 © UCF EECS

Why not just algorithms?
 A question that might come to mind is why we could not just have a
model of computation that involves only programs that halt for all
input. Assume you have such a model – our claim is that this model
must be incomplete!

 Here’s the logic. Any programming language needs to have an
associated grammar that can be used to generate all legitimate
programs. By ordering the rules of the grammar in a way that
generates programs in some lexical or syntactic order, we have a
means to recursively enumerate the set of all programs. Thus, the
set of procedures (programs) is re. using this fact, we will employ
the notation that ϕx is the x-th procedure and ϕx(y) is the x-th
procedure with input y. We also refer to x as the procedure’s index.

4/10/14 61 © UCF EECS

The universal machine
 First, we can all agree that any complete model of
computation must be able to simulate programs in its
own language. We refer to such a simulator (interpreter)
as the Universal machine, denote Univ. This program
gets two inputs. The first is a description of the program
to be simulated and the second of the input to that
program. Since the set of programs in a model is re, we
will assume both arguments are natural numbers; the
first being the index of the program. Thus,

 Univ(x,y) = ϕx(y)

4/10/14 62 © UCF EECS

4/10/14 © UCF EECS 63

Non-re Problems
•  There are even “practical” problems that are worse than

unsolvable -- they’re not even semi-decidable.
•  The classic non-re problem is the Uniform Halting

Problem, that is, the problem to decide of an arbitrary
effective procedure P, whether or not P is an algorithm.

•  Assume that the algorithms can be enumerated, and that
F accomplishes this. Then

F(x) = Fx

where F0, F1, F2, … is a list of indexes of all and only the
algorithms

4/10/14 © UCF EECS 64

The Contradiction
•  Define G(x) = Univ (F(x) , x) + 1 = ϕF(x)(x) = Fx(x) + 1

•  But then G is itself an algorithm. Assume it is the g-th one

 F(g) = Fg = G

Then, G(g) = Fg(g) + 1 = G(g) + 1

•  But then G contradicts its own existence since G would need to be
an algorithm.

•  This cannot be used to show that the effective procedures are non-
enumerable, since the above is not a contradiction when G(g) is
undefined. In fact, we already have shown how to enumerate the
(partial) recursive functions.

Consequences
•  To capture all the algorithms, any model of computation

must include some procedures that are not algorithms.

•  Since the potential for non-termination is required, every
complete model must have some for form of iteration that
is potentially unbounded.

•  This means that simple, well-behaved for-loops (the kind
where you can predict the number of iterations on entry
to the loop) are not sufficient. While type loops are
needed, even if implicit rather than explicit.

4/10/14 65 © UCF EECS

Insights

Non-re nature of algorithms
•  No generative system (e.g., grammar) can produce

descriptions of all and only algorithms
•  No parsing system (even one that rejects by

divergence) can accept all and only algorithms

•  Of course, if you buy Church’s Theorem, the set of all
procedures can be generated. In fact, we can build an
algorithmic acceptor of such programs.

4/10/14 67 © UCF EECS

Many unbounded ways
•  How do you achieve divergence, i.e., what are the

various means of unbounded computation in each of
our models?

•  GOTO: Turing Machines and Register Machines
•  Minimization: Recursive Functions

–  Why not primitive recursion/iteration?

•  Fixed Point: Ordered Petri Nets,
(Ordered) Factor Replacement Systems

4/10/14 68 © UCF EECS

Non-determinism
•  It sometimes doesn’t matter

–  Turing Machines, Finite State Automata,
Linear Bounded Automata

•  It sometimes helps
–  Push Down Automata

•  It sometimes hinders
–  Factor Replacement Systems, Petri Nets

4/10/14 69 © UCF EECS

Models of Computation

Turing Machines
Register Machines

Factor Replacement Systems
Recursive Functions

Turing Machines

1st Model
A Linear Memory Machine

4/10/14 © UCF EECS 72

Basic Description
•  We will use a simplified form that is a variant of Post’s and Turing’s

models.
•  Here, each machine is represented by a finite set of states of states

Q, the simple alphabet {0,1}, where 0 is the blank symbol, and each
state transition is defined by a 4-tuple of form
 q a X s
 where q a is the discriminant based on current state q, scanned
symbol a; X can be one of {R, L, 0, 1}, signifying move right, move
left, print 0, or print 1; and s is the new state.

•  Limiting the alphabet to {0,1} is not really a limitation. We can
represent a k-letter alphabet by encoding the j-th letter via j 1’s in
succession. A 0 ends each letter, and two 0’s ends a word.

•  We rarely write quads. Rather, we typically will build machines from
simple forms.

4/10/14 © UCF EECS 73

Base Machines
•  R -- move right over any scanned symbol
•  L -- move left over any scanned symbol
•  0 -- write a 0 in current scanned square
•  1 -- write a 1 in current scanned square
•  We can then string these machines together with

optionally labeled arc.
•  A labeled arc signifies a transition from one part of the

composite machine to another, if the scanned square’s
content matches the label. Unlabeled arcs are
unconditional. We will put machines together without
arcs, when the arcs are unlabeled.

4/10/14 © UCF EECS 74

Useful Composite Machines
R -- move right to next 0 (not including current square)

 …?11…10… ⇒ …?11…10…
L -- move left to next 0 (not including current square)

 …011…1?… ⇒ …011…1?…
R -- move right to next 00 (not including current square)

 …?11…1011…10…11…100… ⇒ …?11…1011…10…
11…100…

L -- move left to next 00 (not including current square)
 …0011…1011…10…11…1?… ⇒ …0011…1011…10…
11…1?…

R 1

L 1

 1 R 0 L R

 1 L 0 R L

4/10/14 © UCF EECS 75

Commentary on Machines
•  These machines can be used to move

over encodings of letters or encodings of
unary based natural numbers.

•  In fact, any effective computation can
easily be viewed as being over natural
numbers. We can get the negative
integers by pairing two natural numbers.
The first is the sign (0 for +, 1 for -). The
second is the magnitude.

4/10/14 © UCF EECS 76

Computing with TMs
 A reasonably standard definition of a Turing
computation of some n-ary function F is to
assume that the machine starts with a tape
containing the n inputs, x1, … , xn in the form
 …01x101x20…01xn0…
 and ends with
 …01x101x20…01xn01y0…
 where y = F(x1, … , xn).

4/10/14 © UCF EECS 77

Addition by TM

 Need the copy family of useful
submachines, where Ck copies k-th
preceding value.

 The add machine is then
 C2 C2 L 1 R L 0

1

0

R L
k R

0 R

k k+1 1 L
k+1

1

Turing Machine Variations

•  Two tracks
•  N tracks
•  Non-deterministic (We will return to this)
•  Two-dimensional
•  K dimensional
•  Two stack machines
•  Two counter machines

4/10/14 © UCF EECS 78

Register Machines

2nd Model
Feels Like Assembly Language

Register Machine Concepts
•  A register machine consists of a finite length program,

each of whose instructions is chosen from a small
repertoire of simple commands.

•  The instructions are labeled from 1 to m, where there are
m instructions. Termination occurs as a result of an
attempt to execute the m+1-st instruction.

•  The storage medium of a register machine is a finite set
of registers, each capable of storing an arbitrary natural
number.

•  Any given register machine has a finite, predetermined
number of registers, independent of its input.

4/10/14 © UCF EECS 80

© UCF EECS 81

Computing by Register Machines
•  A register machine partially computing some n-

ary function F typically starts with its argument
values in the first n registers and ends with the
result in the n+1-st register.

•  We extend this slightly to allow the computation
to start with values in its k+1-st through k+n-th
register, with the result appearing in the k+n+1-
th register, for any k, such that there are at least
k+n+1 registers.

•  Sometimes, we use the notation of finishing with
the results in the first register, and the
arguments appearing in 2 to n+1.

4/10/14

© UCF EECS 82

Register Instructions
•  Each instruction of a register machine is of

one of two forms:
 INCr[i] –
 increment r and jump to i.
 DECr[p, z] –
 if register r > 0, decrement r and jump to p
 else jump to z

•  Note, we do not use subscripts if obvious.

4/10/14

© UCF EECS 83

Addition by RM
Addition (r3 ← r1 + r2)
1. DEC3[1,2] : Zero result (r3) and work (r4) registers
2. DEC4[2,3]
3. DEC1[4,6] : Add r1 to r3, saving original r1 in r4
4. INC3[5]
5. INC4[3]
6. DEC4[7,8] : Restore r1
7. INC1[6]
8. DEC2[9,11] : Add r2 to r3, saving original r2 in r4
9. INC3[10]
10. INC4[8]
11. DEC4[12,13] : Restore r2
12. INC2[11]
13. : Halt by branching here

4/10/14

© UCF EECS 84

Limited Subtraction by RM
Subtraction (r3 ← r1 - r2, if r1≥r2; 0, otherwise)
1. DEC3[1,2] : Zero result (r3) and work (r4) registers
2. DEC4[2,3]
3. DEC1[4,6] : Add r1 to r3, saving original r1 in r4
4. INC3[5]
5. INC4[3]
6. DEC4[7,8] : Restore r1
7. INC1[6]
8. DEC2[9,11] : Subtract r2 from r3, saving original r2 in r4
9. DEC3[10,10] : Note that decrementing 0 does nothing
10. INC4[8]
11. DEC4[12,13] : Restore r2
12. INC2[11]
13. : Halt by branching here

4/10/14

Factor Replacement
Systems

3rd Model
Deceptively Simple

© UCF EECS 86

Factor Replacement Concepts
•  A factor replacement system (FRS) consists of a finite

(ordered) sequence of fractions, and some starting
natural number x.

•  A fraction a/b is applicable to some natural number x,
just in case x is divisible by b. We always chose the first
applicable fraction (a/b), multiplying it times x to produce
a new natural number x*a/b. The process is then
applied to this new number.

•  Termination occurs when no fraction is applicable.
•  A factor replacement system partially computing n-ary

function F typically starts with its argument encoded as
powers of the first n odd primes. Thus, arguments
x1,x2,…,xn are encoded as 3x15x2…pn

xn. The result
then appears as the power of the prime 2.

4/10/14

© UCF EECS 87

Addition by FRS
 Addition is 3x15x2 becomes 2x1+x2
 or, in more details, 203x15x2 becomes 2x1+x2 3050
 2 / 3
 2 / 5
 Note that these systems are sometimes presented as
rewriting rules of the form
 bx → ax
 meaning that a number that has can be factored as bx
can have the factor b replaced by an a.
The previous rules would then be written
 3x → 2x
 5x → 2x

4/10/14

© UCF EECS 88

Limited Subtraction by FRS
 Subtraction is 3x15x2 becomes 2max(0,x1-x2)

 3⋅5x → x
 3x → 2x
 5x → x

4/10/14

© UCF EECS 89

Ordering of Rules
•  The ordering of rules are immaterial for the

addition example, but are critical to the workings
of limited subtraction.

•  In fact, if we ignore the order and just allow any
applicable rule to be used we get a form of non-
determinism that makes these systems
equivalent to Petri nets.

•  The ordered kind are deterministic and are
equivalent to a Petri net in which the transitions
are prioritized.

4/10/14

© UCF EECS 90

Why Deterministic?
To see why determinism makes a difference, consider

 3⋅5x → x
 3x → 2x
 5x → x

Starting with 135 = 3351, deterministically we get
 135 ⇒ 9 ⇒ 6 ⇒ 4 = 22

Non-deterministically we get a larger, less selective set.
 135 ⇒ 9 ⇒ 6 ⇒ 4 = 22
 135 ⇒ 90 ⇒ 60 ⇒ 40 ⇒ 8 = 23
 135 ⇒ 45 ⇒ 3 ⇒ 2 = 21
 135 ⇒ 45 ⇒ 15 ⇒ 1 = 20
 135 ⇒ 45 ⇒ 15 ⇒ 5 ⇒ 1 = 20
 135 ⇒ 45 ⇒ 15 ⇒ 3 ⇒ 2 = 21
 135 ⇒ 45 ⇒ 9 ⇒ 6 ⇒ 4 = 22
 135 ⇒ 90 ⇒ 60 ⇒ 40 ⇒ 8 = 23

 …
This computes 2z where 0 ≤ z≤x1. Think about it.
4/10/14

© UCF EECS 91

More on Determinism

 In general, we might get an infinite set
using non-determinism, whereas
determinism might produce a finite set. To
see this consider a system
 2x → x
 2x → 4x
 starting with the number 2.

4/10/14

Sample RM and FRS
Present a Register Machine that computes IsOdd. Assume R2=x;
at termination, set R2=1 if x is odd; 0 otherwise.
1. DEC2[2, 4]
2. DEC2[1, 3]
3. INC2[4]
4.
Present a Factor Replacement System that computes IsOdd.
Assume starting number is 3^x; at termination, result is 2=2^1 if x
is odd; 1= 2^0 otherwise.
3*3 x → x
3 x → 2 x

4/10/14 © UCF EECS 92

Sample FRS
Present a Factor Replacement System that computes IsPowerOf2.
Assume starting number is 3x 5; at termination, result is 2=21 if x
is a power of 2; 1= 20 otherwise
32*5 x → 5*7 x
3*5*7 x → x
3*5 x → 2 x
5*7 x → 7*11 x
7*11 x → 3*11 x
11 x → 5 x
5 x → x
7 x → x

4/10/14 © UCF EECS 93

© UCF EECS 94

Systems Related to FRS
•  Petri Nets:

–  Unordered
–  Ordered
–  Negated Arcs

•  Vector Addition Systems:
–  Unordered
–  Ordered

•  Factors with Residues:
–  a x + c → b x + d

•  Finitely Presented Abelian Semi-Groups

4/10/14

© UCF EECS 95

Petri Net Operation
•  Finite number of places, each of which can hold zero of more

markers.
•  Finite number of transitions, each of which has a finite number of

input and output arcs, starting and ending, respectively, at places.
•  A transition is enabled if all the nodes on its input arcs have at least

as many markers as arcs leading from them to this transition.
•  Progress is made whenever at least one transition is enabled.

Among all enabled, one is chosen randomly to fire.
•  Firing a transition removes one marker per arc from the incoming

nodes and adds one marker per arc to the outgoing nodes.

4/10/14

© UCF EECS 96

Petri Net Computation
•  A Petri Net starts with some finite number of markers distributed

throughout its n nodes.
•  The state of the net is a vector of n natural numbers, with the i-th

component’s number indicating the contents of the i-th node. E.g.,
<0,1,4,0,6> could be the state of a Petri Net with 5 places, the 2nd,
3rd and 5th, having 1, 4, and 6 markers, resp., and the 1st and 4th
being empty.

•  Computation progresses by selecting and firing enabled transitions.
Non-determinism is typical as many transitions can be
simultaneously enabled.

•  Petri nets are often used to model coordination algorithms,
especially for computer networks.

4/10/14

© UCF EECS 97

Variants of Petri Nets
•  A Petri Net is not computationally complete. In fact, its halting and

word problems are decidable. However, its containment problem
(are the markings of one net contained in those of another?) is not
decidable.

•  A Petri net with prioritized transitions, such that the highest priority
transitions is fired when multiple are enabled is equivalent to an
FRS. (Think about it).

•  A Petri Net with negated input arcs is one where any arc with a
slash through it contributes to enabling its associated transition only
if the node is empty. These are computationally complete. They can
simulate register machines. (Think about this also).

4/10/14

© UCF EECS 98

Petri Net Example

Marker

Place

Transition

Arc

… …

4/10/14

© UCF EECS 99

Vector Addition
•  Start with a finite set of vectors in integer n-space.
•  Start with a single point with non-negative integral

coefficients.
•  Can apply a vector only if the resultant point has non-

negative coefficients.
•  Choose randomly among acceptable vectors.
•  This generates the set of reachable points.
•  Vector addition systems are equivalent to Petri Nets.
•  If order vectors, these are equivalent to FRS.

4/10/14

© UCF EECS 100

Vectors as Resource Models
•  Each component of a point in n-space

represents the quantity of a particular
resource.

•  The vectors represent processes that
consume and produce resources.

•  The issues are safety (do we avoid bad
states) and liveness (do we attain a
desired state).

•  Issues are deadlock, starvation, etc.
4/10/14

© UCF EECS 101

Factors with Residues
•  Rules are of form

–  ai x + ci → bi x + di

–  There are n such rules
–  Can apply if number is such that you get a residue

(remainder) ci when you divide by ai
–  Take quotient x and produce a new number

bi x + di
–  Can apply any applicable one (no order)

•  These systems are equivalent to Register
Machines.

4/10/14

© UCF EECS 102

Abelian Semi-Group
S = (G, •) is a semi-group if

G is a set, • is a binary operator, and
1.  Closure: If x,y ∈ G then x • y ∈ G
2.  Associativity: x • (y • z) = (x • y) • z

S is a monoid if
3.  Identity: ∃e ∈ G ∀x ∈ G [e • x = x • e = x]

S is a group if
4.  Inverse: ∀x ∈ G ∃x-1 ∈ G [x-1 • x = x • x-1 = e]

S is Abelian if • is commutative

4/10/14

© UCF EECS 103

Finitely Presented
•  S = (G, •), a semi-group (monoid, group), is finitely

presented if there is a finite set of symbols, Σ, called the
alphabet or generators, and a finite set of equalities
(αi = βi), the reflexive transitive closure of which
determines equivalence classes over G.

•  Note, the set G is the closure of the generators under the
semi-group’s operator •.

•  The problem of determining membership in equivalence
classes for finitely presented Abelian semi-groups is
equivalent to that of determining mutual derivability in an
unordered FRS or Vector Addition System with inverses
for each rule.

4/10/14

Recursive Functions

Primitive and µ-Recursive

Primitive Recursive

An Incomplete Model

© UCF EECS 106

Basis of PRFs
•  The primitive recursive functions are defined by

starting with some base set of functions and
then expanding this set via rules that create new
primitive recursive functions from old ones.

•  The base functions are:
 Ca(x1,…,xn) = a : constant functions
 (x1,…,xn) = xi : identity functions
 : aka projection
 S(x) = x+1 : an increment function

 i
nI

4/10/14

© UCF EECS 107

Building New Functions
•  Composition:

 If G, H1, … , Hk are already known to be primitive
recursive, then so is F, where
 F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn))

•  Iteration (aka primitive recursion):
 If G, H are already known to be primitive recursive, then
so is F, where
 F(0, x1,…,xn) = G(x1,…,xn)
 F(y+1, x1,…,xn) = H(y, x1,…,xn, F(y, x1,…,xn))
 We also allow definitions like the above, except iterating
on y as the last, rather than first argument.

4/10/14

© UCF EECS 108

Addition & Multiplication
Example: Addition

 +(0,y) = (y)
 +(x+1,y) = H(x,y,+(x,y))
 where H(a,b,c) = S((a,b,c))

Example: Multiplication
 *(0,y) = C0(y)
 (x+1,y) = H(x,y,(x,y))
 where H(a,b,c) = +((a,b,c), (a,b,c))
 = b+c = y + *(x,y) = (x+1)*y

 2
3I

 1
1I

 3
3I

 3
3I

4/10/14

© UCF EECS 109

Basic Arithmetic
x + 1:

 x + 1 = S(x)
x – 1:

 0 - 1 = 0
 (x+1) - 1 = x

x + y:
 x + 0 = x
 x+ (y+1) = (x+y) + 1

x – y: // limited subtraction
 x – 0 = x
 x – (y+1) = (x–y) – 1

4/10/14

© UCF EECS 110

2nd Grade Arithmetic
x * y:

 x * 0 = 0
 x * (y+1) = x*y + x

x!:

 0! = 1
 (x+1)! = (x+1) * x!

4/10/14

© UCF EECS 111

Basic Relations
x == 0:

 0 == 0 = 1
 (y+1) == 0 = 0

x == y:
 x==y = ((x – y) + (y – x)) == 0

x ≤y :
 x≤y = (x – y) == 0

x ≥ y:
 x≥y = y≤x

x > y :
 x>y = ~(x≤y) /* See ~ on next page */

x < y :
 x<y = ~(x≥y)

4/10/14

© UCF EECS 112

Basic Boolean Operations
~x:

 ~x = 1 – x or (x==0)

signum(x): 1 if x>0; 0 if x==0

 ~(x==0)

x && y:

 x&&y = signum(x*y)

x || y:

 x||y = ~((x==0) && (y==0))

4/10/14

© UCF EECS 113

Definition by Cases
One case

 g(x) if P(x)
 f(x) =
 h(x) otherwise
 f(x) = P(x) * g(x) + (1-P(x)) * h(x)

Can use induction to prove this is true for all k>0, where

 g1(x) if P1(x)
 g2(x) if P2(x) && ~P1(x)
 f(x) = …
 gk(x) if Pk(x) && ~(P1(x) || … || ~Pk-1(x))
 h(x) otherwise

4/10/14

© UCF EECS 114

Bounded Minimization 1
 f(x) = µ z (z ≤ x) [P(z)] if ∃ such a z,
 = x+1, otherwise
 where P(z) is primitive recursive.

 Can show f is primitive recursive by
f(0) = 1-P(0)
 f(x+1) = f(x) if f(x) ≤ x
 = x+2-P(x+1) otherwise

4/10/14

© UCF EECS 115

Bounded Minimization 2
 f(x) = µ z (z < x) [P(z)] if ∃ such a z,
 = x, otherwise
 where P(z) is primitive recursive.

 Can show f is primitive recursive by
f(0) = 0
 f(x+1) = µ z (z ≤ x) [P(z)]

4/10/14

© UCF EECS 116

Intermediate Arithmetic
x // y:

 x//0 = 0 : silly, but want a value
 x//(y+1) = µ z (z<x) [(z+1)*(y+1) > x]

x | y: x is a divisor of y

 x|y = ((y//x) * x) == y

4/10/14

© UCF EECS 117

Primality
firstFactor(x): first non-zero, non-one factor of x.

 firstfactor(x) = µ z (2 ≤ z ≤ x) [z|x] ,
 0 if none

isPrime(x):

 isPrime(x) = firstFactor(x) == x && (x>1)

prime(i) = i-th prime:

 prime(0) = 2
 prime(x+1) = µ z(prime(x)< z ≤prime(x)!+1)[isPrime(z)]

We will abbreviate this as pi for prime(i)

4/10/14

© UCF EECS 118

Exponents

x^y:
 x^0 = 1
 x^(y+1) = x * x^y

exp(x,i): the exponent of pi in number x.

 exp(x,i) = µ z (z<x) [~(pi^(z+1) | x)]

4/10/14

© UCF EECS 119

Pairing Functions
•  pair(x,y) = <x,y> = 2x (2y + 1) – 1

•  with inverses

 <z>1 = exp(z+1,0)

 <z>2 = (((z + 1) // 2 <z>1) – 1) // 2

•  These are very useful and can be extended to
encode n-tuples
 <x,y,z> = <x, <y,z> > (note: stack analogy)

4/10/14

Pairing Function is 1-1 Onto
Prove that the pairing function <x,y> = 2^x (2y + 1) - 1
is 1-1 onto the natural numbers.
Approach 1:
We will look at two cases, where we use the following
modification of the pairing function, <x,y>+1, which implies
the problem of mapping the pairing function to Z+.

