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Computing on Encrypted Data 

 Storing my files on the cloud 

 Encrypt them to protect my information 

 Search through them for emails with “homomorphic” in the 
subject line 

 Cloud should return only these (encrypted) messages, w/o 
knowing the key 

 Private Internet search 

 Encrypt my query, send to Google 

 I still want to get the same results 

 Results would be encrypted too 



Public-key Encryption 

 Three procedures: KeyGen, Enc, Dec 

 (sk,pk)  KeyGen($) 

 Generate random public/secret key-pair 

 c  Encpk(m) 

 Encrypt a message with the public key 

 m  Decsk(c) 

 Decrypt a ciphertext with the secret key 

 E.g., RSA: cme mod N, mcd mod N 

 (N,e) public key, d secret key 



Homomorphic Public-key Encryption 

 Also another procedure: Eval 

 c*  Evalpk(P, c1,…,cn) 

 P a Boolean circuit with ADD, MULT mod 2 

Encryption of inputs 
m1,…,mn to P 

Circuit 

Encryption of output 
value m*=P(m1,…,mn) 



An Analogy: Alice’s Jewelry Store 

 Alice’s workers need to assemble raw materials into 
jewelry 

 But Alice is worried about theft 

 How can the workers process the raw materials without 
having access to them? 



An Analogy: Alice’s Jewelry Store 

 Alice puts materials in locked glove box 

 For which only she has the key 

 Workers assemble jewelry in the box 

 Alice unlocks box to get “results” 

  



The Analogy 

 Enc: putting things inside the box 
 Anyone can do this (imagine a mail-drop) 

 ci  Encpk(mi) 

 Dec: Taking things out of the box 
 Only Alice can do it, requires the key 

 m*  Decsk(c*) 

 Eval: Assembling the jewelry 
 Anyone can do it, computing on ciphertext 

 c*  Evalpk(P, c1,…,cn) 

 m* = P(m1,…,mn) is “the ring”, made 
from “raw materials” m1,…,mn 



A homomorphic symmetric encryption 

 Shared secret key: odd number p 

 To encrypt a bit m: 

 Choose at random large q, small r 

 Output c = pq + 2r + m 

 Ciphertext is close to a multiple of p 

 m = LSB of distance to nearest multiple of p  

 To decrypt c: 

 Output m = (c mod p) mod 2 

2r+m much 
smaller than p 



Why this scheme is Homomorphic? 

 C1 =q1 p+2r1 +m1, C2 =q2 p+2r2 +m2  
                                                                           Distance to nearest multiple of p 

 C1 + C2 = (q1 + q2)p + 2(r1+r2) + (m1 + m2) 
 2(r1+r2) + (m1 + m2) still much smaller than p 

 C1 + C2 mod p = 2(r1+r2) + (m1 + m2)  

 C1 x C2 = (C1 q2+ q1 C2 - q1 q2p)p  
+2(2r1r2+r1 m2 + m1 r2) + m1 m2  

 2(2r1r2+r1 m2 + m1 r2) + m1 m2 

 C1 x C2 mod p = 2(2 r1 r2 + r1 m2 + m1 r2) + m1 m2 still smaller than p 

 



Security 

 The approximate-GCD problem: 

 Input: integers x1, x2, x3, … 

 Chosen as xi = qip + ri for a secret odd p 

 p$[0,P], qi$[0,Q], ri$[0,R] (with R  P  Q) 

 Task: find p 

 Thm: If we can distinguish Enc(0)/Enc(1) 
for some p, then we can find that p 

 Roughly: the LSB of ri is a “hard core bit” 

 Scheme is secure if approx-GCD is NP-hard 

 Is approx-GCD really a NP-hard problem? 



Hard-core-bit theorem 

A. The approximate-GCD problem: 

 Input: w0 = q0 p, {wi = qi p+ ri} 

 p  $[0,P], qi  $[0,Q], ri  $[0,R] (with R <<P << Q) 

Task: find p 

 

B. The cryptosystem 

 Input: : N= q0 p, {mj, cj = qj p+2 rj + mj}, c=qp+2r+m 

 p  $[0,P], qi  $[0,Q], ri  $[0,R’] (with R’ <<P << Q) 

Task: distinguish m=0 from m=1 

 Thm: Solving B solving A 



Questions 

 What will happen if we continue to running too many 
function on encrypted data? 

 

 Why Approximate GCD is NP-Hard? 

 

 How if could covert Partially HE to Fully HE? 
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Introduction

What can we solve that machines can’t?

What needs human mind?

An analogy to NP-Completeness?
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AI Problems

Human Oracle (HO):

– HumanBest : Capable of computing any function computable by the
union of all minds

AI Problem:

– Can be solved by a human oracle.
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AI-Complexity

AI-Complete:

– It is in the set of AI-problems (Human Oracle solvable).
– Any AI problem can be converted into it by some polynomial time

algorithm.

AI-Hard:

– A problem is AI-Hard iff there is an AI-Complete problem that is
poly-time Turing reducible to it.

AI-Easy:

– Can be solvable in poly-time
using an oracle for an AI-problem.
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Turing Test

Test of amachine’s ability to exhibit intelligent behavior equivalent to, or
indistinguishable from, that of a human
(Alan Turing, Computing Machinery and Intelligence, 1950)

– A human judge (C) engages in natural
language conversations with a human(B)
and a machine (A).