4/10/14 © UCF EECS 120

Case 1 (x=0)
Case 1:
For x = 0, <0,y>+1 = 20(2y+1) = 2y+1. But every odd
number is by definition one of the form 2y+1, where y≥0;
moreover, a particular value of y is uniquely associated with
each such odd number and no odd number is produced
when x=0. Thus, <0,y>+1 is 1-1 onto the odd natural
numbers.

4/10/14 © UCF EECS 121

Case 2 (x > 0)
Case 2:
For x > 0, <x,y>+1 = 2x(2y+1), where 2y+1 ranges over all odd number
and is uniquely associated with one based on the value of y (we saw
that in case 1). 2x must be even, since it has a factor of 2 and hence
2x(2y+1) is also even. Moreover, from elementary number theory, we
know that every even number except zero is of the form 2xz, where
x>0, z is an odd number and this pair x,y is unique. Thus, <x,y>+1 is
1-1 onto the even natural numbers, when x>0.

The above shows that <x,y>+1 is 1-1 onto Z+, but then <x,y> is 1-1
onto ℵ, as was desired.

4/10/14 © UCF EECS 122

Pairing Function is 1-1 Onto
Approach 2:
Another approach to show a function f over S is
1-1 onto T is to show that
f -1(f(x)) = x, for arbitrary x∈S and that
f (f-1 (z)) = z, for arbitrary z∈T.

Thus, we need to show that
(<x,y>1,<x,y>2) = (x,y) for arbitrary (x,y)∈ℵ×ℵ and
<<z>1,<z>2> = z for arbitrary z∈ℵ.

4/10/14 © UCF EECS 123

Alternate Proof
Let x,y be arbitrary natural number, then <x,y> = 2x(2y+1)-1.
Moreover, <2x(2y+1)-1>1 = Factor(2x(2y+1),0) = x, since 2y+1 must be
odd, and
<2x(2y+1)-1>2 = ((2x(2y+1)/2^Factor(2x(2y+1),0))-1)/2 = 2y/2 = y.
Thus, (<x,y>1,<x,y>2) = (x,y), as was desired.
Let z be an arbitrary natural number, then the inverse of the pairing is
(<z>1,<z>2)
Moreover, <<z>1,<z>2> = 2^<z>1 *(2<z>2+1)-1
= 2^Factor(z+1,0)*(2*((z+1)/ 2^Factor(z+1,0))/2-1+1)-1
= 2^Factor(z+1,0)*((z+1)/ 2^Factor(z+1,0))-1
= (z+1) – 1
= z, as was desired.

4/10/14 © UCF EECS 124

Application of Pairing
Show that prfs are closed under Fibonacci induction. Fibonacci
induction means that each induction step after calculating the
base is computed using the previous two values, where the
previous values for f(1) are f(0) and 0; and for x>1, f(x) is based on
f(x-1) and f(x-2).

The formal hypothesis is:
Assume g and h are already known to be prf, then so is f, where
f(0,x) = g(x);
f(1,x) = h(f(0,x), 0); and
f(y+2,x) = h(f(y+1,x), f(y,x))

Proof is by construction

4/10/14 © UCF EECS 125

Fibonacci Recursion
Let K be the following primitive recursive function, defined by induction
on the primitive recursive functions, g, h, and the pairing function.
K(0,x) = B(x)
B(x) = < g(x), C0(x) > // this is just <g(x), 0>
K(y+1, x) = J(y, x, K(y,x))
J(y,x,z) = < h(<z>1, <z>2), <z>1 >
// this is < f(y+1,x), f(y,x)>, even though f is not yet shown to be prf!!
This shows K is prf.

f is then defined from K as follows:
f(y,x) = <K(y,x)>1 // extract first value from pair encoded in K(y,x)
This shows it is also a prf, as was desired.

4/10/14 © UCF EECS 126

µ Recursive

4th Model
A Simple Extension to Primitive

Recursive

© UCF EECS 128

µ Recursive Concepts
•  All primitive recursive functions are algorithms

since the only iterator is bounded. That’s a clear
limitation.

•  There are algorithms like Ackerman’s function
that cannot be represented by the class of
primitive recursive functions.

•  The class of recursive functions adds one more
iterator, the minimization operator (µ), read “the
least value such that.”

4/10/14

© UCF EECS 129

Ackermann’s Function
•  A(1, j)=2j for j ≥ 1
•  A(i, 1)=A(i-1, 2) for i ≥ 2
•  A(i, j)=A(i-1, A(i, j-1)) for i, j ≥ 2
•  Wilhelm Ackermann observed in 1928 that this is

not a primitive recursive function.
•  Ackermann’s function grows too fast to have a

for-loop implementation.
•  The inverse of Ackermann’s function is important

to analyze Union/Find algorithm.

4/10/14

© UCF EECS 130

Union/Find
•  Start with a collection S of unrelated elements –

singleton equivalence classes
•  Union(x,y), x and y are in S, merges the class

containing x ([x]) with that containing y ([y])
•  Find(x) returns the canonical element of [x]
•  Can see if x≡y, by seeing if Find(x)==Find(y)
•  How do we represent the classes?

4/10/14

© UCF EECS 131

The µ Operator

•  Minimization:
 If G is already known to be recursive, then
so is F, where
 F(x1,…,xn) = µy (G(y,x1,…,xn) == 1)

•  We also allow other predicates besides
testing for one. In fact any predicate that
is recursive can be used as the stopping
condition.

4/10/14

Equivalence of Models

Equivalency of computation by
Turing machines,

register machines,
factor replacement systems,

recursive functions

© UCF EECS 133

Proving Equivalence
•  Constructions do not, by themselves,

prove equivalence.
•  To do so, we need to develop a notion of

an “instantaneous description” (id) of each
model of computation (well, almost as
recursive functions are a bit different).

•  We then show a mapping of id’s between
the models.

4/10/14

© UCF EECS 134

Instantaneous Descriptions
•  An instantaneous description (id) is a finite description of

a state achievable by a computational machine, M.
•  Each machine starts in some initial id, id0.
•  The semantics of the instructions of M define a relation
⇒M such that, idi ⇒M idi+1, i≥0, if the execution of a
single instruction of M would alter M’s state from idi to idi
+1 or if M halts in state idi and idi+1=idi.

•  ⇒+
M is the transitive closure of ⇒M

•  ⇒*M is the reflexive transitive closure of ⇒M

4/10/14

© UCF EECS 135

id Definitions
•  For a register machine, M, an id is an s+1 tuple of the form

(i, r1,…,rs)M specifying the number of the next instruction to be
executed and the values of all registers prior to its execution.

•  For a factor replacement system, an id is just a natural number.
•  For a Turing machine, M, an id is some finite representation of the

tape, the position of the read/write head and the current state. This
is usually represented as a string αqxβ, where α (β) is the shortest
string representing all non-blank squares to the left (right) of the
scanned square, x is the symbol at the scanned square and q is the
current state.

•  Recursive functions do not have id’s, so we will handle their
simulation by an inductive argument, using the primitive functions
are the basis and composition, induction and minimization in the
inductive step.

4/10/14

© UCF EECS 136

Equivalence Steps
•  Assume we have a machine M in one model of computation and a

mapping of M into a machine M’ in a second model.
•  Assume the initial configuration of M is id0 and that of M’ is id’0
•  Define a mapping, h, from id’s of M into those of M’, such that,

RM = { h(d) | d is an instance of an id of M }, and
–  id’0⇒*M’ h(id0), and h(id0) is the only member of RM in the

configurations encountered in this derivation.
–  h(idi)⇒+

M’ h(idi+1), i≥0, and h(idi+1) is the only member of RM in
this derivation.

•  The above, in effect, provides an inductive proof that
–  id0⇒*M id implies id’0⇒*M’ h(id), and
–  If id’0⇒*M’ id’ then either id0⇒*M id, where id’ = h(id), or

id’ ∉ RM
4/10/14

All Models are Equivalent

Equivalency of computation by
Turing machines, register machines,

factor replacement systems,
recursive functions

© UCF EECS 138

Our Plan of Attack

•  We will now show
TURING ≤ REGISTER ≤ FACTOR ≤

 RECURSIVE ≤ TURING
where by A ≤ B, we mean that every
instance of A can be replaced by an
equivalent instance of B.

•  The transitive closure will then get us the
desired result.

4/10/14

TURING ≤ REGISTER

© UCF EECS 140

Encoding a TM’s State
•  Assume that we have an n state Turing machine. Let

the states be numbered 0,…, n-1.
•  Assume our machine is in state 7, with its tape

containing
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 …

•  The underscore indicates the square being read. We
denote this by the finite id
1 0 1 0 0 1 1 q7 0

•  In this notation, we always write down the scanned
square, even if it and all symbols to its right are blank.

4/10/14

© UCF EECS 141

More on Encoding of TM
•  An id can be represented by a triple of natural numbers,

(R,L,i), where R is the number denoted by the reversal of
the binary sequence to the right of the qi, L is the
number denoted by the binary sequence to the left, and i
is the state index.

•  So,
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 …
is just (0, 83, 7).
… 0 0 1 0 q5 1 0 1 1 0 0 …
is represented as (13, 2, 5).

•  We can store the R part in register 1, the L part in
register 2, and the state index in register 3.

4/10/14

© UCF EECS 142

Simulation by RM
1. DEC3[2,q0] : Go to simulate actions in state 0
2. DEC3[3,q1] : Go to simulate actions in state 1
…
n. DEC3[ERR,qn-1] : Go to simulate actions in state n-1
…
qj. IF_r1_ODD[qj+2] : Jump if scanning a 1
qj+1. JUMP[set_k] : If (qj 0 0 qk) is rule in TM
qj+1. INC1[set_k] : If (qj 0 1 qk) is rule in TM
qj+1. DIV_r1_BY_2 : If (qj 0 R qk) is rule in TM

 MUL_r2__BY_2
 JUMP[set_k]

qj+1. MUL_r1_BY_2 : If (qj 0 L qk) is rule in TM
 IF_r2_ODD then INC1
 DIV_r2__BY_2[set_k]

…
set_n-1. INC3[set_n-2] : Set r3 to index n-1 for simulating state n-1
set_n-2. INC3[set_n-3] : Set r3 to index n-2 for simulating state n-2
…
set_0. JUMP[1] : Set r3 to index 0 for simulating state 0

4/10/14

© UCF EECS 143

Fixups
•  Need epilog so action for missing quad

(halting) jumps beyond end of simulation
to clean things up, placing result in r1.

•  Can also have a prolog that starts with
arguments in first n registers and stores
values in r1, r2 and r3 to represent Turing
machines starting configuration.

4/10/14

© UCF EECS 144

Prolog
Example assuming n arguments (fix as needed)
1. MUL_rn+1_BY_2[2] : Set rn+1 = 11…102, where, #1's = r1
2. DEC1[3,4] : r1 will be set to 0
3. INCn+1[1] :
4. MUL_rn+1_BY_2[5] : Set rn+1 = 11…1011…102, where, #1's = r1, then r2
5. DEC2[6,7] : r2 will be set to 0
6. INCn+1[4] :
…
3n-2. DECn[3n-1,3n+1] : Set rn+1 = 11…1011…1011…12, where, #1's = r1, r2,…
3n-1. MUL_rn+1_BY_2[3n] : rn will be set to 0
3n. INCn+1[3n-2] :
3n+1 DECn+1[3n+2,3n+3] : Copy rn+1 to r1, rn+1 is set to 0
3n+2. INC2[3n+1] :
3n+3. : r2 = left tape, r1 = 0 (right), r3 = 0 (initial state)

4/10/14

© UCF EECS 145

Epilog
1. DEC3[1,2] : Set r3 to 0 (just cleaning up)
2. IF_r1_ODD[3,5] : Are we done with answer?
3. INC2[4] : putting answer in r2
4. DIV_r1_BY_2[2] : strip a 1 from r1
5.  DEC1[5,6] : Set r1 to 0 (prepare for answer)
6.  DEC2[6,7] : Copy r2 to r1
7.  INC1[6] :
8.  : Answer is now in r1

4/10/14

REGISTER ≤ FACTOR

© UCF EECS 147

Encoding a RM’s State
•  This is a really easy one based on the fact that every member of Z+

(the positive integers) has a unique prime factorization. Thus all
such numbers can be uniquely written in the form

where the pi's are distinct primes and the ki's are non-zero values,
except that the number 1 would be represented by 20.

•  Let R be an arbitrary n-register machine, having m instructions.

Encode the contents of registers r1,…,rn by the powers of p1,…pn .

Encode rule number's 1,…,m by primes pn+1 ,…, pn+m

Use pn+m+1 as prime factor that indicates simulation is done.

•  This is in essence the Gödel number of the RM’s state.

1i
1kp

2i
2kp …

ji
jkp

4/10/14

© UCF EECS 148

Simulation by FRS
•  Now, the j-th instruction (1≤j≤m) of R has

associated factor replacement rules as follows:
 j. INCr[i]

 pn+jx → pn+iprx
 j. DECr[s, f]

 pn+jprx → pn+sx
 pn+jx → pn+fx

•  We also add the halting rule associated with m
+1 of
 pn+m+1x → x

4/10/14

© UCF EECS 149

Importance of Order
•  The relative order of the two rules to

simulate a DEC are critical.
•  To test if register r has a zero in it, we, in

effect, make sure that we cannot execute
the rule that is enabled when the r-th
prime is a factor.

•  If the rules were placed in the wrong order,
or if they weren't prioritized, we would be
non-deterministic.

4/10/14

© UCF EECS 150

Example of Order

 Consider the simple machine to compute
r1:=r2 – r3 (limited)
 1. DEC3[2,3]
 2. DEC2[1,1]
 3. DEC2[4,5]
 4. INC1[3]
 5.

4/10/14

© UCF EECS 151

Subtraction Encoding
Start with 3x5y7

7 • 5 x → 11 x
7 x → 13 x
11 • 3 x → 7 x
11 x → 7 x
13 • 3 x → 17 x
13 x → 19 x
17 x → 13 • 2 x
19 x → x

4/10/14

© UCF EECS 152

Analysis of Problem
•  If we don't obey the ordering here, we could take

an input like 35527 and immediately apply the
second rule (the one that mimics a failed
decrement).

•  We then have 355213, signifying that we will
mimic instruction number 3, never having
subtracted the 2 from 5.

•  Now, we mimic copying r2 to r1 and get 255219 .
•  We then remove the 19 and have the wrong

answer.

4/10/14

FACTOR ≤ RECURSIVE

© UCF EECS 154

Universal Machine
•  In the process of doing this reduction, we will

build a Universal Machine.
•  This is a single recursive function with two

arguments. The first specifies the factor system
(encoded) and the second the argument to this
factor system.

•  The Universal Machine will then simulate the
given machine on the selected input.

4/10/14

© UCF EECS 155

Encoding FRS

•  Let (n, ((a1,b1), (a2,b2), … ,(an,bn)) be
some factor replacement system, where
(ai,bi) means that the i-th rule is
 aix → bix

•  Encode this machine by the number F,

 pppp nnnn

n bababa nn

2212212117532 2211

++−
…

4/10/14

© UCF EECS 156

Simulation by Recursive # 1
•  We can determine the rule of F that applies to x by

 RULE(F, x) = µ z (1 ≤ z ≤ exp(F, 0)+1) [exp(F, 2*z-1) | x]

•  Note: if x is divisible by ai, and i is the least integer for which this is
true, then exp(F,2*i-1) = ai where ai is the number of prime factors
of F involving p2i-1. Thus, RULE(F,x) = i.

If x is not divisible by any ai, 1≤i≤n, then x is divisible by 1, and
RULE(F,x) returns n+1. That’s why we added p2n+1 p2n+2.

•  Given the function RULE(F,x), we can determine NEXT(F,x), the
number that follows x, when using F, by

NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))

4/10/14

© UCF EECS 157

Simulation by Recursive # 2

•  The configurations listed by F, when
started on x, are

CONFIG(F, x, 0) = x
CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))

•  The number of the configuration on which
F halts is

HALT(F, x) = µ y [CONFIG(F, x, y) == CONFIG(F, x, y+1)]
This assumes we converge to a fixed point only if we
stop

4/10/14

© UCF EECS 158

Simulation by Recursive # 3
•  A Universal Machine that simulates an arbitrary

Factor System, Turing Machine, Register
Machine, Recursive Function can then be
defined by

Univ(F, x) = exp (CONFIG (F, x, HALT (F, x)), 0)

•  This assumes that the answer will be returned as
the exponent of the only even prime, 2. We can
fix F for any given Factor System that we wish to
simulate.

4/10/14

© UCF EECS 159

FRS Subtraction
•  203a5b ⇒ 2a-b

3*5x → x or 1/15
5x → x or 1/5
3x → 2x or 2/3

•  Encode F = 23 315 51 75 111 133 172 191 231
•  Consider a=4, b=2
•  RULE(F, x) = µ z (1 ≤ z ≤ 4) [exp(F, 2*z-1) | x]

RULE (F,34 52) = 1, as 15 divides 34 52
•  NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))

NEXT(F,34 52) = (34 52 // 15 * 1) = 3351
NEXT(F,33 51) = (33 51 // 15 * 1) = 32
NEXT(F,32) = (32 // 3 * 2) = 2131
NEXT(F, 2131) = (2131 // 3 * 2) = 22
NEXT(F, 22) = (22 // 1 * 1) = 22

4/10/14

© UCF EECS 160

Rest of simulation
•  CONFIG(F, x, 0) = x

CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))
•  CONFIG(F,34 52,0) = 34 52

CONFIG(F,34 52,1) = 3351
CONFIG(F,34 52,2) = 32
CONFIG(F,34 52,3) = 2131
CONFIG(F,34 52,4) = 22
CONFIG(F,34 52,5) = 22

•  HALT(F, x)=µy[CONFIG(F,x,y)==CONFIG(F,x,y+1)] = 4
•  Univ(F, x) = exp (CONFIG (F, x, HALT (F, x)), 0)

= exp(22,0) = 2

4/10/14

© UCF EECS 161

Simplicity of Universal

•  A side result is that every computable
(recursive) function can be expressed in
the form

 F(x) = G(µ y H(x, y))

where G and H are primitive recursive.

4/10/14

RECURSIVE ≤ TURING

© UCF EECS 163

Standard Turing Computation
•  Our notion of standard Turing computability of

some n-ary function F assumes that the machine
starts with a tape containing the n inputs, x1, … ,
xn in the form

…01x101x20…01xn0…

and ends with

…01x101x20…01xn01y0…

where y = F(x1, … , xn).

4/10/14

© UCF EECS 164

More Helpers
•  To build our simulation we need to construct some useful

submachines, in addition to the R, L, R, L, and Ck machines already
defined.

•  T -- translate moves a value left one tape square
…?01x0… ⇒ …?1x00…

•  Shift -- shift a rightmost value left, destroying value to its left
…01x101x20… ⇒ …01x20…

•  Rotk -- Rotate a k value sequence one slot to the left
…01x101x20…01xk0…

 ⇒ …01x20…01xk01x10…

 R1 L0 R

R 1

L T

R

0
k L k

k+1 1 L k L 0 T k L k+1

L 1

T
L 0 T

0

4/10/14

© UCF EECS 165

Basic Functions

 All Basis Recursive Functions are Turing
computable:

•  Ca
n(x1,…,xn) = a
 (R1)aR

•  (x1,…,xn) = xi
 Cn-i+1

•  S(x) = x+1
 C11R

 i
nI

4/10/14

© UCF EECS 166

Closure Under Composition
 If G, H1, … , Hk are already known to be Turing computable, then so
is F, where

F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn))

To see this, we must first show that if E(x1,…,xn) is Turing
computable then so is

E<m>(x1,…,xn, y1,…,ym) = E(x1,…,xn)

This can be computed by the machine

Ln+m (Rotn+m)n Rn+m E Ln+m+1 (Rotn+m)m Rn+m+1

Can now define F by

H1 H2<1> H3<2> … Hk<k-1> G Shiftk

4/10/14

Closure Under Induction
To prove the that Turing Machines are closed under induction (primitive
recursion), we must simulate some arbitrary primitive recursive function
F(y,x1,x2, …, xn) on a Turing Machine, where
F(0, x1,x2, …, xn) = G(x1,x2, …, xn)
F(y+1, x1,x2, …, xn) = H(y, x1,x2, …, xn, F(y,x1,x2, …, xn))
Where, G and H are Standard Turing Computable. We define the
function F for the Turing Machine as follows:

Since our Turing Machine simulator can produce the same value for
any arbitrary PRF, F, we show that Turing Machines are closed under
induction (primitive recursion).

4/10/14 © UCF EECS 167

GLn+1 L
1

0

0Rn+2 H Shift Ln+2 1
Rn+2

© UCF EECS 168

Closure Under Minimization

 If G is already known to be Turing
computable, then so is F, where

F(x1,…,xn) = µy (G(x1,…,xn, y) == 1)

This can be done by

R G L 1 0 L

0
1

4/10/14

© UCF EECS 169

Consequences of Equivalence

•  Theorem: The computational power of Recursive
Functions, Turing Machines, Register Machine,
and Factor Replacement Systems are all
equivalent.

•  Theorem: Every Recursive Function (Turing
Computable Function, etc.) can be performed
with just one unbounded type of iteration.

•  Theorem: Universal machines can be
constructed for each of our formal models of
computation.

4/10/14

Additional Notations

Includes comment on our notation
versus that of others

© UCF EECS 171

Universal Machine
•  Others consider functions of n arguments, whereas we

had just one. However, our input to the FRS was actually
an encoding of n arguments.

•  The fact that we can focus on just a single number that is
the encoding of n arguments is easy to justify based on
the pairing function.

•  Some presentations order arguments differently, starting
with the n arguments and then the Gödel number of the
function, but closure under argument permutation follows
from closure under substitution.

4/10/14

© UCF EECS 172

Universal Machine Mapping

•  Φ(n)(f, x1,…,xn) = Univ (f,)
•  We will sometimes adopt the above and

also its common shorthand
 ϕf

(n)(x1,…,xn) = ϕ(n)(f, x1,…,xn)
 and the even shorter version
 ϕf(x1,…,xn) = ϕ(n)(f, x1,…,xn)

∏ =

n

i

x

ip
i

1

4/10/14

© UCF EECS 173

SNAP and TERM
•  Our CONFIG is essentially the common

SNAP (snapshot) with arguments
permuted
 SNAP(f, x, t) = CONFIG(f, x, t)

•  Termination in our notation occurs when
we reach a fixed point, so
 TERM(f, x) = (NEXT(f, x) == x)

•  Again, we used a single argument but that can
be extended as we have already shown.

4/10/14

© UCF EECS 174

STP Predicate

•  STP(f, x1,…,xn, t) is a predicate defined
to be true iff ϕf (x1,…,xn) converges in at
most t steps.

•  STP is primitive recursive since it can be
defined by
 STP(f, x, s) = TERM(f, CONFIG(f, x, s))
 Extending to many arguments is easily done as
before.

4/10/14

Recursively Enumerable

Properties of re Sets

© UCF EECS 176

Definition of re
•  Some texts define re in the same way as I have defined

semi-decidable.
 S ⊆ ℵ is semi-decidable iff there exists a partially
computable function g where
 S = { x ∈ ℵ | g(x)↓ }

•  I prefer the definition of re that says
S ⊆ ℵ is re iff S = ∅ or there exists a totally computable
function f where
 S = { y | ∃x f(x) == y }

•  We will prove these equivalent. Actually, f can be a
primitive recursive function.

4/10/14

© UCF EECS 177

Semi-Decidable Implies re
Theorem: Let S be semi-decided by GS. Assume

GS is the gS function in our enumeration of
effective procedures. If S = Ø then S is re by
definition, so we will assume wlog that there is
some a ∈ S. Define the enumerating algorithm
FS by
 FS(<x,t>) = x * STP(gs, x, t)
 + a * (1-STP(gs, x, t))
 Note: FS is primitive recursive and it enumerates
every value in S infinitely often.

4/10/14

© UCF EECS 178

re Implies Semi-Decidable
Theorem: By definition, S is re iff S == Ø or there

exists an algorithm FS, over the natural numbers
ℵ, whose range is exactly S. Define

 µy [y == y+1] if S == Ø
 ψS(x) =
 signum((µy[FS(y)==x])+1), otherwise
 This achieves our result as the domain of ψS is
the range of FS, or empty if S == Ø.

4/10/14

© UCF EECS 179

Domain of a Procedure
Corollary: S is re/semi-decidable iff S is the

domain / range of a partial recursive predicate
FS.

Proof: The predicate ψS we defined earlier to semi-
decide S, given its enumerating function, can be
easily adapted to have this property.
 µy [y == y+1] if S == Ø
 ψS(x) =
 x*signum((µy[FS(y)==x])+1), otherwise

4/10/14

© UCF EECS 180

Recursive Implies re
Theorem: Recursive implies re.
Proof: S is recursive implies there is a total

recursive function fS such that
 S = { x ∈ ℵ | fs(x) == 1 }
 Define gs(x) = µy (fs(x) == 1)
 Clearly
dom(gs) = {x ∈ ℵ | gs(x)↓}

 = { x ∈ ℵ | fs(x) == 1 }
 = S

4/10/14

© UCF EECS 181

Related Results
Theorem: S is re iff S is semi-decidable.
Proof: That’s what we proved.
Theorem: S and ~S are both re (semi-decidable)

iff S (equivalently ~S) is recursive (decidable).
Proof: Let fS semi-decide S and fS’ semi-decide ~S. We can

decide S by gS
 gS(x) = STP(fS, x, µt (STP(fS, x, t) || STP(fS’ ,x, t))
 ~S is decided by gS’(x) = ~gS(x) = 1- gS(x).
 The other direction is immediate since, if S is decidable
then ~S is decidable (just complement gS) and hence
they are both re (semi-decidable).

4/10/14

© UCF EECS 182

Enumeration Theorem
•  Define

 Wn = { x ∈ ℵ | ϕ(x,n)↓ }
•  Theorem: A set B is re iff there exists an n

such that B = Wn.
Proof: Follows from definition of ϕ(x,n).

•  This gives us a way to enumerate the
recursively enumerable sets.

•  Note: We will later show (again) that we
cannot enumerate the recursive sets.

4/10/14

© UCF EECS 183

The Set K

•  K = { n ∈ ℵ | n ∈ Wn }
•  Note that

n ∈ Wn ⇔ ϕ(n,n)↓ ⇔ HALT(n,n)
•  Thus, K is the set consisting of the indices

of each program that halts when given its
own index

•  K can be semi-decided by the HALT
predicate above, so it is re.

4/10/14

© UCF EECS 184

K is not Recursive

•  Theorem: We can prove this by showing
~K is not re.

•  If ~K is re then ~K = Wi, for some i.
•  However, this is a contradiction since

 i ∈ K ⇔ i ∈ Wi ⇔ i ∈ ~K ⇔ i ∉ K

4/10/14

© UCF EECS 185

re Characterizations
Theorem: Suppose S ≠∅ then the following are

equivalent:
1.  S is re
2.  S is the range of a primitive rec. function
3.  S is the range of a recursive function
4.  S is the range of a partial rec. function
5.  S is the domain of a partial rec. function

4/10/14

S-m-n Theorem

© UCF EECS 187

Parameter (S-m-n) Theorem
•  Theorem: For each n,m>0, there is a prf

Sm
n(y, u1,…,un) such that

ϕ(m+n)(y, x1,…,xm, u1,…,un)

 = ϕ(m)(Sm
n(y,u1,…,un), x1,…, xm)

•  The proof of this is highly dependent on
the system in which you proved
universality and the encoding you chose.

4/10/14

© UCF EECS 188

S-m-n for FRS
•  We would need to create a new FRS, from an existing one F, that

fixes the value of ui as the exponent of the prime pm+i.
•  Sketch of proof:

Assume we normally start with p1
x1 … pm

xm p1
u1 … pm+n

un σ
Here the first m are variable; the next n are fixed; σ denotes prime
factors used to trigger first phase of computation.
Assume that we use fixed point as convergence.
We start with just p1

x1 … pm
xm, with q the first unused prime.

q α x → q β x replaces α x→ β x in F, for each rule in F
q x → q x ensures we loop at end
x → q pm+1

u1 … pm+n
un σ x

 adds fixed input, start state and q
 this is selected once and never again

Note: q = prime(max(n+m, lastFactor(Product[i=1 to r] αi βi))+1)

 where r is the number of rules in F.

4/10/14

© UCF EECS 189

Details of S-m-n for FRS
•  The number of F (called F, also) is 2r3a15b1…p2r-1

arp2r
br

•  Sm,n(F, u1,…un) = 2r+23q×a15q×b1…p2r-1
q×arp2r

q×br

 p2r+1
qp2r+2

q p2r+3p2r+4
q pm+1u1 … pm+nun σ

•  This represents the rules we just talked about. The first
added rule pair means that if the algorithm does not use
fixed point, we force it to do so. The last rule pair is the
only one initially enabled and it adds the prime q, the
fixed arguments u1,…un, the enabling prime q, and the σ
needed to kick start computation. Note that σ could be a
1, if no kick start is required.

•  Sm,n= Sm
n is clearly primitive recursive. I’ll leave the

precise proof of that as a challenge to you.

4/10/14

© UCF EECS 190

Quantification#1
•  S is decidable iff there exists an algorithm χS (called S’s

characteristic function) such that
x ∈ S ⇔ χS(x)
This is just the definition of decidable.

•  S is re iff there exists an algorithm AS where
 x ∈ S ⇔ ∃t AS(x,t)
This is clear since, if gS is the index of the procedure ψS
defined earlier that semi-decides S then
 x ∈ S ⇔ ∃t STP(gS, x, t)
So, AS(x,t) = STPgS(x, t), where STPgS is the STP
function with its first argument fixed.

•  Creating new functions by setting some one or more
arguments to constants is an application of Sm

n.

4/10/14

© UCF EECS 191

Quantification#2
•  S is re iff there exists an algorithm AS such that

 x ∉ S ⇔ ∀t AS(x,t)
This is clear since, if gS is the index of the procedure ψS
that semi-decides S, then
 x ∉ S ⇔ ~∃t STP(gS, x, t) ⇔ ∀t ~STP(gS, x, t)
So, AS(x,t) = ~STPgS(x, t), where STPgS is the STP
function with its first argument fixed.

•  Note that this works even if S is recursive (decidable).
The important thing there is that if S is recursive then it
may be viewed in two normal forms, one with existential
quantification and the other with universal quantification.

•  The complement of an re set is co-re. A set is recursive
(decidable) iff it is both re and co-re.

4/10/14

Diagonalization and
Reducibility

© UCF EECS 193

Non-re Problems
•  There are even “practical” problems that are worse than

unsolvable -- they’re not even semi-decidable.
•  The classic non-re problem is the Uniform Halting

Problem, that is, the problem to decide of an arbitrary
effective procedure P, whether or not P is an algorithm.

•  Assume that the algorithms can be enumerated, and that
F accomplishes this. Then

F(x) = Fx

where F0, F1, F2, … is a list of all the algorithms

4/10/14

© UCF EECS 194

The Contradiction
•  Define G(x) = Univ (F(x) , x) + 1 = ϕ(F(x), x)+1 = Fx(x) + 1

•  But then G is itself an algorithm. Assume it is the g-th one

 F(g) = Fg = G

Then, G(g) = Fg(g) + 1 = G(g) + 1

•  But then G contradicts its own existence since G would need to be
an algorithm.

•  This cannot be used to show that the effective procedures are non-
enumerable, since the above is not a contradiction when G(g) is
undefined. In fact, we already have shown how to enumerate the
(partial) recursive functions.

4/10/14

© UCF EECS 195

The Set TOT

•  The listing of all algorithms can be viewed
as

TOT = { f ∈ ℵ | ∀x ϕ(f, x)↓ }

•  We can also note that

TOT = { f ∈ ℵ | Wf =ℵ }

•  Theorem: TOT is not re.

4/10/14

© UCF EECS 196

Quantification#3
•  The Uniform Halting Problem was already

shown to be non-re. It turns out its complement
is also not re. We’ll cover that later. In fact, we
will show that TOT requires an alternation of
quantifiers. Specifically,

f ∈ TOT⇔ ∀x∃t (STP(f, x, t))
and this is the minimum quantification we can
use, given that the quantified predicate is
recursive.

4/10/14

Reducibility

4/10/14 © UCF EECS 198

Reduction Concepts
•  Proofs by contradiction are tedious after you’ve

seen a few. We really would like proofs that
build on known unsolvable problems to show
other, open problems are unsolvable. The
technique commonly used is called reduction. It
starts with some known unsolvable problem and
then shows that this problem is no harder than
some open problem in which we are interested.

Diagonalization is a Bummer
•  The issues with diagonalization are that it is tedious and

is applicable as a proof of undecidability or non-re-ness
for only a small subset of the problems that interest us.

•  Thus, we will now seek to use reduction wherever
possible.

•  To show a set, S, is undecidable, we can show it is as
least as hard as the set K0. That is, K0 ≤ S. Here the
mapping used in the reduction does not need to run in
polynomial time, it just needs to be an algorithm.

•  To show a set, S, is not re, we can show it is as least as
hard as the set TOTAL (the set of algorithms). That is,
TOTAL ≤ S.

4/10/14 © UCF EECS 199

Reduction to TOTAL
•  We can show that the set K0 (Halting) is no harder than

the set TOTAL (Uniform Halting). Since we already
know that K0 is unsolvable, we would now know that
TOTAL is also unsolvable. We cannot reduce in the
other direction since TOTAL is in fact harder than K0.

•  Let ϕF be some arbitrary effective procedure and let x be
some arbitrary natural number.

•  Define Fx(y) = ϕF(x), for all y ∈ ℵ
•  Then Fx is an algorithm if and only if ϕF halts on x.
•  Thus, K0 ≤ TOTAL, and so a solution to membership in

TOTAL would provide a solution to K0, which we know is
not possible.

4/10/14 © UCF EECS 200

Reduction to ZERO
•  We can show that the set TOTAL is no harder

than the set ZERO = { f | ∀x ϕf(x) = 0 }. Since
we already know that TOTAL is non-re, we
would now know that ZERO is also non-re.

•  Let ϕf be some arbitrary effective procedure.
•  Define Ff(y) = ϕf(x) – ϕf(x), for all x ∈ ℵ
•  Then Ff is an algorithm that produces 0 for all

input (is in the set ZERO) if and only if ϕf halts
on all input x. Thus, TOTAL ≤ ZERO.

•  Thus a semi-decision procedure for ZERO would
provide one for TOTAL, a set already known to
be non-re.

4/10/14 © UCF EECS 201

© UCF EECS 202

Classic Undecidable Sets
•  The universal language

K0 = Lu = { <f, x> | ϕf (x) is defined }

•  Membership problem for Lu is the Halting Problem.
•  The sets Lne and Le, where

NON-EMPTY = Lne = { f | ∃ x ϕf (x) ↓ }

EMPTY = Le = { f | ∀ x ϕf (x) ↑ }

are the next ones we will study.

4/10/14

© UCF EECS 203

Lne is re
•  Lne is enumerated by

 F(<f, x, t>) = f * STP(f, x, t)

•  This assumes that 0 is in Lne since 0 probably

encodes some trivial machine. If this isn’t so,
we’ll just slightly vary our enumeration of the
recursive functions so it is true.

•  Thus, the range of this total function F is exactly
the indices of functions that converge for some
input, and that’s Lne.

4/10/14

© UCF EECS 204

Lne is Non-Recursive
•  Note in the previous enumeration that F is a function of

just one argument, as we are using an extended pairing
function <x,y,z> = <x,<y,z>>.

•  Now Lne cannot be recursive, for if it were then Lu is
recursive by the reduction we showed before.

•  In particular, from any index x and input y, we created a
new function which accepts all input just in case the x-th
function accepts y. Hence, this new function’s index is in
Lne just in case (x, y) is in Lu.

•  Thus, a decision procedure for Lne (equivalently for Le)
implies one for Lu.

4/10/14

© UCF EECS 205

Lne is re by Quantification

•  Can do by observing that

 f ∈ Lne ⇔ ∃ <x,t> STP(f, x, t)

•  By our earlier results, any set whose
membership can be described by an existentially
quantified recursive predicate is re (semi-
decidable).

4/10/14

© UCF EECS 206

Le is not re
•  If Le were re, then Lne would be recursive

since it and its complement would be re.
•  Can also observe that Le is the

complement of an re set since

 f ∈ Le ⇔ ∀ <x,t> ~STP(f, x, t)

 ⇔ ~∃ <x,t> STP(f, x, t)
 ⇔ f ∉ Lne

4/10/14

Reduction and Equivalence

m-1, 1-1, Turing Degrees

© UCF EECS 208

Many-One Reduction
•  Let A and B be two sets.
•  We say A many-one reduces to B,

A ≤m B, if there exists a total recursive function f
such that
x ∈ A ⇔ f(x) ∈ B

•  We say that A is many-one equivalent to B,
A ≡m B, if A ≤m B and B ≤m A

•  Sets that are many-one equivalent are in some
sense equally hard or easy.

4/10/14

© UCF EECS 209

Many-One Degrees
•  The relationship A ≡m B is an equivalence

relationship (why?)
•  If A ≡m B, we say A and B are of the same

many-one degree (of unsolvability).
•  Decidable problems occupy three m-1 degrees:
∅, ℵ, all others.

•  The hierarchy of undecidable m-1 degrees is an
infinite lattice (I’ll discuss in class)

4/10/14

© UCF EECS 210

One-One Reduction
•  Let A and B be two sets.
•  We say A one-one reduces to B, A ≤1 B,

if there exists a total recursive 1-1 function f
such that
x ∈ A ⇔ f(x) ∈ B

•  We say that A is one-one equivalent to B,
A ≡1 B, if A ≤1 B and B ≤1 A

•  Sets that are one-one equivalent are in a strong
sense equally hard or easy.

4/10/14

© UCF EECS 211

One-One Degrees
•  The relationship A ≡1 B is an equivalence

relationship (why?)
•  If A ≡1 B, we say A and B are of the same one-

one degree (of unsolvability).
•  Decidable problems occupy infinitely many 1-1

degrees: each cardinality defines another 1-1
degree (think about it).

•  The hierarchy of undecidable 1-1 degrees is an
infinite lattice.

4/10/14

© UCF EECS 212

Turing (Oracle) Reduction
•  Let A and B be two sets.
•  We say A Turing reduces to B, A ≤t B, if the

existence of an oracle for B would provide us
with a decision procedure for A.

•  We say that A is Turing equivalent to B,
A ≡t B, if A ≤t B and B ≤t A

•  Sets that are Turing equivalent are in a very
loose sense equally hard or easy.

4/10/14

© UCF EECS 213

Turing Degrees
•  The relationship A ≡t B is an equivalence

relationship (why?)
•  If A ≡t B, we say A and B are of the same Turing

degree (of unsolvability).
•  Decidable problems occupy one Turing degree.

We really don’t even need the oracle.
•  The hierarchy of undecidable Turing degrees is

an infinite lattice.

4/10/14

© UCF EECS 214

Complete re Sets
•  A set C is re 1-1 (m-1, Turing) complete if, for

any re set A, A ≤1 (≤m , ≤t) C.
•  The set HALT is an re complete set (in regard to

1-1, m-1 and Turing reducibility).
•  The re complete degree (in each sense of

degree) sits at the top of the lattice of re
degrees.

4/10/14

© UCF EECS 215

The Set Halt = K0 = Lu
•  Halt = K0 = Lu = { <f, x> | ϕf (x) ↓}
•  Let A be an arbitrary re set. By definition, there exists an

effective procedure ϕa, such that dom(ϕa) = A. Put
equivalently, there exists an index, a, such that A = Wa.

•  x ∈ A iff x ∈ dom(ϕa) iff ϕa(x)↓ iff <a,x> ∈ K0
•  The above provides a 1-1 function that reduces A to K0

(A ≤1 K0)
•  Thus the universal set, Halt = K0 = Lu, is an re

(1-1, m-1, Turing) complete set.

4/10/14

© UCF EECS 216

The Set K
•  K = { f | ϕf(f) is defined }
•  Define fx(y) = ϕf(x). That is, fx(y) = ϕf(x). The index for fx

can be computed from f and x using S1,1, where we add
a dummy argument, y, to ϕf. Let that index be fx. (Yeah,
that’s overloading.)

•  <f,x> ∈ K0 iff x ∈ dom(ϕf) iff ∀y[ϕfx(y)↓] iff fx ∈ K.
•  The above provides a 1-1 function that reduces K0 to K.
•  Since K0 is an re (1-1, m-1, Turing) complete set and K

is re, then K is also re (1-1, m-1, Turing) complete.

4/10/14

Reduction and Rice’s

4/10/14 © UCF EECS 218

Either Trivial or Undecidable
•  Let P be some set of re languages, e.g. P = { L | L is infinite re }.

•  We call P a property of re languages since it divides the class of all
re languages into two subsets, those having property P and those
not having property P.

•  P is said to be trivial if it is empty (this is not the same as saying P
contains the empty set) or contains all re languages.

•  Trivial properties are not very discriminating in the way they divide
up the re languages (all or nothing).

4/10/14 © UCF EECS 219

Rice’s Theorem
Rice’s Theorem: Let P be some non-trivial

property of the re languages. Then
 LP = { x | dom [x] is in P (has property P) }
 is undecidable. Note that membership in LP is
based purely on the domain of a function, not on
any aspect of its implementation.

4/10/14 © UCF EECS 220

Rice’s Proof-1
Proof: We will assume, wlog, that P does not

contain Ø. If it does we switch our attention to
the complement of P. Now, since P is non-
trivial, there exists some language L with
property P. Let [r] be a recursive function whose
domain is L (r is the index of a semi-decision
procedure for L). Suppose P were decidable.
We will use this decision procedure and the
existence of r to decide K0.

4/10/14 © UCF EECS 221

Rice’s Proof-1
 First we define a function Fr,x,y for r and each
function ϕx and input y as follows.
 Fr,x,y(z) = ϕ(x , y) + ϕ(r , z)
 The domain of this function is L if ϕx (y)
converges, otherwise it’s Ø. Now if we can
determine membership in LP , we can use this
algorithm to decide K0 merely by applying it to
Fr,x,y. An answer as to whether or not Fr,x,y has
property P is also the correct answer as to
whether or not ϕx (y) converges.

4/10/14 © UCF EECS 222

Rice’s Proof-1
 Thus, there can be no decision procedure for P.
And consequently, there can be no decision
procedure for any non-trivial property of re
languages.

 Note: This does not apply if P is trivial, nor does
it apply if P can differentiate indices that
converge for precisely the same values.

I/O Property
•  An I/O property, P, of indices of recursive function is one

that cannot differentiate indices of functions that produce
precisely the same value for each input.

•  This means that if two indices, f and g, are such that ϕf
and ϕg converge on the same inputs and, when they
converge, produce precisely the same result, then both f
and g must have property P, or neither one has this
property.

•  Note that any I/O property of recursive function indices
also defines a property of re languages, since the
domains of functions with the same I/O behavior are
equal. However, not all properties of re languages are I/
O properties.

4/10/14 © UCF EECS 223

Strong Rice’s Theorem

Rice’s Theorem: Let P be some non-trivial
I/O property of the indices of recursive
functions. Then
 SP = { x | ϕx has property P) }
 is undecidable. Note that membership in
SP is based purely on the input/output
behavior of a function, not on any aspect
of its implementation.

4/10/14 © UCF EECS 224

Strong Rice’s Proof

•  Given x, y, r, where r is in the set
SP.= {f | ϕf has property P},
define the function
fx,y,r(z) = ϕx(y) - ϕx(y) + ϕr(z).

•  fx,y,r(z) = ϕr(z) if ϕx(y)↓ ; = φ if ϕx(y)↑ .
Thus, ϕx(y)↓ iff fx,y,r has property P, and so
K0 ≤ SP.