– If the judge cannot reliably tell the machine
from the human, the machine is said to
have passed the test.

– A, B and C are in separate rooms.

– Conversation is limited to a text-only
channel by keyboards and screens.

(Turing test. Figure from Wikipedia.)
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TT as the first AI-complete problem
(SAT as the first NP-complete problem)

How to prove?

– TT is in the set of AI problems (HO solvable)
– Any other AI problems reduce to TT in polynomial time under Turing

reduction.

For any AI problem h, we have a String input which encodes the
problem and a String output which encodes the solution.

By taking the input as a question to be used in the TT and output as
the answer to be expected, h reduces to TT.

TT is AI-complete.
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An AI-Hard Problem

The Programming problem: Take a natural language description of a
program and produce a source code.

e.g. “Write a program to play Tic-Tac-Toe”.

Proof: For any statement S of TT, transform the statement into a programming
assignment of the form: Write a program which would respond to S with a
statement indistinguishable from a statement provided by an average human.
This says TT ≤p

TM Programming .
However, Programming itself is not in AI as there are many instances of
Programming which are not solvable by Human Oracles. ( e.g. Write a program
to pass Turing Test is not an AI problem). This shows that TT /∈ AI .
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Beyond AI-completeness

Venn diagram of Problem spaces produced by different types of intelligent
computational devices.
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Beyond AI-completeness (cnt’d)

Consciousness-Complete Problems (C-Complete): the problem of
reproducing internal states of human mind in artificial way

– The current Turing/Von Neumann architecture cannot deal with problems
related to internal states of human mind.

– Unlike Turing Machine Oracle, C-Oracles do not produce any symbolic
output

– Consciousness is suspected to be the first C-Complete problem. Yet no proof
is provided yet.
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Question

There are many other AI problems believed to be AI-complete. E.g.
Natural Language Understanding, vision/image/video Understanding. Try
to proof the following two sub-problems in Natural language
Understanding are AI-complete .

1. Question Answering (QA)

2. Speech Understanding (SU)

Hint: You can first proof they are AI problems and then find a way to reduce
Turing Test (TT) to them. (TT ≤p

TM QA, TT ≤p
TM SU)
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Introduction 

 Social Networks 

 Graphs with millions of nodes and relations 

 Interesting Features 

 Social Networks Analysis 

 Improve performance in Internet-based applications (e.g. 

networking websites, recommendation networks, etc.) 

 



Introduction (contd.) 

 Interesting property 

 Presence of social communities and their structures 

 Graph partitioning problem 

 Idea goes back to Newman (2007) [1] 

 Graphs (networks) are found to divide naturally into communities 

or modules  

 

 



Modularity 

 Detection method which is optimization of the quality 

function known as “modularity” 



NP-Completeness 

 We use reduction from 3-Partition to Modularity 

 

 Modularity: Given a graph G and a number K, is there a 

clustering C of G, for which 𝑞 𝐶 ≥ 𝐾? 

 

 3-Partition: Given 3k positive integer numbers sum up to 

kb and b/4 < 𝑎𝑖 < 𝑏/2, is there a partition of these 

numbers into k sets each of which sum up to b? 

 



NP-Completeness (contd.) 

 An instance 𝐴 = 𝑎1, … , 𝑎3𝑘  and instance (G(A),K(A)) 

 We construct G(A) with k cliques 𝐻1, … , 𝐻𝑘  

 Example: 



Greedy Algorithm 

 Divisive hierarchical clustering algorithm [2]  

 Starts with the singleton clustering and iteratively merges 

those two clusters that yield a clustering with the best 

modularity 

 



Conclusion 

 Identifying communities is of great interest! 

 

 We presented a greedy algorithm based on maximizing the 

quality function modularity. 

 

 We used reduction from 3-Partition to Modularity to show 

that maximizing modularity is NP-Complete.  
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Generalized Minimum Clique Problem (GMCP)  

• Traveling Salesman : find the minimal cycle which visits all the nodes exactly once 
 

• Generalized Traveling Salesman : Find the minimal cycle which connects all the clusters while exactly 
one node from each is visited 
 

• GMCP: Find a subset of the nodes that includes exactly one node from each cluster while the cost of 
the complete graph that the subset forms is minimized (Can be reduced to Traveling Salesman, 
therefore its NP-Hard) 

 𝐺 

... ... 



Generalized Minimum Clique Problem (GMCP)  

... ... 