4/10/14 © UCF EECS 225

Picture Proof

4/10/14 © UCF EECS 226

x

y
ϕ

x
(y)

ϕ
r
(z) z

dom(f
x,y,r

)=φ If ϕ
x
(y)↑

rng(f
x,y,r

)=φ If ϕ
x
(y)↑

∃z f
x,y,r

(z)≠ϕ
r
(z) If ϕ

x
(y)↑

∀z f
x,y,r

(z)=ϕ
r
(z) If ϕ

x
(y)↓

rng(f
x,y,r

)=rng(ϕ
r
) If ϕ

x
(y)↓

dom(f
x,y,r

)=dom(ϕ
r
) If ϕ

x
(y)↓

Black is for standard Rice’s Theorem;
Black and Red are needed for Strong Version
Blue is just another version based on range

4/10/14 © UCF EECS 227

Corollaries to Rice’s

 Corollary: The following properties of re
sets are undecidable
 a) L = Ø
 b) L is finite
 c) L is a regular set
 d) L is a context-free set

Constant time:
Not amenable to Rice’s

Constant Time
•  CTime = { M | ∃K [M halts in at most K steps

independent of its starting configuration] }
•  RT cannot be shown undecidable by Rice’s Theorem as

it breaks property 2
–  Choose M1 and M2 to each Standard Turing Compute (STC)

ZERO
–  M1 is R (move right to end on a zero)
–  M2 is L R R (time is dependent on argument)
–  M1 is in CTime; M2 is not , but they have same I/O behavior, so

CTime does not adhere to property 2

4/10/14 © UCF EECS 229

Quantifier Analysis
•  CTime = { M | ∃K ∀C [STP(M, C, K)] }
•  This would appear to imply that CTime is not

even re. However, a TM that only runs for K
steps can only scan at most K distinct tape
symbols. Thus, if we use unary notation, CTime
can be expressed

•  CTime = { M | ∃K ∀C|C|≤K [STP(M, C, K)] }
•  We can dovetail over the set of all TMs, M, and

all K, listing those M that halt in constant time.

4/10/14 © UCF EECS 230

Complexity of CTime

•  Can show it is equivalent to the Halting
Problem for TM’s with Infinite Tapes (not
unbounded but truly infinite)

•  This was shown in 1966 to be
undecidable.

•  It was also shown to be re, just as we
have done so for CTime.

4/10/14 © UCF EECS 231

Exam#1 Review

233

Sample Question#1

1. Prove that the following are equivalent
a)  S is an infinite recursive (decidable) set.
b)   S is the range of a monotonically

increasing total recursive function.
Note: f is monotonically increasing
means that ∀x f(x+1) > f(x).

4/10/14 © UCF EECS

234

Sample Question#2

2. Let A and B be re sets. For each of the
following, either prove that the set is re,
or give a counterexample that results in
some known non-re set.

a)  A ∪ B
b)   A ∩ B
c)  ~A

4/10/14 © UCF EECS

235

Sample Question#3

3. Present a demonstration that the even
function is primitive recursive.
even(x) = 1 if x is even
even(x) = 0 if x is odd
You may assume only that the base
functions are prf and that prf’s are closed
under a finite number of applications of
composition and primitive recursion.

4/10/14 © UCF EECS

236

Sample Question#4

4. Given that the predicate STP and the
function VALUE are prf’s, show that we
can semi-decide

{ f | ϕf evaluates to 0 for some input}

Note: STP(f, x, s) is true iff ϕf(x)
converges in s or fewer steps and, if so,
VALUE(f, x, s) = ϕf(x).

4/10/14 © UCF EECS

237

Sample Question#5
5. Let S be an re (recursively enumerable), non-

recursive set, and T be an re, possibly
recursive set. Let
 E = { z | z = x + y, where x ∈ S and y ∈ T }.
 Answer with proofs, algorithms or
counterexamples, as appropriate, each of the
following questions:
 (a) Can E be non re?
 (b) Can E be re non-recursive?
 (c) Can E be recursive?

4/10/14 © UCF EECS

238

Sample Question#6

6. Assuming that the Uniform Halting
Problem (TOTAL) is undecidable (it’s
actually not even re), use reduction to
show the undecidability of

{ f | ∀x ϕf (x+1) > ϕf (x) }

4/10/14 © UCF EECS

239

Sample Question#7

7. Let Incr = { f | ∀x, ϕf(x+1)>ϕf(x) }.
Let TOT = { f | ∀x, ϕf(x)↓ }.
Prove that Incr ≡m TOT. Note Q#6 starts
this one.

4/10/14 © UCF EECS

240

Sample Question#8

8. Let Incr = { f | ∀x ϕf(x+1)>ϕf(x) }. Use
Rice’s theorem to show Incr is not
recursive.

4/10/14 © UCF EECS

241

Sample Question#9

9. Let S be a recursive (decidable set),
what can we say about the complexity
(recursive, re non-recursive, non-re) of T,
where T ⊂ S?

4/10/14 © UCF EECS

242

Sample Question#10

10. Define the pairing function <x,y> and its
two inverses <z>1 and <z>2, where if
z = <x,y>, then x = <z>1 and y = <z>2.

4/10/14 © UCF EECS

243

Sample Question#11

11. Assume A ≤m B and B ≤m C.
Prove A ≤m C.

4/10/14 © UCF EECS

244

Sample Question#12

12. Let P = { f | ∃ x [STP(f, x, x)] }. Why
does Rice’s theorem not tell us anything
about the undecidability of P?

4/10/14 © UCF EECS

Exam#1 Topics

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 246

Exclusions

•  No explicit Turing Machines to write
•  No explicit FRSs to write
•  No explicit Register Machines to write
•  No explicit S-m-n theorem, but assumed

ability to apply it

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 247

Inclusions
•  A question with multiple parts that uses quantification (STP/VALUE)
•  Various re and recursive equivalent definitions
•  Proofs of equivalence of definitions
•  Consequences of recursiveness or re-ness of a problem
•  Closure of recursive/re sets
•  Gödel numbering (pairing functions and inverses)
•  Models of computation/equivalences (not details but understanding)
•  Primitive recursion and its limitation; bounded versus unbounded µ
•  Notion of universal machine
•  A proof by diagonalization (there are just two possibilities)
•  A question about K and/or K0
•  Many-one reduction(s)
•  Rice’s Theorem (its proof and its variants)
•  Applications of Rice’s Theorem and when it cannot be applied

Post Systems

249

Thue Systems
•  Devised by Axel Thue
•  Just a string rewriting view of finitely

presented monoids
•  T = (Σ, R), where Σ is a finite alphabet and

R is a finite set of bi-directional rules of
form αi ↔ βi , αi, βi∈Σ*

•  We define ⇔* as the reflexive, transitive
closure of ⇔, where w ⇔ x iff w=yαz and
x=yβz, where α ↔ β	

4/10/14 © UCF EECS

250

Semi-Thue Systems
•  Devised by Emil Post
•  A one-directional version of Thue systems
•  S = (Σ, R), where Σ is a finite alphabet and

R is a finite set of rules of form
αi → βi , αi, βi∈Σ*

•  We define ⇒* as the reflexive, transitive
closure of ⇒, where w ⇒ x iff w=yαz and
x=yβz, where α → β	

4/10/14 © UCF EECS

251

Word Problems
•  Let S = (Σ, R) be some Thue (Semi-Thue)

system, then the word problem for S is the
problem to determine of arbitrary words w and x
over S, whether or not w ⇔* x (w ⇒* x)

•  The Thue system word problem is the problem
of determining membership in equivalence
classes. This is not true for Semi-Thue systems.

•  We can always consider just the relation ⇒*
since the symmetric property of ⇔* comes
directly from the rules of Thue systems.

4/10/14 © UCF EECS

252

Post Canonical Systems
•  These are a generalization of Semi-Thue systems.
•  P = (Σ, V, R), where Σ is a finite alphabet, V is a finite set of

“variables”, and R is a finite set of rules.
•  Here the premise part (left side) of a rule can have many premise

forms, e.g, a rule appears as
P1,1α1,1 P1,2… α1,n1

P1,n1
α1,n1+1 ,

P2,1α2,1 P2,2… α2,n2
P2,n2

α2,n2+1 ,
 …

Pk,1αk,1 Pk,2… αk,nk

Pk,nk
αk,nk+1 ,

→ Q1β1 Q2… βnk+1
Qnk+1

βnk+1+1
•  In the above, the P’s and Q’s are variables, the α’s and β’s are

strings over Σ, and each Q must appear in at least one premise.
•  We can extend the notion of ⇒* to these systems considering sets

of words that derive conclusions. Think of the original set as axioms,
the rules as inferences and the final word as a theorem to be
proved.

4/10/14 © UCF EECS

253

Examples of Canonical Forms
•  Propositional rules

P, P ⊃ Q → Q
~P, P ∪ Q → Q
P ∩ Q → P oh, oh a ∩ (b ∩ c) ⇒ a ∩ (b
P ∩ Q → Q
(P ∩ Q) ∩ R ↔ P ∩ (Q ∩ R)
(P ∪ Q) ∪ R ↔ P ∪ (Q ∪ R)
 ~(~P) ↔ P
P ∪ Q → Q ∪ P
P ∩ Q → Q ∩ P

•  Some proofs over {a,b,(,),~,⊃,∪,∩}
{a ∪ c, b ⊃ ~c, b} ⇒ {a ∪ c, b ⊃ ~c, b, ~c} ⇒
{a ∪ c, b ⊃ ~c, b, ~c, c ∪ a} ⇒
{a ∪ c, b ⊃ ~c, b, ~c, c ∪ a, a} which proves “a”

4/10/14 © UCF EECS

254

Simplified Canonical Forms
•  Each rule of a Semi-Thue system is a canonical rule of

the form
PαQ → PβQ

•  Each rule of a Thue system is a canonical rule of the
form
PαQ ↔ PβQ

•  Each rule of a Post Normal system is a canonical rule of
the form
αP → Pβ

•  Tag systems are just Normal systems where all premises
are of the same length (the deletion number), and at
most one can begin with any given letter in Σ. That
makes Tag systems deterministic.

4/10/14 © UCF EECS

255

Examples of Post Systems
•  Alphabet Σ = {a,b,#}. Semi-Thue rules:

aba → b
#b# → λ
For above, #anbam# ⇒* λ iff n=m

•  Alphabet Σ = {0,1,c,#}. Normal rules:
0c → 1
1c → c0
#c → #1
0 → 0
1 → 1
→ #
For above, binaryc# ⇒* binary+1# where binary is some
binary number.

4/10/14 © UCF EECS

256

Simulating Turing Machines
•  Basically, we need at least one rule for each 4-

tuple in the Turing machine’s description.
•  The rules lead from one instantaneous

description to another.
•  The Turing ID αqaβ is represented by the string

hαqaβh, a being the scanned symbol.
•  The tuple q a b s leads to

qa → sb
•  Moving right and left can be harder due to

blanks.

4/10/14 © UCF EECS

257

Details of Halt(TM) ≤ Word(ST)
•  Let M = (Q, {0,1}, T), T is Turing table.
•  If qabs ∈ T, add rule qa → sb
•  If qaRs ∈ T, add rules

–  q1b → 1sb a=1, ∀b∈{0,1}
–  q1h → 1s0h a=1
–  cq0b → c0sb a=0, ∀b,c∈{0,1}
–  hq0b → hsb a=0, ∀b∈{0,1}
–  cq0h → c0s0h a=0, ∀c∈{0,1}
–  hq0h → hs0h a=0

•  If qaLs ∈ T, add rules
–  bqac → sbac ∀a,b,c∈{0,1}
–  hqac → hs0ac ∀a,c∈{0,1}
–  bq1h → sb1h a=1, ∀b∈{0,1}
–  hq1h → hs01h a=1
–  bq0h → sbh a=0, ∀b∈{0,1}
–  hq0h → hs0h a=0

4/10/14 © UCF EECS

258

Clean-Up
•  Assume q1 is start state and only one accepting state exists q0
•  We will start in h1xq10h, seeking to accept x (enter q0) or reject (run

forever).
•  Add rules

–  q0a → q0 ∀a∈{0,1}
–  bq0 → q0 ∀b∈{0,1}

•  The added rule allows us to “erase” the tape if we accept x.
•  This means that acceptance can be changed to generating hq0h.

•  The next slide shows the consequences.

4/10/14 © UCF EECS

259

Semi-Thue Word Problem

•  Construction from TM, M, gets:
•  h1xq10h ⇒∑(M)* hq0h iff x∈L(M).
•  hq0h ⇒∏(M)* h1xq10h iff x∈L(M).
•  hq0h ⇔∑ (M)* h1xq10h iff x∈L(M).
•  Can recast both Semi-Thue and Thue

Systems to ones over alphabet {a,b} or
{0,1}. That is, a binary alphabet is
sufficient for undecidability.

4/10/14 © UCF EECS

Formal Language Review

Pretty Basic Stuff

261

Closure Properties
•  Regular (Finite State) Languages

–  Union, intersection, complement, substitution,
quotient (with anything), max, min, cycle, reversal

–  Use of Pumping Lemma and Myhill-Nerode
•  Context Free

–  Union, intersection with regular, substitution, quotient
with regular, cycle, reversal

–  Use of Pumping and Ogden’s Lemma
•  Context Sensitive Languages

–  Union, intersection, complement, Epsilon-free
substitution, cycle, reversal

4/10/14 © UCF EECS

262

Non-Closure

•  CFLs not closed under
–  Intersection, complement, max, min

•  CSLs not closed under
– Homomorphism (or substitution with empty

string), max (similar to homomorphism)

4/10/14 © UCF EECS

4/10/14 © UCF EECS 263

Grammars and re Sets

•  Every grammar lists an re set.
•  Some grammars (regular, CFL and CSG)

produce recursive sets.
•  Type 0 grammars are as powerful at listing

re sets as Turing machines are at
enumerating re sets (Proof later).

Formal Language

Undecidability Continued
PCP and Traces

265

Post Correspondence Problem
•  Many problems related to grammars can be shown to be

no more complex than the Post Correspondence
Problem (PCP).

•  Each instance of PCP is denoted: Given n>0, Σ a finite
alphabet, and two n-tuples of words
(x1, … , xn), (y1, … , yn) over Σ,
does there exist a sequence i1, … , ik , k>0, 1 ≤ ij ≤ n,
such that
xi1 … xik = yi1 … yik ?

•  Example of PCP:
n = 3, Σ = { a , b }, (a b a , b b , a), (b a b , b , b a a).
Solution 2 , 3, 1 , 2
b b a a b a b b = b b a a b a b b

4/10/14 © UCF EECS

266

PCP Example#2

•  Start with Semi-Thue System
– aba → ab; a → aa; b → a
–  Instance of word problem: bbbb ⇒*? aa

•  Convert to PCP
–  [bbbb* ab ab aa aa a a]
 [aba aba a a b b *aa]

– And * * a a b b
 * * a a b b

4/10/14 © UCF EECS

267

How PCP Construction Works?

•  Using underscored letters avoids solutions
that don’t relate to word problem instance.
E.g.,

 aba a
 ab aa

•  Top row insures start with [W0*
•  Bottom row insures end with *Wf]
•  Bottom row matches Wi, while top

matches Wi+1 (one is underscored)

4/10/14 © UCF EECS

268

Ambiguity of CFG
•  Problem to determine if an arbitrary CFG

is ambiguous
S → A | B
A → xi A [i] | xi [i] 1 ≤ i ≤ n
B → yi B [i] | yi [i] 1 ≤ i ≤ n
A ⇒* xi1 … xik [ik] … [i1] k > 0
B ⇒* yi1 … yik [ik] … [i1] k > 0

•  Ambiguous if and only if there is a solution
to this PCP instance.

4/10/14 © UCF EECS

269

Intersection of CFLs
•  Problem to determine if arbitrary CFG’s

define overlapping languages
•  Just take the grammar consisting of all the

A-rules from previous, and a second
grammar consisting of all the B-rules. Call
the languages generated by these
grammars, LA and LB.
LA ∩ LB ≠ Ø, if and only there is a solution
to this PCP instance.

4/10/14 © UCF EECS

270

CSG Produces Something
 S → xi S yi

R | xi T yi
R 1 ≤ i ≤ n

 a T a → * T *
 * a → a *
 a * → * a
 T → *

•  Our only terminal is *. We get strings of
form *2j+1, for some j’s if and only if there is
a solution to this PCP instance.

4/10/14 © UCF EECS

271

Traces (Valid Computations)
•  A trace of a machine M, is a word of the form

X0 # X1 # X2 # X3 # … # Xk-1 # Xk #

where Xi ⇒ Xi+1 0 ≤ i < k, X0 is a starting configuration and Xk is a
terminating configuration.

•  We allow some laxness, where the configurations might be encoded
in a convenient manner. Many texts show that a context free
grammar can be devised which approximates traces by either
getting the even-odd pairs right, or the odd-even pairs right. The
goal is to then to intersect the two languages, so the result is a
trace. This then allows us to create CFLs L1 and L2, where L1 ∩ L2
≠ Ø , just in case the machine has an element in its domain. Since
this is undecidable, the non-emptiness of the intersection problem is
also undecidable. This is an alternate proof to one we already
showed based on PCP.

4/10/14 © UCF EECS

272

Traces of FRS
•  I have chosen, once again to use the Factor Replacement Systems,

but this time, Factor Systems with Residues.
The rules are unordered and each is of the form
a x + b → c x + d

•  These systems need to overcome the lack of ordering when
simulating Register Machines. This is done by
j. INCr[i] pn+j x → pn+i pr x
j. DECr[s, f] pn+j pr x → pn+s x

 pn+j pr x + k pn+j → pn+f pr x + k pn+f , 1 ≤ k < pr
 We also add the halting rule associated with m+1 of
 pn+m+1 x → 0

•  Thus, halting is equivalent to producing 0. We can also add one
more rule that guarantees we can reach 0 on both odd and even
numbers of moves
 0 → 0

4/10/14 © UCF EECS

273

Intersection of CFLs
•  Let (n, ((a1,b1,c1,d1) , … ,(ak,bk,ck,dk)) be some factor replacement

system with residues. Define grammars G1 and G2 by using the 4k+2 rules
G : Fi → 1aiFi1ci | 1ai+bi#1ci+di 1 ≤ i ≤ k

 S1 → # Fi S1 | # Fi # 1 ≤ i ≤ k
 S2 → # 1x0S11z0# Z0 is 0 for us

G1 starts with S1 and G2 with S2
•  Thus, using the notation of writing Y in place of 1Y,

L1 = L(G1) = { #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }
where Y2i ⇒ Y2i+1 , 0 ≤ i ≤ j.
This checks the even/odd steps of an even length computation.
But, L2 = L(G2) = { #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }
where X2i-1 ⇒ X2i , 1 ≤ i ≤ k.
This checks the odd/even steps of an even length computation.

4/10/14 © UCF EECS

274

Intersection Continued
 Now, X0 is chosen as some selected input value to the
Factor System with Residues, and Z0 is the unique value
(0 in our case) on which the machine halts. But,
 L1 ∩ L2 = {#X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }
 where Xi ⇒ Xi+1 , 0 ≤ i < 2k, and X2k ⇒ Z0 . This checks
all steps of an even length computation. But our original
system halts if and only if it produces 0 (Z0) in an even
(also odd) number of steps. Thus the intersection is non-
empty just in case the Factor System with residue
eventually produces 0 when started on X0, just in case
the Register Machine halts when started on the register
contents encoded by X0.

4/10/14 © UCF EECS

Quotients of CFLs (concept)
Let L1 = L(G1) = { $ # Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }
where Y2i ⇒ Y2i+1 , 0 ≤ i ≤ j.
This checks the even/odd steps of an even length computation.
Now, let L2 = L(G2) = {X0 $ # X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 #}
where X2i-1 ⇒ X2i , 1 ≤ i ≤ k and Z is a unique halting configuration.
This checks the odd/steps of an even length computation, and includes an
extra copy of the starting number prior to its $.
 Now, consider the quotient of L2 / L1 . The only ways a member of L1 can
match a final substring in L2 is to line up the $ signs. But then they serve to
check out the validity and termination of the computation. Moreover, the
quotient leaves only the starting point (the one on which the machine halts.)
Thus,
 L2 / L1 = { X0 | the system halts}.
 Since deciding the members of an re set is in general undecidable, we have
shown that membership in the quotient of two CFLs is also undecidable.

4/10/14 275 © UCF EECS

276

Quotients of CFLs (precise)
•  Let (n, ((a1,b1,c1,d1) , … ,(ak,bk,ck,dk)) be some factor replacement system with

residues. Define grammars G1 and G2 by using the 4k+4 rules
G : Fi → 1aiFi1ci | 1ai+bi#1ci+di 1 ≤ i ≤ k

 T1 → # Fi T1 | # Fi # 1 ≤ i ≤ k
 A → 1 A 1 | $ #
 S1 → $T1
 S2 → A T1 # 1z0 # Z0 is 0 for us

G1 starts with S1 and G2 with S2
•  Thus, using the notation of writing Y in place of 1Y,

L1 = L(G1) = { $ #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }
where Y2i ⇒ Y2i+1 , 0 ≤ i ≤ j.
This checks the even/odd steps of an even length computation.
But, L2 = L(G2) = { X $ #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }
where X2i-1 ⇒ X2i , 1 ≤ i ≤ k and X = X0
This checks the odd/steps of an even length computation, and includes
an extra copy of the starting number prior to its $.

4/10/14 © UCF EECS

277

Finish Quotient
 Now, consider the quotient of L2 / L1 . The only
ways a member of L1 can match a final
substring in L2 is to line up the $ signs. But then
they serve to check out the validity and
termination of the computation. Moreover, the
quotient leaves only the starting number (the
one on which the machine halts.) Thus,
 L2 / L1 = { X | the system F halts on zero }.
 Since deciding the members of an re set is in
general undecidable, we have shown that
membership in the quotient of two CFLs is also
undecidable.

4/10/14 © UCF EECS

278

Traces and Type 0
•  Here, it is actually easier to show a simulation of a Turing machine than of a Factor

System.
•  Assume we are given some machine M, with Turing table T (using Post notation). We

assume a tape alphabet of Σ that includes a blank symbol B.
•  Consider a starting configuration C0. Our rules will be

S → # C0 # where C0 = Yq0aX is initial ID
q a → s b if q a b s ∈ T
b q a x → b a s x if q a R s ∈ T, a,b,x ∈ Σ
b q a # → b a s B # if q a R s ∈ T, a,b ∈ Σ
q a x → # a s x if q a R s ∈ T, a,x ∈ Σ, a≠B
q a # → # a s B # if q a R s ∈ T, a ∈ Σ, a≠B
q a x → # s x # if q a R s ∈ T, x ∈ Σ, a=B
q a # → # s B # if q a R s ∈ T, a=B
b q a x → s b a x if q a L s ∈ T, a,b,x ∈ Σ
q a x → # s B a x if q a L s ∈ T, a,x ∈ Σ
b q a # → s b a # if q a L s ∈ T, a,b ∈ Σ, a≠B
q a # → # s B a # if q a L s ∈ T, a ∈ Σ, a≠B
b q a # → s b # if q a L s ∈ T, b ∈ Σ, a=B
q a # → # s B # if q a L s ∈ T, a=B
f → λ if f is a final state
→ λ just cleaning up the dirty linen

4/10/14 © UCF EECS

279

CSG and Undecidability
•  We can almost do anything with a CSG that can be done with a Type 0

grammar. The only thing lacking is the ability to reduce lengths, but we can
throw in a character that we think of as meaning “deleted”. Let’s use the
letter d as a deleted character, and use the letter e to mark both ends of a
word.

•  Let G = (V, T, P , S) be an arbitrary Type 0 grammar.
•  Define the CSG G’ = (V ∪ {S’, D}, T ∪ {d, e}, S’, P’), where P’ is

S’ → e S e
D x → x D when x ∈ V ∪ T
D e → e d push the delete characters to far right
α → β where α → β ∈ P and |α| ≤ |β|
α → βDk where α → β ∈ P and |α| - |β| = k > 0

•  Clearly, L(G’) = { e w e dm | w ∈ L(G) and m≥0 is some integer }
•  For each w ∈ L(G), we cannot, in general, determine for which values of m,

e w e dm ∈ L(G’). We would need to ask a potentially infinite number of
questions of the form
“does e w e dm ∈ L(G’)” to determine if w ∈ L(G). That’s a semi-decision
procedure.

4/10/14 © UCF EECS

280

Some Consequences
•  CSGs are not closed under Init, Final, Mid, quotient with

regular sets and homomorphism (okay for λ-free
homomorphism)

•  We also have that the emptiness problem is undecidable
from this result. That gives us two proofs of this one
result.

•  For Type 0, emptiness and even the membership
problems are undecidable.

4/10/14 © UCF EECS

Summary of Grammar
Results

282

Decidability

•  Everything about regular
•  Membership in CFLs and CSLs

– CKY for CFLs
•  Emptiness for CFLs

4/10/14 © UCF EECS

283

Undecidability
•  Is L =∅, for CSL, L?
•  Is L=Σ*, for CFL (CSL), L?
•  Is L1=L2 for CFLs (CSLs), L1, L2?
•  Is L1⊆L2 for CFLs (CSLs), L1, L2?
•  Is L1∩L2=∅ for CFLs (CSLs), L1, L2?
•  Is L regular, for CFL (CSL), L?
•  Is L1∩L2 a CFL for CFLs, L1, L2?
•  Is ~L CFL, for CFL, L?

4/10/14 © UCF EECS

284

More Undecidability

•  Is CFL, L, ambiguous?
•  Is L=L2, L a CFL?
•  Does there exist a finite n, Ln=LN+1?
•  Is L1/L2 finite, L1 and L2 CFLs?
•  Membership in L1/L2, L1 and L2 CFLs?

4/10/14 © UCF EECS

285

Word to Grammar Problem
•  Recast semi-Thue system making all

symbols non-terminal, adding S and V to
non-terminals and terminal set Σ={a}
G: S → h1xq10h
 hq0h → V
 V → aV
 V → λ

•  x∈L(M) iff L(G) ≠ Ø iff L(G) infinite
iff λ ∈ L(G) iff a ∈ L(G) iff L(G) = Σ*

4/10/14 © UCF EECS

286

Consequences for Grammar
•  Unsolvables

– L(G) = Ø
– L(G) = Σ*
– L(G) infinite
– w ∈ L(G), for arbitrary w
– L(G) ⊆ L(G2)
– L(G) = L(G2)

•  Latter two results follow when have
– G2: S → aS | λ a∈Σ

4/10/14 © UCF EECS

4/10/14 © UCF EECS 287

Turing Machine Traces

•  A valid trace
– C1 # C2

R $ C3 # C4
R … $ C2k-1 # C2k

R $, where
k ≥ 1 and Ci ⇒M Ci+1, for 1 ≤ i < 2k. Here, ⇒M
means derive in M, and CR means C with its
characters reversed

•  An invalid trace
– C1 # C2

R $ C3 # C4
R … $ C2k-1 # C2k

R $, where
k ≥ 1 and for some i, it is false that
Ci ⇒M Ci+1.

4/10/14 © UCF EECS 288

What’s Context Free?
•  Given a Turing Machine M

– The set of invalid traces of M is Context Free
– The set of valid traces is Context Sensitive
– The set of valid terminating traces is Context

Sensitive
– The complement of the valid traces is Context

Free
– The complement of the valid terminating

traces is Context Free

Partially correct traces
L1 = L(G1) = { #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }
where Y2i ⇒ Y2i+1 , 0 ≤ i ≤ j.
This checks the even/odd steps of an even length computation.
But, L2 = L(G2) = {#X0#X1#X2#X3#X4 #…# X2k-1#X2k#Z0#}
where X2i-1 ⇒ X2i , 1 ≤ i ≤ k.
This checks the odd/steps of an even length computation.

L = L1 ∩ L2 describes correct traces (checked even/odd and odd/
even). If Z0 is chosen to be a terminal configuration, then these are
terminating traces. If we pick a fixed X0, then X0 is a halting
configuration iff L is non-empty. This is an independent proof of the
undecidability of the non-empty intersection problem for CFGs and
the non-emptiness problem for CSGs.

4/10/14 289 © UCF EECS

4/10/14 © UCF EECS 290

What’s Undecidable?

•  We cannot decide if the set of valid
terminating traces of an arbitrary machine
M is non-empty.

•  We cannot decide if the complement of the
set of valid terminating traces of an
arbitrary machine M is everything. In fact,
this is not even semi-decidable.

291

L = Σ*?

•  If L is regular, then L = Σ*? is decidable
– Easy – Reduce to minimal deterministic FSA,

AL accepting L. L = Σ* iff AL is a one-state
machine, whose only state is accepting

•  If L is context free, then L = Σ*? is
undecidable
– Just produce the complement of a Turing

Machine’s valid terminating traces

4/10/14 © UCF EECS

Undecidability of Finite
Convergence for Operators on

Formal Languages
Relation to Real-Time

(Constant Time) Execution

Powers of CFLs
Let G be a context free grammar.
Consider L(G)n

Question1: Is L(G) = L(G)2?
Question2: Is L(G)n = L(G)n+1, for some

finite n>0?
These questions are both undecidable.
Think about why question1 is as hard as

whether or not L(G) is Σ*.
Question2 requires much more thought.
4/10/14 © UCF EECS 293

L(G) = L(G)2?

•  The problem to determine if L = Σ* is Turing
reducible to the problem to decide if
L • L ⊆ L, so long as L is selected from a
class of languages C over the alphabet Σ for
which we can decide if Σ ∪ {λ} ⊆ L.

•  Corollary 1:
The problem “is L • L = L, for L context free
or context sensitive?” is undecidable

4/10/14 © UCF EECS 294

L(G) = L(G)2? is undecidable

•  Question: Does L • L get us anything new?
–  i.e., Is L • L = L?

•  Membership in a CSL is decidable.
•  Claim is that L = Σ* iff

(1) Σ ∪ {λ} ⊆ L ; and
(2) L • L = L

•  Clearly, if L = Σ* then (1) and (2) trivially hold.
•  Conversely, we have Σ* ⊆ L*= ∪ n≥0 Ln ⊆ L

–  first inclusion follows from (1); second
from (2)

4/10/14 © UCF EECS 295

Finite Power Problem
•  The problem to determine, for an arbitrary

context free language L, if there exist a finite
n such that Ln = Ln+1 is undecidable.

•  L1 = { C1# C2
R $ |

 C1, C2 are configurations },
•  L2 = { C1#C2

R$C3#C4
R … $C2k-1#C2k

R$ | where
k ≥ 1 and, for some i, 1 ≤ i < 2k, Ci ⇒M Ci+1 is
false },

•  L = L1 ∪ L2 ∪ {λ}.

4/10/14 © UCF EECS 296

Undecidability of ∃n Ln = Ln+1

•  L is context free.
•  Any product of L1 and L2, which contains L2 at least

once, is L2. For instance, L1 • L2 = L2 • L1 = L2 • L2 =
L2.

•  This shows that (L1 ∪ L2)n = L1
n ∪ L2.

•  Thus, Ln = {λ} ∪ L1 ∪ L1
2 … ∪ L1

n ∪ L2.
•  Analyzing L1 and L2 we see that L1

n ∩ L2 ≠ Ø just in
case there is a word C1 # C2

R $ C3 # C4
R … $ C2n-1 #

C2n
R $ in L1

n that is not also in L2.
•  But then there is some valid trace of length 2n.
•  L has the finite power property iff M executes in

constant time.
4/10/14 © UCF EECS 297

298

Simple Operators

•  Concatenation
– A • B = { xy | x ∈ A & y ∈ B }

•  Insertion
– A w B = { xyz | y ∈ A, xz ∈ B, x, y, z ∈ Σ*}
– Clearly, since x can be λ, A • B ⊆ A w B

4/10/14 © UCF EECS

299

K-insertion

•  A w [k] B = { x1y1x2y2 … xkykxk+1 |
 y1y2 … yk ∈ A,
 x1x2 … xkxk+1 ∈ B,
 xi, yj ∈ Σ*}

•  Clearly, A • B ⊆ A w [k] B , for all k>0

4/10/14 © UCF EECS

300

Iterated Insertion

•  A (1) w[n] B = A w[n] B

•  A (k+1) w[n] B = A w[n] (A (k) w[n] B)

4/10/14 © UCF EECS

301

Shuffle
•  Shuffle (product and bounded product)

–  A ¯ B = ∪ j ≥ 1 A w[j] B
–  A ¯[k] B = ∪ 1≤j≤k A w[j] B = A w[k] B

•  One is tempted to define shuffle product as
A ¯ B = A w[k] B where

 k = µ y [A w[j] B = A w[j+1] B]
but such a k may not exist – in fact, we will show
the undecidability of determining whether or not
k exists

4/10/14 © UCF EECS

302

More Shuffles

•  Iterated shuffle
– A ¯0 B = A
– A ¯k +1 B = (A ¯[k] B) ¯ B

•  Shuffle closure
– A ¯* B = ∪ k ≥ 0 (A ¯[k] B)

4/10/14 © UCF EECS

303

Crossover

•  Unconstrained crossover is defined by
A ⊗u B = { wz, yx | wx∈A and yz∈B}

•  Constrained crossover is defined by
 A ⊗c B = { wz, yx | wx∈A and yz∈B,

 |w| = |y|, |x| = |z| }

4/10/14 © UCF EECS

304

Who Cares?
•  People with no real life (me?)
•  Insertion and a related deletion operation are

used in biomolecular computing and
dynamical systems

•  Shuffle is used in analyzing concurrency as
the arbitrary interleaving of parallel events

•  Crossover is used in genetic algorithms

4/10/14 © UCF EECS

305

Some Known Results

•  Regular languages, A and B
– A • B is regular
– A w [k] B is regular, for all k>0
– A ¯ B is regular
– A ¯* B is not necessarily regular

•  Deciding whether or not A ¯* B is regular is an
open problem

4/10/14 © UCF EECS

306

More Known Stuff
•  CFLs, A and B

–  A • B is a CFL
–  A w B is a CFL
–  A w [k] B is not necessarily a CFL, for k>1

•  Consider A=anbn; B = cmdm and k=2
•  Trick is to consider (A w [2] B) ∩ a*c*b*d*

–  A ¯ B is not necessarily a CFL
–  A ¯* B is not necessarily a CFL

•  Deciding whether or not A ¯* B is a CFL is an open problem

4/10/14 © UCF EECS

307

Immediate Convergence

•  L = L2 ?

•  L = L wL ?
•  L = L ¯ L ?
•  L = L ¯* L ?
•  L = L ⊗c L ?
•  L = L ⊗u L ?

4/10/14 © UCF EECS

308

Finite Convergence
•  ∃k>0 Lk = Lk+1
•  ∃k≥0 L (k) w L = L (k+1) w L
•  ∃k≥0 L w[k] L = L w[k+1] L
•  ∃k≥0 L ¯k L = L ¯k +1 L
•  ∃k≥0 L (k) ⊗c L = L (k+1) ⊗c L
•  ∃k≥0 L (k) ⊗u L = L (k+1) ⊗u L

•  ∃k≥0 A (k) w B = A (k+1) w B
•  ∃k≥0 A w[k] B = A w[k+1] B
•  ∃k≥0 A ¯k B = A ¯k +1 B
•  ∃k≥0 A (k) ⊗c B = A (k+1) ⊗c B
•  ∃k≥0 A (k) ⊗u B = A (k+1) ⊗u L

4/10/14 © UCF EECS

309

Finite Power of CFG
•  Let G be a context free grammar.
•  Consider L(G)n

•  Question1: Is L(G) = L(G)2?
•  Question2: Is L(G)n = L(G)n+1, for some finite

n>0?
•  These questions are both undecidable.
•  Think about why question1 is as hard as

whether or not L(G) is Σ*.
•  Question2 requires much more thought.

4/10/14 © UCF EECS

310

1981 Results
•  Theorem 1:

The problem to determine if L = Σ* is Turing
reducible to the problem to decide if
L • L ⊆ L, so long as L is selected from a class
of languages C over the alphabet Σ for which we
can decide if Σ ∪ {λ} ⊆ L.

•  Corollary 1:
The problem “is L • L = L, for L context free or
context sensitive?” is undecidable

4/10/14 © UCF EECS

311

Proof #1
•  Question: Does L • L get us anything new?

–  i.e., Is L • L = L?
•  Membership in a CSL is decidable.
•  Claim is that L = Σ* iff

(1) Σ ∪ {λ} ⊆ L ; and
(2) L • L = L

•  Clearly, if L = Σ* then (1) and (2) trivially hold.
•  Conversely, we have Σ* ⊆ L*= ∪ n≥0 Ln ⊆ L

–  first inclusion follows from (1); second from (2)

4/10/14 © UCF EECS

312

Subsuming •

•  Let ⊕ be any operation that subsumes
concatenation, that is A • B ⊆ A ⊕ B.

•  Simple insertion is such an operation,
since A • B ⊆ A w B.

•  Unconstrained crossover also subsumes
•,
A ⊗c B = { wz, yx | wx∈A and yz∈B}

4/10/14 © UCF EECS

313

L = L ⊕ L ?

•  Theorem 2:
The problem to determine if L = Σ* is
Turing reducible to the problem to decide if
L ⊕ L ⊆ L, so long as
L • L ⊆ L ⊕ L and L is selected from a
class of languages C over Σ for which we
can decide if
Σ ∪ {λ} ⊆ L.

4/10/14 © UCF EECS

314

Proof #2
•  Question: Does L ⊕ L get us anything new?

–  i.e., Is L ⊕ L = L?
•  Membership in a CSL is decidable.
•  Claim is that L = Σ* iff

(1) Σ ∪ {λ} ⊆ L ; and
(2) L ⊕ L = L

•  Clearly, if L = Σ* then (1) and (2) trivially hold.
•  Conversely, we have Σ* ⊆ L*= ∪ n≥0 Ln ⊆ L

–  first inclusion follows from (1); second from (1), (2)
and the fact that L • L ⊆ L ⊕ L

4/10/14 © UCF EECS

Summary of Grammar
Results

4/10/14 © UCF EECS 316

Decidability

•  Everything about regular
•  Membership in CFLs and CSLs

– CKY for CFLs
•  Emptiness for CFLs

4/10/14 © UCF EECS 317

Undecidability
•  Is L =∅, for CSL, L?
•  Is L=Σ*, for CFL (CSL), L?
•  Is L1=L2 for CFLs (CSLs), L1, L2?
•  Is L1⊆L2 for CFLs (CSLs), L1, L2?
•  Is L1∩L2=∅ for CFLs (CSLs), L1, L2?
•  Is L regular, for CFL (CSL), L?
•  Is L1∩L2 a CFL for CFLs, L1, L2?
•  Is ~L CFL, for CFL, L?

4/10/14 © UCF EECS 318

More Undecidability

•  Is CFL, L, ambiguous?
•  Is L=L2, L a CFL?
•  Does there exist a finite n, Ln=LN+1?
•  Is L1/L2 finite, L1 and L2 CFLs?
•  Membership in L1/L2, L1 and L2 CFLs?

Propositional Calculus

Axiomatizable Fragments

4/10/14 © UCF EECS 320

Propositional Calculus

•  Mathematical of unquantified logical
expressions

•  Essentially Boolean algebra
•  Goal is to reason about propositions
•  Often interested in determining

–  Is a well-formed formula (wff) a tautology?
–  Is a wff refutable (unsatisfiable)?
–  Is a wff satisfiable? (classic NP-complete)

4/10/14 © UCF EECS 321

Tautology and Satisfiability

•  The classic approaches are:
– Truth Table
– Axiomatic System (axioms and inferences)

•  Truth Table
– Clearly exponential in number of variables

•  Axiomatic Systems Rules of Inference
– Substitution and Modus Ponens
– Resolution / Unification

4/10/14 © UCF EECS 322

Proving Consequences
•  Start with a set of axioms (all tautologies)
•  Using substitution and MP

(P, P ⊃Q ⇒ Q)
derive consequences of axioms (also
tautologies, but just a fragment of all)

•  Can create complete sets of axioms
•  Need 3 variables for associativity, e.g.,

(p1 ∨ p2) ∨ p3 ⊃ p1 ∨ (p2 ∨ p3)

4/10/14 © UCF EECS 323

Some Undecidables

•  Given a set of axioms,
–  Is this set complete?
– Given a tautology T, is T a consequent?

•  The above are even undecidable with one
axiom and with only 2 variables. I will
show this result shortly.

4/10/14 © UCF EECS 324

Refutation

•  If we wish to prove that some wff, F, is a
tautology, we could negate it and try to
prove that the new formula is refutable
(cannot be satisfied; contains a logical
contradiction).

•  This is often done using resolution.

4/10/14 © UCF EECS 325

Resolution
•  Put formula in Conjunctive Normal Form

(CNF)
•  If have terms of conjunction

(P ∨ Q), (R ∨ ~Q)
then can determine that (P ∨ R)

•  If we ever get a null conclusion, we have
refuted the proposition

•  Resolution is not complete for derivation,
but it is for refutation

4/10/14 © UCF EECS 326

Axioms

•  Must be tautologies
•  Can be incomplete
•  Might have limitations on them and on

WFFs, e.g.,
– Just implication
– Only n variables
– Single axiom

4/10/14 © UCF EECS 327

Simulating Machines

•  Linear representations require
associativity, unless all operations can be
performed on prefix only (or suffix only)

•  Prefix and suffix based operations are
single stacks and limit us to CFLs

•  Can simulate Post normal Forms with just
3 variables.

4/10/14 © UCF EECS 328

Diadic PIPC

•  Diadic limits us to two variables
•  PIPC means Partial Implicational

Propositional Calculus, and limits us to
implication as only connective

•  Partial just means we get a fragment
•  Problems

–  Is fragment complete?
– Can F be derived by substitution and MP?

4/10/14 © UCF EECS 329

Living without Associativity

•  Consider a two-stack model of a TM
•  Could somehow use one variable for left

stack and other for right
•  Must find a way to encode a sequence as

a composition of forms – that’s the key to
this simulation

4/10/14 © UCF EECS 330

Composition Encoding

•  Consider (p ⊃ p), (p ⊃ (p ⊃ p)),
 (p ⊃ (p ⊃ (p ⊃ p))), …
– No form is a substitution instance of any of the

other, so they can’t be confused
– All are tautologies

•  Consider ((X ⊃ Y) ⊃ Y)
– This is just X ∨ Y

4/10/14 © UCF EECS 331

Encoding
•  Use (p ⊃ p) as form of bottom of stack
•  Use (p ⊃ (p ⊃ p)) as form for letter 0
•  Use (p ⊃ (p ⊃ (p ⊃ p))) as form for 1
•  Etc.
•  String 01 (reading top to bottom of stack) is

–  (((p ⊃ p) ⊃ ((p ⊃ p) ⊃ ((p ⊃ p) ⊃ (p ⊃ p)))) ⊃
 (((p ⊃ p) ⊃ ((p ⊃ p) ⊃ ((p ⊃ p) ⊃ (p ⊃ p)))) ⊃
 ((p ⊃ p) ⊃ ((p ⊃ p) ⊃ ((p ⊃ p) ⊃ (p ⊃ p))))))

Encoding
Ι(p) abbreviates [p ⊃ p]
Φ0(p) is [p ⊃ Ι(p)] which is [p ⊃ [p ⊃ p]]
Φ1(p) is [p ⊃ Φ0(p)]
ξ1(p) is [p ⊃ Φ1(p)]
ξ2(p) is [p ⊃ ξ1 (p)]
ξ3(p) is [p ⊃ ξ2 (p)]
ψ1(p) is [p ⊃ ξ3 (p)]
ψ2(p) is [p ⊃ ψ1 (p)]
…
ψm(p) is [p ⊃ ψm-1 (p)]

4/10/14 © UCF EECS 332

4/10/14 © UCF EECS 333

Creating Terminal IDs

4/10/14 © UCF EECS 334

Reversing Print and Left

4/10/14 © UCF EECS 335

Reversing Right

ORDER ANALYSIS

4/10/14 © UCF EECS 336

Notion of “Order”
 Throughout the complexity portion of this course,
we will be interested in how long an algorithm
takes on the instances of some arbitrary "size" n.
Recognizing that different times can be recorded
for two instance of size n, we only ask about the
worst case.

 We also understand that different languages,
computers, and even skill of the implementer
can alter the "running time."

4/10/14 © UCF EECS 337

Notion of “Order”
 As a result, we really can never know "exactly"
how long anything takes.

 So, we usually settle for a substitute function,
and say the function we are trying to measure is
"of the order of" this new substitute function.

4/10/14 © UCF EECS 338

Notion of “Order”
 "Order" is something we use to describe an upper bound
upon something else (in our case, time, but it can apply
to almost anything).

 For example, let f(n) and g(n) be two functions. We say
"f(n) is order g(n)" when there exists constants c and N
such that f(n) ≤ cg(n) for all n ≥ N.

 What this is saying is that when n is 'large enough,' f(n)
is bounded above by a constant multiple of g(n).