Nodes Edges Edge Weights 



Approximate Solution 

 (Heuristic) 



An Approximate Solution for GMCP 

• Best solution is initialized by picking one random node from each cluster  
– Complexity O(L) for verification where L : number of clusters 

• Fix neighborhood size to 1 and identify the δ best solutions  
– Complexity O((K-1)L), where K : number of nodes 

• At each iteration neighbor solutions of the size |V|-δ to |V|-1 are evaluated 
and compared with the Best solution   
– Complexity O(KδL) 

•  Iterations continue until either convergence criteria(Minimum found) or 
termination criteria(Maximum time/Maximum iterations) are met 

• Complexity of the whole process :  
– O(L) × O((K-1)L) + O(KδL) = O((K-1)L2) + O(KδL) = O(KL2 + KδL)  

Polynomial Time 



Exact Solution  

(BIP) 



• Finds the optimal solution  

 

Solving GMCP using Binary Integer Programing 

W TX

AX = B

MX £ N

•      Is the object weights 

•      Binary variable for the nodes and edges 

 

• Constraints ensure the solution is a valid 

GMCP instance  

W
X

AX = B

MX £ N



Constraints 

states if one node is selected to be in Gs, then exactly (h − 1) of its edges should 

be included in Gs  

Ensures that one and only one node is selected from each cluster 

ensures if one edge is included in Gs, then the variables of its parent nodes have to 

be 1 and vice versa  



Applications 



Problem : Image Geo-Localization 

Query Image 
Local 

Feature 
Extraction 

Retrieving 
kNNs for 

each query 
feature 

Multiple NN 
pruning 

GMCP-based 
feature 

matching 

Geo-
localization 
using voting 

scheme 



Problem : Concept Detection in Complex Videos 



Skate Boarding 

Grinding the board 

Jumping with 

board 

Flipping the board 

Input Video 

Solve GMCP 

𝐺 

Detected 

Concepts 

Standing on the 

board 

Training 

... 

... 

Apply SVM 

S
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n
ce
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t 
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Divide into 

Clips 

Training Set 

Co-occurrence Matrix 

Problem : Concept Detection in Complex Videos 



Thanks 



Questions?? 

• In BIP solution for GMCP there is a Boolean variable associated 
to each node and each edges. What happens if we allow the 
solver to pick any number between [0 1] instead of a binary 
variable 0 and 1? 

•  Show that GMCP is NP-HARD (Show how does it reduce to 
TSP)? 
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The planning problem 

• The planning problem consists of: 
– A finite set of states. 

– A finite set of actions. 

– A start state. 

– A set of goal states. 

– A threshold τ on the probability of success. 

• Find any sequence of actions that would move 
the system from the start state to any goal 
state with probability higher than τ. 



The planning problem 



The planning problem 

95% chance of 
WIN!!!! 



The planning problem 

Undecidable 



Probabilistic Finite Automata 

• Reducible to probabilistic planning 



The emptiness problem 
• Given a PFA and a threshold τ, decide whether 

or not there is some input string w∑* that 
the PFA accepts with probability exceeding 
threshold τ. 

 

 

 

 

• Undecidable by reduction from two-counter 
TM. 

 

w= 
#00100#000#0
001111000#00
011# 

S A 

YES 

NO 

P(YES) > τ 



Two-Counter TM 

Read 
Only 
Tape 

11111111 

11111111111111 

Two-way Head 

Amazingly:  
Two-counters 

w=#C1#C2#C3#......#Cn-2#Cn-1#Cn# 



TM reduction to PFA 

• The constructed PFA must check if a sequence 
of computations is valid. 

 w=#C1#C2#C3#......#Cn-2#Cn-1#Cn# 

Start State 
Accepting 

State 
Valid Transitions 

(PFA can’t check valid counter contents exactly) 

Check counters' validity reduces to: 

aibj, i=j?  undecidable for DFA. 
 



Weak Equality Test 

• Goal – radically different probabilities of success 
between i=j and i≠j, for string aibj 

• Four series of coin tosses 
– Series 1: two tosses per ‘a’ 

– Series 2: two tosses per ‘b’ 

– Series 3 and 4: one toss per ‘a’ and ‘b’ 

• Notice – if i=j, all-heads outcome equally likely 

• Otherwise, more likely for series 1 or 2 
– One of them has fewer tosses 



Weak Equality Test 
• Easy part: Suspect if i≠j (mod k) 

• H(x):“all-heads outcome on series x”  

• Indecisive if ~𝐻(𝑥)∀𝑥 or 
𝐻 1 𝐻 2 &&[𝐻(3)|𝐻 4 ] 

• Suspect if decisive and 𝐻 1 𝐻 2  

• Correct if decisive and 𝐻 3 𝐻 4  

• When decisive and i=j, Pr(Suspect)=Pr(Correct) 

• When decisive and i≠j, Pr(Suspect)>Pr(Correct) 
– Can show: Pr(Suspect)>2k-1Pr(Correct) 



Completing the Reduction 

• PFA overview 
– TM trace w as input 

– Enter Indecisive state, set z=w 

– While(Indecisive), run W.E.T., z = zw 

• Loop forces a decision to be made 
– If valid trace, PFA accepts w with 50% probability 

• This can approach 100% if force more decisions  

– Otherwise, probability < 1 −
2𝑘−1

1+2𝑘−1
 



Undecidability for Probabilistic 
Planning 

• An algorithm that solves the planning problem 
would solve the emptiness problem. 

• emptiness problem ≤ planning problem. 

Undecidable Undecidable 



Summary of the Proof 

S A 

Turing 
Machine: 

Empty string 
acceptance 

PFA: 
Emptiness 
problem 

Probabilistic 
planning: 

The planning 
problem 



Extensions 

 



Open Questions 

• What about special classes of PFAs that are 
not covered by this reduction? 

– Ex: PFA with just two actions and two states? 

– Others? 

• Are there any other problems in computer 
science that the weak equality test be applied 
to? 
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Problem 
Statement

 Given a graph 𝐺 with maximal degree 𝑟 :
 Color the graph using 𝑟 + 1 colors

 Sizes of color classes differ by at most 1

 Input:  Graph 𝐺, nonnegative integer 𝑟, s.t. ∆ 𝐺 ≤ 𝑟
 𝐺 = 𝑛 = 𝑠(𝑟 + 1)

 Output: 𝐹 where 𝐹 is an equitable coloring of 𝐺 utilizing the 𝑟 + 1
color classes

3 1 1 1 2 2 1 1

Nearly Equitable Equitable



Terms and 
Concepts

 Color classes
 Set of nodes in 𝐺 colored a certain color 𝑊

 Denoted via capital letters

 Members of color classes denoted via lower case letters

 Digraph 𝐻
 A directed graph of the 𝑟 + 1 color classes

 Edge 𝑋𝑌 ∈ 𝐻 𝑖𝑓 ∃𝑥 ∈ 𝑋 𝑠. 𝑡. 𝑥 ℎ𝑎𝑠 𝑛𝑜 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑖𝑛 𝑌
 𝑥 "witnesses" edge 𝑋𝑌

 𝑉− is the color class with 𝑠 − 1 nodes

 𝑉+ is the color class with 𝑠 + 1 nodes

 Sets
 𝐴 is the set of color classes that can reach 𝑉−

 𝐵 is the complement of 𝐴

 𝐴′ is the set of terminal color classes
 𝑊 ∈ 𝐴′ 𝑖𝑓 𝑊 ∈ 𝐴 and deleting 𝑊 from the digraph does not change the set 
𝐴 − {𝑊}

 𝐵′ set of color classes in 𝐵 that can be reached by 𝑉+



Data Structure

 L: 𝑛 × 𝑟 array, L(v,i) is the ith neighbor of v in G and 0 otherwise

 L': 𝑛 × 𝑟 array, L'(v,i) is the ith neighbor of v in the current iteration 
of the algorithm

 F: 𝑛 array, F(v) is the color class to which v belongs

 C: 𝑟 + 1 array, C(X) is the list of vertices belonging to color class X

 H: (𝑟 + 1) × (𝑟 + 1) array, H(X,Y) is the number of witnesses to 
the edge XY in the digraph

 N: 𝑛 × 𝑟 + 1 array, N(v,X) is the number of neighbors of v in 
color class X



Algorithm

 Start with empty graph 𝐺0: equitably-colored

 Iteratively add nodes to the 𝐺𝑖−1 to make 𝐺𝑖

 If the new node 𝑢 has a neighbor in its color class, move it to a 
color class without this conflict

 This step creates 𝑉+ and 𝑉− which we will resolve using the 
procedure on the next slide

 After applying the procedure, 𝐺𝑖 is equitably colored and by 
induction we can equitably color 𝐺𝑛 = 𝐺



Procedure

 Case 0: path exists from 𝑉+ to  𝑉−

 Augment along this path, resolving disparity: trivial!

 Assume no path from 𝑉+ to  𝑉−

 Case 1: A solo edge exists 𝑤𝑦

 Augment along the path 𝑊𝑉− and move 𝑦 into 𝑊

 Recursively call procedure on 𝐺𝑖[𝐵 − 𝑦]

 Case 2: 𝐴′ ≥ 𝐵

 Use First-Fit to construct a maximal independent set in 𝐵′ starting with 
the nodes in 𝑉+

 As adding each node to set, mark its solo neighbors in 𝐴′

 If a node 𝑤 is marked twice by 𝑧1 and 𝑧2, we have a way to resolve 𝑉−

 Move 𝑤 to some class in 𝐵

 Augment along path 𝑊𝑉− and 𝑉+𝑍

 Move 𝑧1 to to 𝑊

 Recursively call procedure on 𝐺𝑖[𝐵 + 𝑊 − 𝑤′ − 𝑤 + 𝑧1]



Questions

 Proposed by paper: Does a polynomial time algorithm exist to 
equitably (𝑟 + 1)-color any graph if:

 ∀𝑥𝑦 ∈ 𝐸 𝐺 𝑑 𝑥 + 𝑑 𝑦 ≤ 2𝑟 + 1

 What applications can we come up with for equitable coloring?
 e.g. Scheduling and Load-Balancing
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NP-hard Problems

Many problems are NP-hard, but we still need to solve them anyway, such
as:

SubsetSum

Knapsack

Unweighted Steiner Tree

Traveling Salesman Problem

Weighted Set Cover

Daniel Lokshtanov, Jesper Nederlof () COT 6410 Complexity Theory April 25, 2014 2 / 15



Dynamic Programming

By finding the optical structure of a NP-hard problem, we can use
dynamic programming technique to design the algorithm to solve the hard
problem efficiently.

For a SubsetSum problem, given integer {e1, . . . , en} and t in binary
representation, count the number of subsets S ⊆ {1, . . . , n} such that∑

i∈S ei = t.