4/10/14 © UCF EECS 339

Notion of “Order”
 This is particularly useful when f(n) is not known
precisely, is complicated to compute, and/or difficult to
use. We can, by this, replace f(n) by g(n) and know we
aren't "off too far."

 We say f(n) is "in the order of g(n)" or, simply,
f(n) ∈ O(g(n)).

 Usually, g(n) is a simple function, like nlog(n), n3, 2n,
etc., that's easy to understand and use.

4/10/14 © UCF EECS 340

Notion of “Order”

 Order of an Algorithm: The maximum
number of steps required to find the
answer to any instance of size n, for any
arbitrary value of n.

 For example, if an algorithm requires at
most 6n2+3n–6 steps on any instance of
size n, we say it is "order n2" or, simply,
O(n2).

4/10/14 © UCF EECS 341

Order
Let the order of algorithm X be in O(fx(n)).

 Then, for algorithms A and B and their respective order
functions, fA(n) and fB(n), consider the limit of fA(n)/fB(n)
as n goes to infinity.

 If this value is

 0 A is faster than B
 constant A and B are "equally slow/fast"
 infinity A is slower than B.

4/10/14 © UCF EECS 342

Order of a Problem

Order of a Problem
 The order of the fastest algorithm that can
ever solve this problem. (Also known as
the "Complexity" of the problem.)

 Often difficult to determine, since this allows
for algorithms not yet discovered.

4/10/14 © UCF EECS 343

Decision vs Optimization
Two types of problems are of particular interest:

Decision Problems ("Yes/No" answers)

Optimization problems ("best" answers)

 (there are other types)

4/10/14 © UCF EECS 344

Vertex Cover (VC)

•  Suppose we are in charge of a large network (a graph where edges
are links between pairs of cities (vertices). Periodically, a line fails.
To mend the line, we must call in a repair crew that goes over the
line to fix it. To minimize down time, we station a repair crew at one
end of every line. How many crews must you have and where
should they be stationed?

•  This is called the Vertex Cover Problem. (Yes, it sounds like it
should be called the Edge Cover problem – something else already
had that name.)

•  An interesting problem – it is among the hardest problems, yet is
one of the easiest of the hard problems.

4/10/14 © UCF EECS 345

VC Decision vs Optimization
•  As a Decision Problem:

•  Instances: A graph G and an integer k.
•  Question: Does G possess a vertex Cover with at most k vertices?

•  As an Optimization Problem:

•  Instances: A graph G.
•  Question: What is the smallest k for which G possesses a vertex

cover?

4/10/14 © UCF EECS 346

Relation of VC Problems
•  If we can (easily) solve either one of these problems, we can (easily)

solve the other. (To solve the optimization version, just solve the
decision version with several different values of k. Use a binary
search on k between 1 and n. That is log(n) solutions of the
decision problem solves the optimization problem. It's simple to
solve the decision version if we can solve the optimization version.

•  We say their time complexity differs by no more than a multiple of
log(n).

•  If one is polynomial then so is the other.
•  If one is exponential, then so is the other.

•  We say they are equally difficult (both poly. or both exponential).

4/10/14 © UCF EECS 347

Smallest VC
•  A "stranger version"

•  Instances: A graph G and an integer k.
•  Question: Does the smallest vertex cover of G have exactly k

vertices?
•  This is a decision problem. But, notice that it does not seem to be

easy to verify either Yes or No instances!! (We can easily verify No
instances for which the VC number is less than k, but not when it is
actually greater than k.)

•  So, it would seem to be in a different category than either of the
other two. Yet, it also has the property that if we can easily solve
either of the first two versions, we can easily solve this one.

4/10/14 © UCF EECS 348

Natural Pairs of Problems
 Interestingly, these usually come in pairs

 a decision problem, and

 an optimization problem.

Equally easy, or equally difficult, to solve.

Both can be solved in polynomial time, or both require

exponential time.

4/10/14 © UCF EECS 349

A Word about Time
 An algorithm for a problem is said to be polynomial if
there exists integers k and N such that t(n), the
maximum number of steps required on any instance of
size n, is at most nk, for all n ≥ N.

 Otherwise, we say the algorithm is exponential. Usually,
this is interpreted to mean t(n) ≥ cn for an infinite set of
size n instances, and some constant c > 1 (often, we
simply use c = 2).

4/10/14 © UCF EECS 350

A Word about “Words”
 Normally, when we say a problem is "easy" we mean
that it has a polynomial algorithm.

 But, when we say a problem is "hard" or “apparently
hard" we usually mean no polynomial algorithm is
known, and none seems likely.

 It is possible a polynomial algorithm exists for "hard"
problems, but the evidence seems to indicate otherwise.

4/10/14 © UCF EECS 351

A Word about Abstractions
 Problems we will discuss are usually "abstractions" of
real problems. That is, to the extent possible, non-
essential features have been removed, others have been
simplified and given variable names, relationships have
been replaced with mathematical equations and/or
inequalities, etc.

 If an abstraction is hard, then the real problem is

probably even harder!!

4/10/14 © UCF EECS 352

A Word about Toy Problems
 This process, Mathematical Modeling, is a field of study
in itself, and not our interest here.

 On the other hand, we sometimes conjure up artificial
problems to put a little "reality" into our work. This results
in what some call "toy problems."

 Again, if a toy problem is hard, then the real problem is
probably harder.

4/10/14 © UCF EECS 353

Very Hard Problems
 Some problems have no algorithm (e. g., Halting
Problem.)

 No mechanical/logical procedure will ever solve all
instances of any such problem!!

 Some problems have only exponential algorithms
(provably so – they must take at least order 2n steps) So
far, only a few have been proven, but there may be
many. We suspect so.

4/10/14 © UCF EECS 354

Easy Problems
 Many problems have polynomial algorithms
(Fortunately).

 Why fortunately? Because, most exponential
algorithms are essentially useless for problem
instances with n much larger than 50 or 60.
We have algorithms for them, but the best of
these will take 100's of years to run, even on
much faster computers than we now envision.

4/10/14 © UCF EECS 355

Three Classes of Problems
 Problems proven to be in these three groups
(classes) are, respectively,

 Undecidable, Exponential, and Polynomial.

 Theoretically, all problems belong to exactly
one of these three classes.

4/10/14 © UCF EECS 356

Unknown Complexity
 Practically, there are a lot of problems (maybe, most)
that have not been proven to be in any of the classes
(Yet, maybe never will be).

 Most currently "lie between" polynomial and

exponential – we know of exponential algorithms,
but have been unable to prove that exponential
algorithms are necessary.

 Some may have polynomial algorithms, but we have
not yet been clever enough to discover them.

4/10/14 © UCF EECS 357

Why do we Care?
 If an algorithm is O(nk), increasing the size of an
instance by one gives a running time that is O((n+1)k)

 That’s really not much more.

 With an increase of one in an exponential algorithm,
O(2n) changes to O(2n+1) = O(2*2n) = 2*O(2n) – that is, it
takes about twice as long.

4/10/14 © UCF EECS 358

A Word about “Size”
 Technically, the size of an instance is the minimum number of
bits (information) needed to represent the instance – its
"length."

 This comes from early Formal Language researchers who
were analyzing the time needed to 'recognize' a string of
characters as a function of its length (number of
characters).

 When dealing with more general problems there is usually a
parameter (number of vertices, processors, variables, etc.)
that is polynomially related to the length of the instance.
Then, we are justified in using the parameter as a measure
of the length (size), since anything polynomially related to
one will be polynomially related to the other.

4/10/14 © UCF EECS 359

The Subtlety of “Size”
 But, be careful.

 For instance, if the "value" (magnitude) of n is both
the input and the parameter, the 'length' of the input
(number of bits) is log2(n). So, an algorithm that
takes n time is running in n = 2log2(n) time, which is
exponential in terms of the length, log2(n), but linear
(hence, polynomial) in terms of the "value," or
magnitude, of n.

 It's a subtle, and usually unimportant difference, but
it can bite you.

4/10/14 © UCF EECS 360

Subset Sum
•  Problem – Subset Sum

•  Instances: A list L of n integer values and an integer B.
•  Question: Does L have a subset which sums exactly to B?

•  No one knows of a polynomial (deterministic) solution to this problem.

•  On the other hand, there is a very simple (dynamic programming) algorithm
that runs in O(nB) time.

•  Why isn't this "polynomial"?
•  Because, the "length" of an instance is nlog(B) and
•  nB > (nlog(B))^k for any fixed k.

4/10/14 © UCF EECS 361

Why do we Care?
 When given a new problem to solve (design an algorithm
for), if it's undecidable, or even exponential, you will
waste a lot of time trying to write a polynomial solution
for it!!

 If the problem really is polynomial, it will be worthwhile
spending some time and effort to find a polynomial
solution.

 You should know something about how hard a problem
is before you try to solve it.

4/10/14 © UCF EECS 362

Research Territory
 Decidable – vs – Undecidable
 (area of Computability Theory)

 Exponential – vs – polynomial
 (area of Computational Complexity)

 Algorithms for any of these
 (area of Algorithm Design/Analysis)

4/10/14 © UCF EECS 363

Complexity Theory

Second Part of Course

Models of Computation

 NonDeterminism
 Since we can't seem to find a model of
computation that is more powerful than a TM,
can we find one that is 'faster'?

 In particular, we want one that takes us from
exponential time to polynomial time.

 Our candidate will be the NonDeterministic
Turing Machine (NDTM).

NDTM's

 In the basic Deterministic Turing Machine (DTM) we make
one major alteration (and take care of a few
repercussions):

 The 'transition functon' in DTM's is allowed to become a
'transition mapping' in NDTM's.

 This means that rather than the next action being totally
specified (deterministic) by the current state and input
character, we now can have many next actions -
simultaneously. That is, a NDTM can be in many states at
once. (That raises some interesting problems with writing
on the tape, just where the tape head is, etc., but those
little things can be explained away).

NDTM's

 We also require that there be only one halt
state - the 'accept' state. That also raises an
interesting question - what if we give it an
instance that is not 'acceptable'? The answer -
it blows up (or goes into an infinite loop).

 The solution is that we are only allowed to
give it 'acceptable' input. That means

 NDTM's are only defined for decision problems
 and, in particular, only for Yes instances.

NDTM's

 We want to determine how long it takes to get to the
accept state - that's our only motive!!

 So, what is a NDTM doing?

 In a normal (deterministic) algorithm, we often have a
loop where each time through the loop we are testing a
different option to see if that "choice" leads to a correct
solution. If one does, fine, we go on to another part of
the problem. If one doesn't, we return to the same place
and make a different choice, and test it, etc.

NDTM's

 If this is a Yes instance, we are guaranteed that an
acceptable choice will eventually be found and we go
on.

 In a NDTM, what we are doing is making, and testing,
all of those choices at once by 'spawning' a different
NDTM for each of them. Those that don't work out,
simply die (or something).

 This is kind of like the ultimate in parallel
programming.

NDTM's

 To allay concerns about not being able to write
on the tape, we can allow each spawned NDTM
to have its own copy of the tape with a read/
write head.

 The restriction is that nothing can be reported
back except that the accept state was reached.

NDTM's
Another interpretation of nondeterminism:

 From the basic definition, we notice that out of
every state having a nondeterministic choice, at
least one choice is valid and all the rest sort of die
off. That is they really have no reason for being
spawned (for this instance - maybe for another). So,
we station at each such state, an 'oracle' (an all
knowing being) who only allows the correct NDTM
to be spawned.

An 'Oracle Machine.'

NDTM's

 This is not totally unreasonable. We can look
at a non deterministic decision as a
deterministic algorithm in which, when an
"option" is to be tested, it is very lucky, or
clever, to make the correct choice the first
time.

 In this sense, the two machines would work
identically, and we are just asking "How long
does a DTM take if it always makes the
correct decisions?"

NDTM's
 As long as we are talking magic, we might as well
talk about a 'super' oracle stationed at the start
state (and get rid of the rest of the oracles)
whose task is to examine the given instance and
simply tell you what sequence of transitions
needs to be executed to reach the accept state.

 He/she will write them to the left of cell 0 (the
instance is to the right).

NDTM's

•  Now, you simply write a DTM to run back and
forth between the left of the tape to get the
'next action' and then go back to the right
half to examine the NDTM and instance to
verify that the provided transition is a valid
next action. As predicted by the oracle, the
DTM will see that the NDTM would reach the
accept state and can report the number of
steps required.

NDTM's
 All of this was originally designed with Language
Recognition problems in mind. It is not a far stretch to
realize the Yes instances of any of our more real word-
like decision problems defines a language, and that the
same approach can be used to "solve" them.

 Rather than the oracle placing the sequence of
transitions on the tape, we ask him/her to provide a
'witness' to (a 'proof' of) the correctness of the
instance.

NDTM's

 For example, in the SubsetSum problem, we ask the
oracle to write down the subset of objects whose sum
is B (the desired sum). Then we ask "Can we write a
deterministic polynomial algorithm to test the given
witness."

 The answer for SubsetSum is Yes, we can, i.e., the
witness is verifiable in deterministic polynomial time.

NDTM's - Witnesses

Just what can we ask and expect of a "witness"?

 The witness must be something that
(1) we can verify to be accurate (for the given the

problem and instance) and
(2) we must be able to "finish off" the solution.

All in polynomial time.

NDTM's - Witnesses

 The witness can be nothing!
 Then, we are on our own. We have to "solve the instance in
polynomial time."

 The witness can be "Yes."
 Duh. We already knew that. We have to now verify the yes
instance is a yes instance (same as above).

 The witness has to be something other than
nothing and Yes.

NDTM's - Witnesses

 The information provided must be something we could
have come up with ourselves, but probably at an
exponential cost. And, it has to be enough so that we
can conclude the final answer Yes from it.

 Consider a witness for the graph coloring problem:

 Given: A graph G = (V, E) and an integer k.
 Question: Can the vertices of G be assigned colors so
 that adjacent vertices have different
 colors and use at most k colors?

NDTM's - Witnesses

The witness could be nothing, or Yes.
 But that's not good enough - we don't know of a
polynomial algorithm for graph coloring.

It could be "vertex 10 is colored Red."
 That's not good enough either. Any single vertex can
be colored any color we want.

It could be a color assigned to each vertex.
 That would work, because we can verify its validity in
polynomial time, and we can conclude the correct
answer of Yes.

NDTM's - Witnesses

What if it was a color for all vertices but one?
 That also is enough. We can verify the correctness of
the n-1 given to us, then we can verify that the one
uncolored vertex can be colored with a color not on
any neighbor, and that the total is not more than k.

What if all but 2, 3, or 20 vertices are colored
 All are valid witnesses.

What if half the vertices are colored?
 Usually, No. There's not enough information. Sure,
we can check that what is given to us is properly
colored, but we don't know how to "finish it off."

NDTM's - Witnesses

 An interesting question: For a given problem,
what is (are) the limits to what can be
provided that still allows a polynomial
verification?

NDTM's
 A major question remains: Do we have, in
NDTMs, a model of computation that solves all
deterministic exponential (DE) problems in
polynomial time (nondeterministic polynomial
time)??

 It definitely solves some problems we think
are DE in nondeterministic polynomial time.

NDTM's

 But, so far, all problems that have been proven to
require deterministic exponential time also require
nondeterministic exponential time.

 So, the jury is still out. In the meantime, NDTMs are
still valuable, because they identify a larger class of
problems than does a deterministic TM - the set of
decision problems for which Yes instances can be
verified in polynomial time.

Problem Classes
We now begin to discuss several different classes of
problems. The first two will be:

 NP 'Nondeterministic' Polynomial

 P 'Deterministic' Polynomial,
 The 'easiest' problems in NP

Their definitions are rooted in the depths of Formal
Languages and Automata Theory as just described, but it is
worth repeating some of it in the next few slides.

Problem Classes

 We assume knowledge of Deterministic and
Nondeterministic Turing Machines. (DTM's and NDTM's)

 The only use in life of a NDTM is to scan a string of
characters X and proceed by state transitions until an
'accept' state is entered.

 X must be in the language the NDTM is designed to
recognize. Otherwise, it blows up!!

Problem Classes

 So, what good is it?

 We can count the number of transitions on the shortest
path (elapsed time) to the accept state!!!

 If there is a constant k for which the number of
transitions is at most |X|k, then the language is said to
be 'nondeterministic polynomial.'

Problem Classes
 The subset of YES instances of the set of instances of a
decision problem, as we have described them above, is
a language.

 When given an instance, we want to know that it is in the
subset of Yes instances. (All answers to Yes instances look
alike - we don't care which one we get or how it was
obtained).

 This begs the question "What about the No instances?"

 The answer is that we will get to them later. (They will
actually form another class of problems.)

Problem Classes

 This actually defines our first Class, NP, the set of decision
problems whose Yes instances can be solved by a
Nondeterministic Turing Machine in polynomial time.

 That knowledge is not of much use!! We still don't know how
to tell (easily) if a problem is in NP. And, that's our goal.

 Fortunately, all we are doing with a NDTM is tracing the
correct path to the accept state. Since all we are interested
in doing is counting its length, if someone just gave us the
correct path and we followed it, we could learn the same
thing - how long it is.

Problem Classes

 It is even simpler than that (all this has been
proven mathematically). Consider the
following problem:

 You have a big van that can carry 10,000 lbs. You
also have a batch of objects with weights w1, w2, …,
wn lbs. Their total sum is more than 10,000 lbs, so
you can't haul all of them.

 Can you load the van with exactly 10,000 lbs?
 (WOW. That's the SubsetSum problem.)

Problem Classes

 Now, suppose it is possible (i.e., a Yes instance) and
someone tells you exactly what objects to select.

 We can add the weights of those selected objects and
verify the correctness of the selection.

 This is the same as following the correct path in a
NDTM. (Well, not just the same, but it can be proven to
be equivalent.)

 Therefore, all we have to do is count how long it takes
to verify that a "correct" answer" is in fact correct.

Class – NP

We are now ready for our

First Significant Class of Problems:

The Class NP

Class – NP

 We have, already, an informal definition for
the set NP. We will now try to get a better
idea of what NP includes, what it does not
include, and give a formal definition.

Class – NP

 Consider two seemingly closely related
statements (versions) of a single problem.
We show they are actually very different.
Let G = (V, E) be a graph.

 Definition: X ⊆ V(G) is a vertex cover if every
edge in G has at least one endpoint in X.

Class – NP

Version 1. Given a graph G and an integer k.
 Does G contain a vertex cover
 with at most k vertices?

Version 2. Given a graph G and an integer k.
 Does the smallest vertex cover of G

 have exactly k vertices?

Class – NP

 Suppose, for either version, we are given a
graph G and an integer k for which the
answer is "yes." Someone also gives us a set
X of vertices and claims

 "X satisfies the conditions."

Class – NP

 In Version 1, we can fairly easily check that
the claim is correct – in polynomial time.

 That is, in polynomial time, we can check

that X has k vertices, and that X is a vertex
cover.

Class – NP
 In Version 2, we can also easily check that X has
exactly k vertices and that X is a vertex cover.

 But, we don't know how to easily check that there is
not a smaller vertex cover!!

 That seems to require exponential time.

 These are very similar looking "decision" problems
(Yes/No answers), yet they are VERY different in this
one important respect.

Class – NP

 In the first: We can verify a correct answer
in polynomial time.

 In the second: We apparently can not verify
a correct answer in polynomial time.

 (At least, we don't know how to verify one in
polynomial time.)

Class – NP

 Could we have asked to be given something that
would have allowed us to easily verify that X was the
smallest such set?

 No one knows what to ask for!!

 To check all subsets of k or fewer vertices requires
exponential time (there can be an exponential
number of them).

Class – NP
 Version 1 problems make up the class called NP

 Definition: The Class NP is the set of all decision
problems for which answers to Yes instances can be
verified in polynomial time.

 {Why not the NO instances? We'll answer that later.}

 For historical reasons, NP means
 "Nondeterministic Polynomial."

 (Specifically, it does not mean "not polynomial").

Class – NP
 Version 2 of the Vertex Cover problem is not unique.
There are other versions that exhibit this same
property. For example,

 Version 3: Given: A graph G = (V, E) and an
 integer k.
 Question: Do all vertex covers of G
 have more than k vertices?

 What would/could a 'witness' for a Yes instance be?

Class – NP

 Again, no one knows except to list all subsets of at
most k vertices. Then we would have to check each of
the possible exponential number of sets.

 Further, this is not isolated to the Vertex Cover
problem. Every decision problem has a 'Version 3,'
also known as the 'complement' problem (we will
discuss these further at a later point).

Class – NP

All problems in NP are decidable.

That means there is an algorithm.

And, the algorithm is no worse than O(2n).

Class – NP

Version 2 and 3 problems are apparently not
in NP.

So, where are they??

 We need more structure! {Again, later.}

 First we look inward, within NP.

Class – P

Second Significant Class of Problems:
The Class P

Class – P

 Some decision problems in NP can be solved (without
knowing the answer in advance) - in polynomial time.
That is, not only can we verify a correct answer in
polynomial time, but we can actually compute the
correct answer in polynomial time - from "scratch."

These are the problems that make up the class P.

P is a subset of NP.

Class – P

 Problems in P can also have a witness – we
just don't need one. But, this line of thought
leads to an interesting observation. Consider
the problem of searching a list L for a key X.

 Given: A list L of n values and a key X.
 Question: Is X in L?

Class – P

 We know this problem is in P. But, we can
also envision a nondeterministic solution. An
oracle can, in fact, provide a "witness" for a
Yes instance by simply writing down the index
of where X is located.

 We can verify the correctness with one simple
comparison and reporting, Yes the witness is
correct.

Class – P

Now, consider the complement (Version 3) of this
problem:

 Given: A list L of n values and a key X.
 Question: Is X not in L?

 Here, for any Yes instance, no 'witness' seems to exist,
but if the oracle simply writes down "Yes" we can
verify the correctness in polynomial time by comparing
X with each of the n values and report "Yes, X is not in
the list."

Class – P

 Therefore, both problems can be verified in polynomial
time and, hence, both are in NP.

 This is a characteristic of any problem in P - both it and
its complement can be verified in polynomial time (of
course, they can both be 'solved' in polynomial time,
too.)

 Therefore, we can again conclude P ⊆ NP.

Class – P
 There is a popular conjecture that if any problem and
its complement are both in NP, then both are also in P.

 This has been the case for several problems that for
many years were not known to be in P, but both the
problem and its complement were known to be in NP.

 For example, Linear Programming (proven to be in P in
the 1980's), and Prime Number (proven in 2006 to be
in P).