DP gives an O(nt) time and O(t) space algorithm. In other word,
DP-based algorithm solves the subsetsum problem in pseudo-polynomial
time and space complexity.
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Save space – Why

DP-based algorithm can be seen as a combination of a table and an
algorithm computing table entries, usually formalized as a recurrence.

An inherent property of DP algorithms is that they require a relatively big
amount of working memory to compute such table entries.

Thus, when the input size of a problem is large enough, it is prone that
the DP-based algorithm might run out of memory instead of running out
of time.
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Save space – How – Think and Ask Question

If a DP-based algorithm can solve a problem, most of time, we only care
about the result of such problem instead of intermediate results, which are
stored in the table.

The question becomes how to transform general DP-based algorithm into
another algorithmic representation so as to get avoid of creating table.

Based on the above question, we have to discern the dynamic
programming technique. Then the second question is that what kinds of
intrinsic properties dynamic programming have. What is the relationship
between the optical structure recurrence and the computed table?
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This paper’s Idea

Let us focus on the algebraic property of dynamic programming technique.
We should see the computing table as the combination of a algebraic
structure with some operators to simulate the recurrence.

For a NP-hard problem, which can be solved using the DP-based
algorithm. We can reformulate the algorithm as:

Given a set of input elements, we sequentially apply countable number of
operators to yield the final result without storing the intermediate results.
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This paper’s Idea – Continue

The authors creatively construct two algebraic systems, which form
Boolean circuits to simulate the dynamic programming procedure. A
boolean circuit is a non-uniform Turing machine.

Figure 4 shows a circuit computing the XOR function on two bits. (Refer
to the book Computational Complexity A Modern Approach By Sanjeev
Arora and Boaz Barak)

Figure: A circuit C computing the XOR function (i.e, C (x1, x2) = 1iffx1 6= x2).

Daniel Lokshtanov, Jesper Nederlof () COT 6410 Complexity Theory April 25, 2014 7 / 15



This paper’s Idea – Continue

Part of formal definition of Circuit: for a set S and binary operators
O1, O2 on S , a circuit C over (S ;⊕,⊗) is a directed acyclic graph, in
which ⊕ means the pointwise addition operator and ⊗ means pointwise
multiplication operator.

How could transform general DP-based algorithm into boolean circuit with
basic operators? The authors propose the convolution operator. Why? Let
us come back to the subsetsum problem.

Daniel Lokshtanov, Jesper Nederlof () COT 6410 Complexity Theory April 25, 2014 8 / 15



This paper’s Idea – Continue

Given integer {e1, . . . , en} and t in binary representation, count the
number of subsets S ⊆ {1, . . . , n} such that

∑
i∈S ei = t.

Define P(x) = (1 + xe1)(1 + xe2) . . . (1 + xen).

Notice P(x) can be evaluated using n additions and multiplications. Let pi

be the coefficients of P(x), that is P(x) =
∑

i pix
i . Then pt is exactly the

number of subsets S ⊆ {1, . . . , n} such that
∑

i∈S ei = t.

Thus, we want to know a coefficient of a polynomial that we can evaluate
efficiently. This can be done with the Discrete Fourier Transform. It states
that if pj = 0 for every j > d , then,

pt = 1
d

∑d−1
j=0 w−tjP(w j)

where w is s.t. wd = 1 and w i 6= 1 for 1 < i < N.

Daniel Lokshtanov, Jesper Nederlof () COT 6410 Complexity Theory April 25, 2014 9 / 15



This paper’s Idea – Continue

Figure: This slide comes from the authors’ slide
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This paper’s Idea – Continue

Figure: This slide comes from the authors’ slide

The problem can be solved in O(n3tlogt) time and O(n2) space.
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This paper’s Idea – Continue

Figure: This slide comes from the authors’ slide
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This paper’s Idea – Continue

Beside DFT linear tranform from convolution operator to ⊗ pointwise
multiplication operator, the authors also illustrate another approach by
using mobius inversion to linear tranform the subset convolution problem.

DFT based linear transformation can reduce the DP space complexity
when the computable table is indexed by integers. Such mobius inversion
linear transformation can further reduce the DP space complexity when
the comptuable table is indexed by subsets.

By using the combination of DFT and mobius inversion, optimization
problems such as TSP can be further space efficiently solved. The authors
claim that the traveling salesman problem can be solved in O(2nd) time
and polynomial space.

Daniel Lokshtanov, Jesper Nederlof () COT 6410 Complexity Theory April 25, 2014 13 / 15



Conclusion

The authors present an interesting algebraic-oriented numerical analysis
approach to analyze the space complexity of dynamic programming
technique.
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Open Questions

1. Are there more algebraic properties of DP algorithms that imply the
possibility of saving space?

2. For a DP-based algorithm, which runs in psedu-polynomial time
complexity, what is the lower bound of its space complexity?
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Thanks
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Minimum Manhattan Network

• A Manhattan network on a set T of 
points in R2 is a graph G = (V, E) 
with the property that all its edges
are vertical or horizontal line 
segments and all pairs of points in 
T are connected by a Manhattan 
path in E
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Minimum Manhattan Network

• A Manhattan network on a set T of 
points in R2 is a graph G = (V, E) 
with the property that all its edges
are vertical or horizontal line 
segments and all pairs of points in 
T are connected by a Manhattan 
path in E

• The minimum Manhattan network
(MMN) is the one with the smallest 
total length.
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Applications

Urban Planning VLSI
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Our goal

3-SAT Minimum Manhattan Network≤
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Minimum Manhattan Network is NP-Complete

U n i v e rs i t y  o f  C e n t ra l  F l o r i d a

Conclusion

• 3SAT can be reduced to MMN.

• MMN is strongly NP-complete, and there does not 
exist an FPTAS for this problem unless P = NP.
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• No approximation algorithms for MMN in Higher 
dimensions proposed with constant factor.

– Best solution has the approximation factor of               
where d is the dimension (DAS et al., 2012)

O(logd+1n)
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U n i v e rs i t y  o f  C e n t ra l  F l o r i d a

Open Problems

• No approximation algorithms for MMN in Higher 
dimensions proposed with constant factor.

– Best solution has the approximation factor of               
where d is the dimension (DAS et al., 2012)

• Is there any constant factor approximation 
algorithm for 2D-MMN?

– Open Problem

O(logd+1n)



Minimum Manhattan Network is NP-Complete

U n i v e rs i t y  o f  C e n t ra l  F l o r i d a

Questions

• Question 1: Can you think of further application for 
which the MMN problem is relevant?

• Answer: Transport and communication 
networks or gene alignment in computational 
biology

• Question 2: Which Reduction method was used in 
this proof?

• Answer: Construction
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Introduction 

• 𝑀 ∶ a binary {0,1}  sparse image represented by 
an 𝑛 × 𝑛 matrix  

• 𝑤 = 𝑤(𝑀) number of 1-pixels 
• Problems: given a distance parameter 𝜖  

– Accept with high constant probability if 𝑀 has the 
property 𝛲 

– Reject with high constant probability if more than 𝜖𝑤 
pixels must be changed in 𝑀 for it to have the 
property 𝛲.  

• The algorithms presented in this paper require a 
constant factor approximation  𝑤  of 𝑤. 



Image access 

Uniform sampling of 1-pixels 

Random probing of pixels 

Images are need to store in an efficient 
data structure to help sampling of 1-pixel 



Properties to Test 

• Connectivity 

• A line 

• Convexity 

• Monotonicity 



Connectivity 

• Definition 
– If the underlying graph induced by the neighborhood 

relation between 1-pixels is connected 

Connected Not Connected 

  𝑂 (min{𝑤 𝑀
1

2, 𝑛2/𝑤(𝑀)} ∙ 𝜖−2) 



Line Imprint 

Line Imprint: A line segment on real plane intersects a 
set of pixels of an image. 



S1 

Select uniformly sampled 1-pixel set S1 

 Farthest pixel pair p1 and p2 

 R is the minimal rectangle contains all the pixels of S1 

p1 

p2 R 

Line Imprint 



Select uniformly sampled 1-pixel set S2 

 Select uniformly sampled pixel set T from  
sleeve and query those pixels 

p1 

p2 R 

S1 

S2 

Line Imprint 

sleeve 

T 



Cases when algorithm rejects 

p1 

p2 R 

S1 

S2 

Line Imprint 

T 

Algorithm complexity is O(log(1/ϵ)/ϵ) 



Testing Convexity 

Convex Shape Horizontal Block 

Sub block 

 𝑂 (𝑤 𝑀
1
4 ∙ 𝜖−2) Complexity= 



Testing Monotonicity  

• If for every two entries 𝑖1, 𝑗1  and 𝑖2, 𝑗2  in a 
matrix, where 𝑀[𝑖1, 𝑗1]=1 and 𝑀[𝑖2, 𝑗2]=1, if  𝑖1 ≤
𝑖2 then 𝑗1 ≤ 𝑗2 , we will say that matrix 𝑀  is 
monotone.  

 

𝑖0, 𝑗0  



Violation Graph  

• Violation graph is defined as 
𝐺𝑣𝑖𝑜𝑙 𝑀 = (𝑉 𝑀 , 𝐸𝑣𝑖𝑜𝑙 𝑀 )  where 𝑉 𝑀 =
𝑖, 𝑗 :𝑀 𝑖, 𝑗 = 1  and 𝐸𝑣𝑖𝑜𝑙 𝑀  consists of all violating 

pairs in 𝑀. 

• The distance of M to being monotone is the size of 
minimum vertex cover of 𝐺𝑣𝑖𝑜𝑙 𝑀 . 

• The algorithm will reject with high constant probability, if 
𝑀 is 𝜖-far from monotone. 

• Complexity Θ((𝑤(𝑀)1/2) 

• Just sampling would not reduce the complexity 

• Queries should be performed 



Testing Monotonicity Algorithm 

• Take a sample that with high probability 

–  either contains evidence that the matrix is not monotone 

– or it can be used to determine a set of sub-matrices with 
the following properties   

• complexity Ω(min{𝑤(𝑀)1/2, 𝑛2/3/ 𝑤(𝑀)1/3})  

 

 
 



Questions 

• Combining a testing algorithm for connectivity 
and a testing algorithm for monotonicity, we 
get a testing algorithm for the combined 
property. Is there a more efficient algorithm 
for the combined property? 