 A notable 'holdout' to date is Graph Isomorphism.

Class – P

 There are a lot of problems in NP that we do not
know how to solve in polynomial time. Why?

 Because they really don't have polynomial algorithms?

 Or, because we are not yet clever enough to have found
a polynomial algorithm for them?

Class – P

At the moment, no one knows.

Some believe all problems in NP have polynomial algorithms.
Many do not (believe that).

The fundamental question in theoretical computer science is:
Does P = NP?

There is an award of one million dollars for a proof.

– Either way, True or False.

Other Classes
 We now look at other classes of problems.

 Hard appearing problems can turn out to be
easy to solve. And, easy looking problems can
actually be very hard (Graph Theory is rich
with such examples).

 We must deal with the concept of "as hard
as," "no harder than," etc. in a more rigorous
way.

"No harder than"

 Problem A is said to be 'no harder than' problem B when the
smallest class containing A is a subset of the smallest class
containing B.

 Recall that fX(n) is the order of the smallest complexity class
containing problem X.

 If, for some constant α,

 fA(n) ≤ nαfB(n),

 the time to solve A is no more than some polynomial multiple
of the time required to solve B, i.e., A is 'no harder than' B.

"No harder than"

 The requirement for determining the relative difficulty
of two problems A and B requires that we know, at
least, the order of the fastest algorithm for problem B
and the order of some algorithm for Problem A.

 We may not know either!!

 In the following we exhibit a technique that can allow
us to determine this relationship without knowing
anything about an algorithm for either problem.

The "Key" to Complexity Theory

'Reductions,' 'Reductions,' 'Reductions.'

Reductions

 For any problem X, let X(IX, AnswerX)
represents an algorithm for problem X – even
if none is known to exist.

 IX is an arbitray instance given to the algorithm and
AnswerX is the returned answer determined by the
algorithm.

Reductions
 Definition: For problems A and B, a (Polynomial)
Turing Reduction is an algorithm A(IA, AnswerA)
for solving all instances of problem A and satisfies
the following:

(1) Constructs zero or more instances of problem B and
invokes algorithm B(IB, AnswerB), on each.

(2) Computes the result, AnswerA, for IA.
(3) Except for the time required to execute algorithm B, the

execution time of algorithm A must be polynomial with
respect to the size of IA.

Reductions

proc A(IA, AnswerA)
 For i = 1 to alpha

•  Compute IB
• 

 B(IB, AnswerB)
• 

 End For
 Compute AnswerA

End proc

Reductions

 We may assume a 'best' algorithm for problem B
without actually knowing it.

 If A(IA, AnswerA) can be written without

algorithm B, then problem A is simply a
polynomial problem.

Reductions

 The existence of a Turing reduction is often
stated as:

 "Problem A reduces to problem B" or, simply,

 "A ➤ B"

 (Note: G & J use a symbol that I don't have.).

Reductions

Theorem. If A ➤ B and problem B is polynomial,
then problem A is polynomial.

Corollary. If A ➤ B and problem A is exponential,
then problem B is exponential.

Reductions

 The previous theorem and its corollary do not
capture the full implication of Turing reductions.

 Regardless of the complexity class problem B is in,
a Turing reduction implies problem A is in a
subclass.

 Regardless of the class problem A might be in,

problem B is in a super class.

Reductions

 Theorem. If A ➤ B , then problem A is "no harder
than" problem B.

 Proof: Let tA(n) and tB(n) be the maximum times for
algorithms A and B per the definition. Thus, fA(n) ≤
tA(n). Further, since we assume the best algorithm for
B, tB(n) = fB(n). Since A ➤ B, there is a constant k such
that tA(n) ≤ nktB(n). Therefore, fA(n) ≤ tA(n) ≤ nktB(n) =
nkfB(n). That is, A is no harder than B.

Reductions

Theorem.
 If A ➤ B and B ➤ C then A ➤ C.

Definition.
 If A ➤ B and B ➤ A, then A and B are
polynomially equivalent.

Reductions

 A ➤ B means:

'Problem A is no harder than problem B,' and

'Problem B is as hard as problem A.'

An Aside (Computability Theory)
 Without condition (3) of the definition, a simple

Reduction results.
 If problem B is decidable,

 then so is problem A.
 Equivalently,
 If problem A is undecidable,

 then problem B is undecidable.

Special Type of Reduction

 Polynomial Transformation
 (Refer to the definition of Turing Reductions)

 (1) Problems A and B must both be decision problems.

 (2) A single instance, IB, of problem B is constructed from a
 single instance, IA, of problem A.

 (3) IB is true for problem B if and only if IA is true for problem A.

NP–Complete

Third Significant Class of Problems:
The Class NP–Complete

NP–Complete

 Polynomial Transformations enforce an equivalence
relationship on all decision problems, particularly, those
in the Class NP. Class P is one of those classes and is the
"easiest" class of problems in NP.

 Is there a class in NP that is the hardest class in NP?

 A problem B in NP such that A ➤P B for every A in NP.

NP–Complete

 In 1971, Stephen Cook proved there was.
Specifically, a problem called
 Satisfiability (or, SAT).

Satisfiability
U = {u1, u2,…, un}, Boolean variables.

C = {c1, c2,…, cm}, "OR clauses"

 For example:

 ci = (u4 ∨ u35 ∨ ~u18 ∨ u3… ∨ ~u6)

Satisfiability

 Can we assign Boolean values to the variables
in U so that every clause is TRUE?

 There is no known polynomial algorithm!!

NP–Complete

Cooks Theorem:
 1) SAT is in NP
 2) For every problem A in NP,
 A ➤P SAT

Thus, SAT is as hard as every problem in NP.

 (For a proof, see Garey and Johnson, pgs. 39 – 44)

NP–Complete

 Since SAT is itself in NP, that means
SAT is a hardest problem in NP (there
can be more than one.).

 A hardest problem in a class is called
the "completion" of that class.

 Therefore, SAT is NP–Complete.

NP–Complete

 Today, there are 100's, if not 1,000's, of problems
that have been proven to be NP–Complete. (See
Garey and Johnson, Computers and Intractability:
A Guide to the Theory of NP–Completeness, for a
list of over 300 as of the early 1980's).

P = NP?
 If P = NP then all problems in NP are
polynomial problems.

 If P ≠ NP then all NP–C problems are at least
super-polynomial and perhaps exponential.
That is, NP-C problems could require sub-
exponential super-polynomial time.

P = NP?
Why should P equal NP?

 There seems to be a huge "gap" between the known
problems in P and Exponential. That is, almost all known
polynomial problems are no worse than n3 or n4.

 Where are the O(n50) problems?? O(n100)? Maybe they
are the ones in NP–Complete?

 It's awfully hard to envision a problem that would
require n100, but surely they exist?

 Some of the problems in NP–C just look like we should
be able to find a polynomial solution (looks can be
deceiving, though).

P ≠ NP?
Why should P not equal NP?

•  P = NP would mean, for any problem in NP, that
it is just as easy to solve an instance form
"scratch," as it is to verify the answer if
someone gives it to you. That seems a bit hard
to believe.

•  There simply are a lot of awfully hard looking
problems in NP–Complete (and Co–NP-Complete)
and some just don't seem to be solvable in
polynomial time.

•  An awfully lot of smart people have tried for a
long time to find polynomial algorithms for some
of the problems in NP-Complete - with no luck.

4/10/14 COT 6410 © UCF 442

NP-Complete; NP-Hard
•  A decision problem, C, is NP-complete if:

–  C is in NP and
–  C is NP-hard. That is, every problem in NP is polynomially reducible to C.

•  D polynomially reduces to C means that there is a deterministic polynomial-
time many-one algorithm, f, that transforms each instance x of D into an
instance f(x) of C, such that the answer to f(x) is YES if and only if the
answer to x is YES.

•  To prove that an NP problem A is NP-complete, it is sufficient to show that
an already known NP-complete problem polynomially reduces to A. By
transitivity, this shows that A is NP-hard.

•  A consequence of this definition is that if we had a polynomial time
algorithm for any NP-complete problem C, we could solve all problems in
NP in polynomial time. That is, P = NP.

•  Note that NP-hard does not necessarily mean NP-complete, as a given NP-
hard problem could be outside NP.

Satisfiability
U = {u1, u2,…, un}, Boolean variables.

C = {c1, c2,…, cm}, "OR clauses"

 For example:

 ci = (u4 ∨ u35 ∨ ~u18 ∨ u3… ∨ ~u6)

Satisfiability

 Can we assign Boolean values to the variables in U
so that every clause is TRUE?

 There is no known polynomial algorithm!!

4/10/14 COT 6410 © UCF 445

SAT
•  SAT is the problem to decide of an arbitrary

Boolean formula (wff in the propositional
calculus) whether or not this formula is
satisfiable (has a set of variable assignments
that evaluate the expression to true).

•  SAT clearly can be solved in time k2n, where k is
the length of the formula and n is the number of
variables in the formula.

•  What we can show is that SAT is NP-complete,
providing us our first concrete example of an NP-
complete decision problem.

4/10/14 COT 6410 © UCF 446

Simulating ND TM
•  Given a TM, M, and an input w, we need to create a

formula, ϕM,w, containing a polynomial number of terms
that is satisfiable just in case M accepts w in polynomial
time.

•  The formula must encode within its terms a trace of
configurations that includes
–  A term for the starting configuration of the TM
–  Terms for all accepting configurations of the TM
–  Terms that ensure the consistency of each configuration
–  Terms that ensure that each configuration after the first

follows from the prior configuration by a single move

4/10/14 COT 6410 © UCF 447

Cook’s Theorem

•  ϕM,w = φcell ∧ φstart ∧ φmove ∧ φaccept
•  See the following for a detailed description

and discussion of the four terms that make
up this formula.

•  http://www.cs.tau.ac.il/~safra/Complexity/Cook.ppt

NP–Complete

 Within a year, Richard Karp added 22 problems to
this special class.

 These included such problems as:
 3-SAT
 3DM
 Vertex Cover,
 Independent Set,
 Knapsack,
 Multiprocessor Scheduling, and
 Partition.

SubsetSum
 S = {s1, s2, …, sn}

 set of positive integers
 and an integer B.

Question: Does S have a subset whose

values sum to B?

 No one knows of a polynomial algorithm.

 {No one has proven there isn’t one, either!!}

SubsetSum
 The following polynomial transformations have been shown to

exist.(Later, we will see what these problems actually are.)

 Theorem. SAT ➤P 3SAT

 Theorem. 3SAT ➤P SubsetSum

 Theorem. SubsetSum ➤P Partition

Example SubsetSum

4/10/14 COT 6410 © UCF 451

Assuming a 3SAT expression (a + c + c) (b + b + ~c), the following shows
the reduction from 3SAT to Subset-Sum.

 a b c a + ~b + c ~a + b + ~c
a 1 1
~a 1 1
b 1 1
~b 1 1
c 1 1
~c 1 1
C1 1
C1’ 1
C2 1
C2’ 1

 1 1 1 3 3

Partition
•  Let i1, i2, .., in be a multi-set of positive

natural numbers. Partition asks if this
multi-set can be partitioned into two sub
multi-sets whose union is the original
multi-set and whose sums are equal.

•  Partition is related to the optimization
problem of dividing the multi-set into two
partitions whose sums are as close to
each other as possible.

Partition
•  Partition is polynomial equivalent to SubsetSum

–  Let i1, i2, .., in , G be an instance of SubsetSum. This
instance has answer “yes” iff
i1, i2, .., in , 2*Sum(i1, i2, .., in) – G,Sum(i1, i2, .., in) + G
has answer “yes” in Partition. Here we assume that
G ≤ Sum(i1, i2, .., in), for, if not, the answer is “no.”

–  Let i1, i2, .., in be an instance of Partition. This instance
has answer “yes” iff
i1, i2, .., in , Sum(i1, i2, .., in)/2
has answer “yes” in SubsetSum

4/10/14 COT 6410 © UCF 453

Knapsack 0-1 Problem
�  The goal is to

maximize the value of
a knapsack that can
hold at most W units
(i.e. lbs or kg) worth of
goods from a list of
items I0, I1, … In-1.
◦  Each item has 2

attributes:
1)  Value – let this be vi for

item Ii
2)  Weight – let this be wi for

item Ii

Thanks to Arup Guha

Knapsack Optimize vs Decide

•  As stated the Knapsack problem is an
optimization problem.

•  We can restate as decision problem to
determine if there exists a set of items with
weight < W that reaches some fixed goal
value, G.

4/10/14 © UCF EECS 455

Knapsack and SubsetSum
•  Let vi = wi for each item Ii.
•  By doing so, the value is maximized when the

Knapsack is filled as close to capacity.
•  The related decision problem is to determine is

we can attain capacity (W).
•  Clearly then, given an instance of the

SubsetSum problem, we can create an instance
of the Knapsack decision problem problem, such
that we reach the goal sum, G, iff we can attain a
Knapsack value of G.

4/10/14 © UCF EECS 456

Knapsack Decision Problem

•  The reduction from SubsetSum shows that
the Knapsack decision problem is at least
as hard as SubsetSum, so it is NP-
Complete if it is in NP.

•  Think about whether or not it is in NP.

4/10/14 © UCF EECS 457

Related Bin Packing

•  Have a bin capacity of B.
•  Have item set S = {s1, s2, …, sn}
•  Use all items in S, minimizing the number

of bins, while adhering to the constraint
that any such subset must sum to B or
less.

4/10/14 © UCF EECS 458

Knapsack 0-1 Problem
�  The difference

between this problem
and the fractional
knapsack one is that
you CANNOT take a
fraction of an item.

◦  You can either take it

or not.
◦  Hence the name

Knapsack 0-1
problem.

Knapsack 0-1 Problem

•  Brute Force
– The naïve way to solve this problem is to

cycle through all 2n subsets of the n items and
pick the subset with a legal weight that
maximizes the value of the knapsack.

–  We can come up with a dynamic
programming algorithm that USUALLY does
better than this brute force technique.

Knapsack 0-1 Problem
� We are going to solve the problem in terms

of sub-problems.
� Our first attempt might be to characterize a

sub-problem as follows:
◦  Let Sk be the optimal subset of elements from {I0, I1,

…, Ik}.
�  What we find is that the optimal subset from the

elements {I0, I1, …, Ik+1} may not correspond to the
optimal subset of elements from {I0, I1, …, Ik} in any
regular pattern.

◦  Basically, the solution to the optimization
problem for Sk+1 might NOT contain the optimal
solution from problem Sk.

Knapsack 0-1 Problem
�  Let’s illustrate that point with an example:

 Item Weight Value
 I0 3 10
 I1 8 4
 I2 9 9
 I3 8 11

�  The maximum weight the knapsack can hold is 20.

�  The best set of items from {I0, I1, I2} is {I0, I1, I2}
�  BUT the best set of items from {I0, I1, I2, I3} is {I0,

I2, I3}.
◦  In this example, note that this optimal solution, {I0, I2, I3},

does NOT build upon the previous optimal solution, {I0, I1,
I2}.
�  (Instead it builds upon the solution, {I0, I2}, which is really the

optimal subset of {I0, I1, I2} with weight 12 or less.)

Knapsack 0-1 problem
�  So now we must re-work the way we build upon previous

sub-problems…
◦  Let B[k, w] represent the maximum total value of a subset Sk

with weight w.
◦  Our goal is to find B[n, W], where n is the total number of items

and W is the maximal weight the knapsack can carry.

�  So our recursive formula for subproblems:
 B[k, w] = B[k - 1,w], if wk > w
 = max { B[k - 1,w], B[k - 1,w - wk] + vk}, otherwise

�  In English, this means that the best subset of Sk that has
total weight w is:
1)  The best subset of Sk-1 that has total weight w, or
2)  The best subset of Sk-1 that has total weight w-wk plus the item k

Knapsack 0-1 Problem –
Recursive Formula

�  The best subset of Sk that has the total weight
w, either contains item k or not.

�  First case: wk > w
◦  Item k can’t be part of the solution! If it was the

total weight would be > w, which is unacceptable.

�  Second case: wk ≤ w
◦  Then the item k can be in the solution, and we

choose the case with greater value.

Knapsack 0-1 Algorithm
for w = 0 to W { // Initialize 1st row to 0’s
 B[0,w] = 0

}
for i = 1 to n { // Initialize 1st column to 0’s
 B[i,0] = 0

}
for i = 1 to n {
 for w = 0 to W {
 if wi <= w { //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]
 }
 else B[i,w] = B[i-1,w] // wi > w
 }

}

Knapsack 0-1 Problem
�  Let’s run our algorithm on the following

data:
◦  n = 4 (# of elements)
◦  W = 5 (max weight)
◦  Elements (weight, value):

 (2,3), (3,4), (4,5), (5,6)

Knapsack 0-1 Example
i / w 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0
2 0
3 0
4 0

// Initialize the base cases
for w = 0 to W

 B[0,w] = 0

for i = 1 to n

 B[i,0] = 0

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0
2 0
3 0
4 0

if wi <= w //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 1
w-wi = -1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0
2 0
3 0
4 0

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0
2 0
3 0
4 0

if wi <= w //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 2
w-wi = 0

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3
2 0
3 0
4 0

if wi <= w //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3
2 0
3 0
4 0

if wi <= w //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 3
w-wi = 1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3
2 0
3 0
4 0

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3
2 0
3 0
4 0

if wi <= w //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 4
w-wi = 2

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3
2 0
3 0
4 0

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3
2 0
3 0
4 0

if wi <= w //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 5
w-wi = 3

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0
3 0
4 0

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0
3 0
4 0

if wi <= w //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 1
w-wi = -2

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0
3 0
4 0

if wi <= w //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0
3 0
4 0

if wi <= w //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 2
w-wi = -1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3
3 0
4 0

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3
3 0
4 0

if wi <= w //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 3
w-wi = 0

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4
3 0
4 0

if wi <= w //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4
3 0
4 0

if wi <= w //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 4
w-wi = 1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4
3 0
4 0

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4
3 0
4 0

if wi <= w //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 5
w-wi = 2

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0
4 0

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0
4 0

if wi <= w //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 3
vi = 5
wi = 4
w = 1..3
w-wi = -3..-1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4
4 0

if wi <= w //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4
4 0

if wi <= w //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 3
vi = 5
wi = 4
w = 4
w-wi = 0

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5
4 0

if wi <= w //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5
4 0

if wi <= w //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 3
vi = 5
wi = 4
w = 5
w-wi = 1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0

if wi <= w //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0

if wi <= w //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 4
vi = 6
wi = 5
w = 1..4
w-wi = -4..-1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0 0 3 4 5

if wi <= w //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0 0 3 4 5

if wi <= w //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

i = 4
vi = 6
wi = 5
w = 5
w-wi = 0

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0 0 3 4 5 7

if wi <= w //item i can be in the solution
 if vi + B[i-1,w-wi] > B[i-1,w]
 B[i,w] = vi + B[i-1,w- wi]
 else
 B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // wi > w

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0 0 3 4 5 7

We’re DONE!!
The max possible value that can be carried in this knapsack is $7

Knapsack 0-1 Problem – Run
Time for w = 0 to W

 B[0,w] = 0

for i = 1 to n

 B[i,0] = 0

for i = 1 to n

 for w = 0 to W
 < the rest of the code >

What is the running time of this algorithm?

 O(n*W) – of course, W can be mighty big
 What is an analogy in world of sorting?

Remember that the brute-force algorithm takes: O(2n)

O(W)

O(W)
Repeat n times

O(n)

Polynomial Transformations

 Polynomial transformations are also known as Karp
Reductions

 When a reduction is a polynomial transformation, we
subscript the symbol with a "p" as follows:

 A ➤P B

Polynomial Transformations
 Following Garey and Johnson, we recognize three
forms of polynomial transformations.

 (a) restriction,
 (b) local replacement, and
 (c) component design.

Polynomial Transformations

 Restriction allows nothing much more complex
than renaming the objects in IA so that they are,
in a straightforward manner, objects in IB.

 For example, objects in IA could be a collection
of cities with distances between certain pairs of
cities. In IB, these might correspond to vertices
in a graph and weighted edges.

Polynomial Transformations

 The term 'restriction' alludes to the fact that a proof of
correctness often is simply describing the subset of
instances of problem B that are essentially identical
(isomorphic) to the instances of problem A, that is, the
instances of B are restricted to those that are instances of
A. To apply restriction, the relevant instances in Problem B
must be identifiable in polynomial time.

 For example, if P ≠ NP and B is defined over the set of all
graphs, we can not restrict to the instances that possess a
Hamiltonian Circuit.

Polynomial Transformations

 Local Replacement is more complex because there is
usually not an obvious map between instance IA and
instance IB. But, by modifying objects or small groups of
objects a transformation often results. Sometimes the
alterations are such that some feature or property of
problem A that is not a part of all instances of problem B
can be enforced in problem B. As in (a), the instances of
problem B are usually of the same type as of problem A.

Polynomial Transformations

 In a sense, Local Replacement might be viewed
as a form of Restriction. In Local Replacement,
we describe how to construct the instances of B
that are isomorphic to the instances of A, and in
Restriction we describe how to eliminate
instances of B that are not isomorphic to
instances of A.

Polynomial Transformations

 Component Design is when instances of
problem B are essentially constructed
"from scratch," and there may be little
resemblance between instances of A
and those of B. 3SAT to SubsetSum
falls into this category.

3SAT to Vertex Cover
•  Vertex cover seeks a set of vertices that cover every edge in some graph
•  Let I3-SAT be an arbitrary instance of 3-SAT. For integers n and m, U = {u1, u2, …, un}

and Ci = [zi1, zi2, zi3} for 1 ≤ i ≤ m, where each zij is either a uk or uk' for some k.

•  Construct an instance of VC as follows.
•  For each i, 1 ≤ i ≤ n, construct two vertices, ui and ui' with an edge between them.
•  For each clause Ci = [zi1, zi2, zi3}, 1 ≤ i ≤ m, construct three vertices zi1, zi2, and zi3 and

form a "triangle on them. Each zij is one of the Boolean variables uk or its complement
uk'. Draw an edge between zij and the Boolean variable (whichever it is) Each zij has
degree 3. Finally, set k = n+2m.

•  Theorem. The given instance of 3-SAT is satisfiable if and only if the constructed
instance of VC has a vertex cover with at most k vertices.