• Can you think of the application of this paper 
in digit recognition and Image matching? 
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Objective

This paper surveys the state of art statistical model checking
and outlines an overview of some of common approaches.
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Stochastic Model Checking . . .

12SFM-07:PE

Probabilistic model checking…

Probabilistic
Model Checker

Probabilistic temporal 
logic specification

send→ P≥p [F deliver]

or

in a nutshell

Probabilistic model

0.4
0.3

The probability
State 5: 0.6789
State 6: 0.9789
State 7: 1.0

…
State 12: 0
State 13: 0.1245

or
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Two Approaches

I Simulation based approach
I To deduce whether or not the system satisfies the

property by observing some of its execution with a
monitoring procedure and use hypothesis testing to infer
whether the sample provides a statistical evidence for
the satisfaction or violation of the specification

I Statistical model checking is the most popular
simulation based approached that we over-viewed
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Rush Hour is PSPACE-
complete, or "Why you 
should generously tip 
parking lot attendants" 
ANDREW HARN, NICHOLAS BUELICH, TRAVIS MEADE  



Generalized Rush Hour 



Empty, Pass, Turn, and Split Blocks 



Switch 



Intersection, Conjunctive Gate, and Disjunctive Gate 



Reducing 3SAT to GRH 
 (4+3v)(3c+1) blocks 

 If there exists a solution to the 3SAT problem, 
then there exists a solution to the GRH.  

 If there is no solution to the 3SAT, then the 
GRH has no solution. 

  

(a+b+~c)(a+~b+~c) to GRH 



Constructing a NTM for GRH 
 The GRH state can be represented by a string of bits that is num_cars * log2 (1+Maximum(N,M)) 
in length, representing the current positions of the cars and their orientations 

 Given a fixed board size, the size of a GRH state is a constant factor times the number of cars.   

 The tape of our NTM will have encoded on it the current state of our GRH.  

 If the state is a winning state, the NTM will halt.  

 Otherwise it will transition to one of at most 2*cars possible states (a car can move left/right or 
up/down one space) from the current configuration.   

 The NTM will make the minimum number of moves to solve the instance of GRH.   

 Thus our total space is only based upon our current state, thus a NTM can solve GRH in PSPACE. 

  



Question 
 We have shown that Generalized Rush Hour is NP-Hard and in PSPACE. Why do we not say it is in 
NP? 



Answer 
 We have shown that 3SAT can be polynomial reduced to GRH, but we did not reduce GRH to any 
known NP problem, meaning there is no proof that GRH is NP-Easy or NP-Equivalent (in NP). 



Reference 
 Gary William Flake, Eric B. Baum: "Rush Hour is PSPACE-complete, or "Why you should 
generously tip parking lot attendants"" 
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Introduction

Definitions
I Kolmogorov complexity ( C (x) ): Length of the shortest program p

computing x
I Finding the shortest program p (i.e. |p| = C (x) ) is uncomputable
I Given U: universal TM, U(p) = x (p is a program for x)
I p is a c-short program if |p| = C (x) + c
I Function f is list approximator if ∀x , f (x) is the list containing the

c-short program

Results
I (Thm 1) ∃ computable f including O(1)-short programs with size

O(n2)
I (Thm 2) ∃ computable f in polynomial time including O(logn)-short p
I (Thm 3) Size is Ω(n2/c2) for any f if it is a list approximator

G. Solmaz and S. Hassan (UCF) COT 6410 April 25, 2014 3 / 11



On-line matching problem

Two equivalent problems:
I P1. The problem of constructing list approximators
I P2. OM: Constructing families of bipartite graphs of a certain type

Bipartite graph: G = (L,R,E ⊂ LxR)

L and R consist of binary strings

Off-line matching with overhead c(n)
I For every set S of pairs (x , k)
I ∀x ∈ L and k ∈ R,∃(x , k) ∈ S pair |p(x , k)| ≤ k + c(|x |)
I p(x1, k1) 6= p(x2, k2), where x1 6= x2

A bipartite graph has on-line matching if requests (x , k) appear one
by one

I We find p(x , k) before the next request comes
I A matching pair cannot be unmatched after assignment

G. Solmaz and S. Hassan (UCF) COT 6410 April 25, 2014 4 / 11



Construction of the graphs

Match x ∈ L(strings) with a free node y ∈ R(programs) if
|y | ≤ (k + c)

G. Solmaz and S. Hassan (UCF) COT 6410 April 25, 2014 5 / 11



Construction of the graphs

k ≤ |x |, number of requests ≤ 2k ,∀k

G. Solmaz and S. Hassan (UCF) COT 6410 April 25, 2014 6 / 11



Construction of the graphs

Constraint: Requests must be responded online, before the next
request comes

G. Solmaz and S. Hassan (UCF) COT 6410 April 25, 2014 7 / 11



Polynomial size lists

∃ polynomial size list approximator for O(logn)-short programs

L = {0, 1}n,R = {0, 1}l−O(logn), D(x) = poly(n)

G. Solmaz and S. Hassan (UCF) COT 6410 April 25, 2014 8 / 11



Basic building brick

Satisfying all (x , k) requests for |x | = n and a fixed k

D(x) = (k − 1)(n + 1)⇒ O(n2), overhead c = 1 (Theorem 1)

G. Solmaz and S. Hassan (UCF) COT 6410 April 25, 2014 9 / 11
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Questions

Given an algorithm, can we prove if it is the shortest possible?
.