4/10/14 © UCF EECS 492

VERTEX COVERING (VC)
DECISION PROBLEM IS NP-HARD

4/10/14 © UCF EECS 493

VC Variable Gadget

4/10/14 © UCF EECS 494

X ~X

VC Clause Gadget

4/10/14 © UCF EECS 495

a ~c

b

a + b + ~c

VC Gadgets Combined

4/10/14 © UCF EECS 496

K-COLOR (KC) DECISION
PROBLEM IS NP-HARD

4/10/14 © UCF EECS 497

3C Super Gadget

4/10/14 © UCF EECS 498

T F

B

KC Super + Variables Gadget

4/10/14 © UCF EECS 499

KC Clause Gadget

4/10/14 © UCF EECS 500

KC Gadgets Combined

4/10/14 © UCF EECS 501

K = 3

Register allocation
•  Liveness: A variable is live if its current assignment may be used at some

future point in a program’s flow
•  Optimizers often try to keep live variables in registers
•  If two variables are simultaneously live, they need to be kept in separate

registers
•  Consider the K-coloring problem (can the nodes of a graph be colored with

at most K colors under the constraint that adjacent nodes must have
different colors?

•  Register Allocation reduces to K-coloring by mapping each variable to a
node and inserting an edge between variables that are simultaneously live

•  K-coloring reduces to Register Allocation by interpreting nodes as variables
and edges as indicating concurrent liveness

•  This is a simple because it’s an isomorphism

4/10/14 © UCF EECS 502

HAMILTONIAN CIRCUIT (HC)
DECISION PROBLEM IS NP-HARD

4/10/14 © UCF EECS 503

HC Variable Gadget

4/10/14 © UCF EECS 504

HC Gadgets Combined

4/10/14 © UCF EECS 505

Hamiltonian Path

•  Note we can split an arbitrary node, v, into
two (v’,v’’ – one, v’, has in-edges of v,
other, v’’, has out-edges. Path (not cycle)
must start at v’’ and end at v’ and goal is
still K.

4/10/14 © UCF EECS 506

Travelling Salesman

•  Start with HC = (V,E), K=|V|
•  Set edges from HC instance to 1
•  Add edges between pairs that lack such

edges and make those weights 2 (often
people make these K+1); this means that
the reverse of unidirectional links also get
weight 2

•  Goal weight is K for cycle

4/10/14 © UCF EECS 507

PROCESSOR SCHEDULING
IS NP-HARD

4/10/14 © UCF EECS 508

Processor scheduling
•  A Process Scheduling Problem can be described by

–  m processors P1, P2, …, Pm,
–  processor timing functions S1, S2, …, Sm, each describing how the

corresponding processor responds to an execution profile,
–  additional resources R1, R2, …, Rk, e.g., memory
–  transmission cost matrix Cij (1 ≤ i , j ≤ m), based on proc. data sharing,
–  tasks to be executed T1, T2, …, Tn,
–  task execution profiles A1, A2, …, An,
–  a partial order defined on the tasks such that Ti < Tj means that Ti must

complete before Tj can start execution,
–  communication matrix Dij (1 ≤ i , j ≤ n); Dij can be non-zero only if Ti < Tj,
–  weights W1, W2, …, Wn -- cost of deferring execution of task.

4/10/14 © UCF EECS 509

Complexity overview
•  The intent of a scheduling algorithm is to minimize the sum of the

weighted completion times of all tasks, while obeying the constraints
of the task system. Weights can be made large to impose deadlines.

•  The general scheduling problem is quite complex, but even simpler
instances, where the processors are uniform, there are no additional
resources, there is no data transmission, the execution profile is just
processor time and the weights are uniform, are very hard.

•  In fact, if we just specify the time to complete each task and we have
no partial ordering, then finding an optimal schedule on two
processors is an NP-complete problem. It is essentially the subset-
sum problem. I will discuss this a bit more at a later time.

4/10/14 © UCF EECS 510

2 Processor scheduling
 The problem of optimally scheduling n tasks T1, T2, …, Tn onto 2 processors
with an empty partial order < is the same as that of dividing a set of positive
whole numbers into two subsets, such that the numbers are as close to
evenly divided. So, for example, given the numbers
 3, 2, 4, 1
 we could try a “greedy” approach as follows:
 put 3 in set 1
 put 2 in set 2
 put 4 in set 2 (total is now 6)
 put 1 in set 1 (total is now 4)
 This is not the best solution. A better option is to put 3 and 2 in one set and
4 and 1 in the other. Such a solution would have been attained if we did a
greedy solution on a sorted version of the original numbers. In general,
however, sorting doesn’t work.

4/10/14 © UCF EECS 511

2 Processor nastiness
 Try the unsorted list
 7, 7, 6, 6, 5, 4, 4, 5, 4
 Greedy (Always in one that is least used)
 7, 6, 5, 5 = 23
 7, 6, 4, 4, 4 = 25
 Optimal
 7, 6, 6, 5 = 24
 7, 4, 4, 4, 5 = 24
 Sort it
 7, 7, 6, 6, 5, 5, 4, 4, 4
 7, 6, 5, 4, 4 = 26
 7, 6, 5, 4 = 22

 Even worse than greedy unsorted

4/10/14 © UCF EECS 512

2 Processor with partial order

4/10/14 © UCF EECS 513

Anomalies everywhere

4/10/14 © UCF EECS 514

More anomalies

4/10/14 © UCF EECS 515

Heuristics
 While it is not known whether or not P = NP?, it
is clear that we need to “solve” problems that are
NP-complete since many practical scheduling
and networking problems are in this class. For
this reason we often choose to find good
“heuristics” which are fast and provide
acceptable, though not perfect, answers. The
First Fit and Best Fit algorithms we previously
discussed are examples of such acceptable,
imperfect solutions.

4/10/14 © UCF EECS 516

Critical path or level strategy
 A UET is a Unit Execution Tree. Our Tree is funny. It has a single
leaf by standard graph definitions.

1. Assign L(T) = 1, for the leaf task T
2. Let labels 1, …, k-1 be assigned. If T is a task with lowest

numbered immediate successor then define L(T) = k (non-
deterministic)
 This is an order n labeling algorithm that can easily be implemented
using a breadth first search.

Note: This can be used for a forest as well as a tree. Just add a new
leaf. Connect all the old leafs to be immediate successors of the
new one. Use the above to get priorities, starting at 0, rather than 1.
Then delete the new node completely.

Note: This whole thing can also be used for anti-trees. Make a
schedule, then read it backwards. You cannot just reverse priorities.

4/10/14 © UCF EECS 517

Level strategy and UET

4/10/14 © UCF EECS 518

Theorem: Level Strategy is optimal for unit execution, m arbitrary, forest
precedence

Level – DAG with unit time
1. Assign L(T) = 1, for an arbitrary leaf task T
2. Let labels 1, …, k-1 be assigned. For each task T such that

{ L(T’) is defined for all T’ in Successor(T) }

Let N(T) be decreasing sequence of set members in
{S(T’) | T’ is in S(T)}

Choose T* with least N(T*).
Define L(T*) = K.
 This is an order n2 labeling algorithm. Scheduling with it involves n union /
find style operations. Such operations have been shown to be
implementable in nearly constant time using an “amortization” algorithm.

Theorem: Level Strategy is optimal for unit execution, m=2, dag precedence.

4/10/14 © UCF EECS 519

Assignment#8.1
1. Consider the simple scheduling problem where we have a set of independent tasks

running on a fixed number of processors, and we wish to minimize finishing time.
 How would a list (first fit, no preemption) strategy schedule tasks with the following
IDs and execution times onto four processors? Answer using Gantt chart.

(T1,4) (T2,1) (T3,3) (T4,6) (T5,2) (T6,1) (T7,4) (T8,5) (T9,7) (T10,3) (T11,4)

 Now show what would happen if the times were sorted non-decreasing.

 Now show what would happen if the times were sorted non-increasing.

4/10/14 © UCF EECS 520

Assignment#8.2
2.  Looking back at Page 518, consider adding two additional tasks

numbered 15 and 16 that are siblings of 13 and 14. These four
tasks must be completed before 12 is started.
a) Write the Gantt chart down that shows the new schedule
associated with this enhanced tree
b) Write down the Gantt chart that is associated with the
corresponding anti-tree, in which all arc are turned in the opposite
direction. Use the technique of reversing the schedule from (a)
c) Write down the Gantt chart associated with the anti-tree of b),
where we now use the priorities obtained by treating lower
numbered tasks as higher priority ones
d) Comment on the results seen in (2) versus (3), providing insight
as to why they are different and why one is better than the other.

4/10/14 © UCF EECS 521

Integer Linear Programming
•  Show for 0-1 integer linear programming by constraining

solution space. Start with an instance of SAT (or 3SAT),
assuming variables v1,…, vn and clauses c1,…, cm

•  For each variable vi, have constraint that 0 ≤ vi ≤ 1
•  For each clause we provide a constraint that it must be

satisfied (evaluate to at least 1). For example, if clause cj
is v2 ∨ ~v3 ∨ v5 ∨ v6 then add the constraint
v2 + (1-v3) + v5 + v6 ≥ 1

•  A solution to this set of integer linear constraints implies
a solution to the instance of SAT and vice versa

•  Can also start with SubsetSum – think about it.

4/10/14 © UCF EECS 522

Fourth Significant Class of Problems:

The Class Co–NP

 (The COmplement problems of NP)

Co–NP

 For any decision problem A in NP, there is a
‘complement’ problem Co–A defined on the same
instances as A, but with a question whose answer is
the negation of the answer in A. That is, an instance is
a "yes" instance for A if and only if it is a "no"
instance in Co–A.

 Notice that the complement of a complement problem
is the original problem.

Co–NP

 Co–NP is the set of all decision problems whose
complements are members of NP.

 For example: consider Graph Color
GC

 Given: A graph G and an integer k.
 Question: Can G be properly colored with k colors?

Co–NP

The complement problem of GC

 Co–GC
 Given: A graph G and an integer k.
 Question: Do all proper colorings of G

 require more than k colors?

Co–NP

 Notice that Co–GC is a problem that does
not appear to be in the set NP. That is, we
know of no way to check in polynomial
time the answer to a "Yes" instance of Co–
GC.

 What is the "answer" to a Yes instance
that can be verified in polynomial time?

Co–NP

 Not all problems in NP behave this way. For example,
if X is a problem in class P, then both "yes" and "no"
instances can be solved in polynomial time.

 That is, both "yes" and "no" instances can be
verified in polynomial time and hence, X and Co–X
are both in NP, in fact, both are in P.
 This implies P = Co–P and, further,

 P = Co–P ⊆ NP ∩ Co–NP.

Co–NP

 This gives rise to a second fundamental question:
 NP = Co–NP?

 If P = NP, then NP = Co–NP.
 This is not "if and only if."

 It is possible that NP = Co–NP and, yet, P ≠ NP.

Co–NP

 If A ➤P B and both are in NP, then the same
polynomial transformation will reduce Co-A to
Co–B. That is, Co–A ➤P Co–B. Therefore, Co–
SAT is 'complete' in Co–NP.

 In fact, corresponding to NP–Complete is the
complement set Co–NP–Complete, the set of
hardest problems in Co–NP.

Turing Reductions
 Now, return to Turing Reductions.

 Recall that Turing reductions include
polynomial transformations as a special
case. So, we should expect they will be
more powerful.

Turing Reductions

 (1) Problems A and B can, but need not, be
 decision problems.

 (2) No restriction placed upon the number
 of instances of B that are constructed.

 (3) Nor, how the result, AnswerA, is computed.

In effect, we use an Oracle for B.

Turing Reductions

 Technically, Turing Reductions include
Polynomial Transformations, but it is useful to
distinguish them.

 Polynomial transformations are often the easiest to
apply.

NP–Hard

Fifth Significant Class of Problems:

The Class NP–Hard

NP–Hard

 To date, we have concerned ourselves with
decision problems. We are now in a
position to include additional problems. In
particular, optimization problems.

 We require one additional tool – the second

type of transformation discussed above –
Turing reductions.

NP–Hard

 Definition: Problem B is NP–Hard if there is a
polynomial time Turing reduction A ➤ B for some
problem A in NP–Complete.
 This implies NP–Hard problems are at least as hard
as NP–Complete problems. Therefore, they can not
be solved in polynomial time unless P = NP (and
maybe not then).
 This use of an oracle, allows us to reduce co-NP-
Complete problems to NP-Complete ones and vice
versa.

QSAT

•  QSAT is the problem to determine if an
arbitrary fully quantified Boolean
expression is true. Note: SAT only uses
existential.

•  QSAT is NP-Hard, but may not be in NP.
•  QSAT can be solved in polynomial space

(PSPACE).

NP–Hard

 Polynomial transformations are Turing reductions.

 Thus, NP–Complete is a subset of NP–Hard.
 Co–NP–Complete also is a subset of NP–Hard.
 NP–Hard contains many other interesting problems.

NP–Equivalent
 Co–NP problems are solvable in polynomial time if and
only if their complement problem in NP is solvable in
polynomial time.

 Due to the existence of Turing reductions reducing
either to the other.

 Other problems not known to be in NP can also have
this property (besides those in Co–NP).

NP–Equivalent

 Problem B in NP–Hard is NP–Equivalent when B reduces to
any problem X in NP, That is, B ➤ X.

 Since B is in NP–Hard, we already know there is a problem A
in NP–Complete that reduces to B. That is, A ➤ B.

 Since X is in NP, X ➤ A. Therefore, X ➤ A ➤ B ➤ X.

 Thus, X, A, and B are all polyomially equivalent, and we can
say

 Theorem. Problems in NP–Equivalent are polynomial if and
only if P = NP.

NP–Equivalent

 Problem X need not be, but often is, NP–
Complete.

 In fact, X can be any problem in NP or Co–NP.

NP-Hard
•  NP-Hard has two competing definitions
•  Some think of NP-Hard as involving many-one

reductions and thus being decision problems
•  Others think of NP-Hard as involving Turing

reductions and thus being functional problems
•  We will choose the latter which includes the

former. Note, there is no conflict with NP-
Complete since an NP-Complete problem is in
NP and is therefore a decision problem

4/10/14 © UCF EECS 542

FP and FNP

•  FP is functional equivalent to P
R(x,y) in FP if can provide value y for
input x via deterministic polynomial
time algorithm

•  FNP is functional equivalent to NP;
R(x,y) in FNP if can verify any pair
(x,y) via deterministic polynomial time
algorithm

4/10/14 © UCF EECS 543

TFNP

•  TFNP is the subset of FNP where a
solution always exists, i.e., there is a y for
each x such that R(x,y).
– Task of a TFNP algorithm is to find a y, given

x, such that R(x,y)
– Unlike FNP, the search for a y is always

successful
•  FNP properly contains TFNP contains FP

(we don't know if proper)
4/10/14 © UCF EECS 544

Prime Factoring

•  Prime factoring is defined as, given n and
k, does n have a prime factor <k?

•  Factoring is in NP and co-NP
•  Given candidate factor can check its primality

in poly time and then see if it divides n
•  Given candidate set of factors can check their

primalities, and see if product equals n; if so,
and no candidate < k, then answer is no

4/10/14 © UCF EECS 545

Prime Factoring and TFNP
•  Prime Factoring as a functional problem is in

TFNP, but is it in FP?
•  If TFNP in FP then TFNP = FP since FP

contained in TFNP
•  If that is so, then carrying out Prime Factoring is

in FP and its decision problem is in P
–  If this is so, we must fear for encryption, most of

which depends on difficulty of finding factors of a
large number

4/10/14 © UCF EECS 546

More TFNP

•  There is no known recursive enumeration
of TFNP but there is of FNP
– This is similar to total versus partially

recursive functions (analogies are
everywhere)

•  It appears that TFNP does not have any
complete problems!!!
– But there are subclasses of TFNP that do

have complete problems!!
4/10/14 © UCF EECS 547

Another Possible Analogy

•  Is P = (NP intersect Co-NP)?
•  Recall that REC = (RE intersect co-RE)
•  The analogous result may not hold here

4/10/14 © UCF EECS 548

Turing vs m-1 Reductions

•  In effect, our normal polynomial reduction
(≤p) is a many-one polynomial time
reduction as it just asks and then accepts
its oracle’s answer

•  In contrast, NP-Easy and NP-Equivalent
employ a Turing machine polynomial time
reduction (≤tp) that uses rather than
mimics answers from its oracle

4/10/14 © UCF EECS 549

NP-Easy and Equivalent

•  NP-Easy -- these are problems that are
polynomial when using an NP oracle (≤tp)

•  NP-Equivalent is the class of NP-Easy and
NP-Hard problems (assuming Turing
rather than many-one reductions)
–  In essence this is functional equivalent of NP-

Complete but also of Co-NP-Complete since
can negate answers

4/10/14 © UCF EECS 550

More Examples of NP
Complete Problems

TipOver

4/10/14 © UCF EECS 552

Rules of Game

4/10/14 © UCF EECS 553

Numbers are height of crate stack;
If could get 4 high out of way we can attain

goal

Problematic OR Gadget

4/10/14 © UCF EECS 554

Can go out where did not enter

Directional gadget

4/10/14 © UCF EECS 555

Single stack is two high;
tipped over stack is one high, two long;
red square is location of person travelling the towers

One directional Or gadget

4/10/14 © UCF EECS 556

AND Gadget

4/10/14 © UCF EECS 557

How AND Works

Variable Select Gadget

4/10/14 © UCF EECS 558

Tip A left to set x true; right to set x false
Can build bridge to go back but never to change choice

((x∨~x∨y)∧(~y∨z∨w)∧~w)

4/10/14 © UCF EECS 559

x ~x

∨

∨

∨ ∨

y z w ~y ~z ~w

Bridges back
for true paths

∧ ∧

Win Strategy is NP-Complete

•  TipOver win strategy is NP-Complete
•  Minesweeper consistency is NP-Complete
•  Phutball single move win is NP-Complete

– Do not know complexity of winning strategy
•  Checkers is really interesting

– Single move to King is in P
– Winning strategy is PSpace-Complete

4/10/14 © UCF EECS 560

Finding Triangle Strips

Adapted from presentation by
Ajit Hakke Patil

Spring 2010

Graphics Subsystem
•  The graphics subsystem (GS) receives graphics commands

from the application running on CPU over a bus, builds the
image specified by the commands, and outputs the resulting
image to display hardware

•  Graphics Libraries:
–  OpenGL, DirectX.

Surface Visualization

•  As Triangle Mesh
•  Generated by triangulating the

geometry

Triangle List vs Triangle Strip

•  Triangle List: Arbitrary ordering of triangles.
•  Triangle Strip: A triangle strip is a sequential ordering of

triangles. i.e consecutive triangles share an edge
•  In case of triangle lists we draw each triangle separately.
•  So for drawing N triangles you need to call/send 3N vertex

drawing commands/data.
•  However, using a Triangle Strip reduces this requirement from

3N to N + 2, provided a single strip is sufficient.

Triangle List vs Triangle Strip
•  four separate triangles:

ABC, CBD, CDE, and
EDF

•  But if we know that it is a
triangle strip or if we
rearrange the triangles
such that it becomes a
triangle strip, then we can
store it as a sequence of
vertices ABCDEF

•  This sequence would be
decoded as a set of
triangles ABC, BCD, CDE
and DEF

•  Storage requirement:
–  3N => N + 2

Tri-strips example

•  Single tri-strip that describes triangles is:
1,2,3,4,1,5,6,7,8,9,6,10,1,2

4/10/14 © UCF EECS 566

K-Stripability

•  Given some positive integer k (less than
the number of triangles).

•  Can we create k tri-strips for some given
triangulation – no repeated triangles.

4/10/14 © UCF EECS 567

Triangle List vs Triangle Strip

// Draw Triangle Strip
glBegin(GL_TRIANGLE_STRIP);
 For each Vertex
{
 glVertex3f(x,y,z); //vertex
}
glEnd();

// Draw Triangle List
glBegin(GL_TRIANGLES);
For each Triangle
{
 glVertex3f(x1,y1,z1);// vertex 1

glVertex3f(x2,y2,z2);// vertex 2
 glVertex3f(x3,y3,z3);// vertex 3

}
glEnd();

Problem Definition
•  Given a triangulation T = {t1, t2, t3 ,.. tn}. Find the triangle strip

(sequential ordering) for it?
•  Converting this to a decision problem.
•  Formal Definition:
•  Given a triangulation T = {t1, t2, t3 ,.. tN}. Does there exists a

triangle strip?

NP Proof

•  Provided a witness of a ‘Yes’ instance of the problem. we can
verify it in polynomial time by checking if the sequential triangles
are connected.

•  Cost of checking if the consecutive triangles are connected
–  For i to N -1

•  Check of ith and i+1th triangle are adjacent (have a
common edge)

•  Three edge comparisions or six vertex comparisions
–  ~ 6N

•  Hence it is in NP.

Dual Graph
•  The dual graph of a

triangulation is obtained by
defining a vertex for each
triangle and drawing an edge
between two vertices if their
corresponding triangles
share an edge

•  This gives the triangulations
edge-adjacency in terms of
a graph

•  Cost of building a Dual
Graph

–  O(N2)

•  e.g G’ is a dual graph of G.

NP-Completeness
•  To prove it’s NP-Complete we reduce a known NP-Complete

problem to this one; the Hamiltonian Path Problem.
•  Hamiltonian Path Problem:

–  Given: A Graph G = (V, E). Does G contains a path that
visits every vertex exactly once?

NP-Completeness proof by
restriction

•  Accept an Instance of Hamiltonian Path, G = (V, E), we restrict
this graph to have max. degree = 3.The problem is still NP-
Complete.

•  Construct an Instance of HasTriangleStrip
–  G’ = G

•  V’ = V
•  E’ = E

–  Let this be the dual graph G’ = (V’, E’) of the triangulation T =
{t1, t2, t3 ,.. tN}.

•  V’ ~ Vertex vi represents triangle ti, i = 1 to N
•  E’ ~ An edge represents that two triangles are edge-

adjacent (share an edge)
•  Return HasTriangleStrip(T)

NP-Completeness
•  G will have a Hamiltonian

Path iff G’ has one (they are
the same).

•  G’ has a Hamiltonian Path
iff T has a triangle strip of
length N – 1.

•  T will have a triangle strip of
length N – 1 iff G (G’) has a
Hamiltonian Path.

•  ‘Yes’ instance maps to ‘Yes’
instance. ‘No’ maps to ‘No.’

HP <P HasTriangleStrip
•  The ‘Yes/No’ instance maps to ‘Yes/No’ instance respectively

and the transformation runs in polynomial time.
•  Polynomial Transformation
•  Hence finding Triangle Strip in a given triangulation is a NP-

Complete Problem