How can we build an on-line matching bipartite graph?
.

What are the applications of graphs with on-line matching?
.

Is it possible to improve the suggested upper/lower bounds in future?
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A Turing Complete
Elementary Cellular Automaton

Steven Feldman Jason Hochreiter

Pierre LaBorde Kyle Martin

April 29, 2014



Rule 110 Universality of Rule 110 Questions

Rule 110

Rule 110

I A Class 4 cellular automaton – exhibits complex behavior

I Consists of a single infinitely long row of cells

I Each cell is either alive (1) or dead (0)
I Cells change based on neighbors:

I A cell in state 0 enters state 1 if its right neighbor is in state 1
(life spreads leftward)

I A cell in state 1 enters state 0 if both of its neighbors are in
state 1 (overcrowding is deadly)12 Matthew Cook

Figure 3. A space-time history of the activity of Rule 110, started at the top
with a row of randomly set cells.

Although there are no known methods to prove that it should happen,
we can plainly see that as time goes on, the cells stop being completely
random, and in the lower part of the picture we can visually identify
many phenomena a dozen or fewer cells wide that are periodic in time,
and “move” through a lattice “background” of little white triangles.
These periodic phenomena are the gliders, and the background lattice
of white triangles is called ether.

Figure 4 shows all of the known gliders in Rule 110. One might think
that the key to building constructions would be to find more gliders.
However, when working with gliders in one dimension, it is useful to
stick with ones that occur naturally. Indeed, every time two pieces of
data cross each other in the confines of one dimension, they disrupt each
other and must be “recreated”, as if by chance, after they collide. For
this reason, it is much more profitable to always use gliders that are
easily created in chance reactions than to try to invent or discover new
gliders or other objects with special properties. Even using common
gliders, it can be quite hard to find reactions that produce the desired
gliders in the desired positions. Imagine how much harder it would be
if the reaction had to produce some unnatural object!

Similarly, although Rule 110 can support other backgrounds besides
the standard ether, such other backgrounds do not arise naturally, and
in particular they would be extremely unlikely to re-arise in between the

Complex Systems, 15 (2004) 1–40
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Rule 110 Universality of Rule 110 Questions

Proof Structure Rule 110 Gliders Data Encoding Implementation

Proof Structure

I A complex proof structure is required to show the universality
of Rule 110

I Relies on “nesting” universal machine emulators:
Turing Machine ⇒ Tag Systems ⇒ Cyclic Tag Systems ⇒
Glider Systems ⇒ Rule 110

I Tag system: read and consume a fixed number of symbols,
appending a set of symbols (“tag”) to the end of the sequence
based on the first symbol

I Cyclic tag system: cycle through list of tags in order; append
tag if currently read symbol is a Y and skip if symbol is an N

I Glider systems: encode data using moving structures which
collide to produce zero or more gliders

A Turing Complete Elementary Cellular Automaton 2 / 9



Rule 110 Universality of Rule 110 Questions

Proof Structure Rule 110 Gliders Data Encoding Implementation

Glider Systems
10 Matthew Cook

Figure 2. A glider system emulating a cyclic tag system which has a list of two
appendants: YYY and N. Time starts at the top and increases down the picture.
The gliders that appear to be entering on the sides actually start at the top, but
the picture is not wide enough to show it. The gliders coming from the right are
a periodic sequence, as are the ones on the left. The vertical stripes in the central
chaotic swath are stationary gliders which represent the tape of the cyclic tag
system, which starts here at the top with just a single Y. Ys are shown in black,
and Ns are shown in light gray. When a light gray N meets a leader (shown as
a zig-zag) coming from the right, they produce a rejector which wipes out the
table data until it is absorbed by the next leader. When a black Y meets a leader,
an acceptor is produced, turning the table data into moving data which can
cross the tape. After crossing the tape, each piece of moving data is turned into
a new piece of stationary tape data by an ossifier coming from the left. Despite
the simplicity of the appendant list and initial tape, this particular cyclic tag
system appears to be immune to quantitative analysis, such as proving whether
the two appendants are used equally often on average.

lookup table entries have a length greater than zero, then we know that
at least once during the cycle of cyclic tag system appendants, we will
append an appendant of positive length. This gives us an upper bound
on the length of time between consecutive emerging pieces of moving
data, which means that it is indeed possible to space the ossifiers in a
fixed way so that they will always hit moving data and never tape data.

If the Turing machine that is ultimately being simulated is universal,
then we can execute any program merely by encoding the program on
its tape. This corresponds in the glider system to being able to encode

Complex Systems, 15 (2004) 1–40
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Rule 110 Universality of Rule 110 Questions

Proof Structure Rule 110 Gliders Data Encoding Implementation

Rule 110 Gliders
Universality in Elementary Cellular Automata 13

A A2 A3 A4 B B̄1 B̄2 B̄3 B̂1 B̂2 B̂3 C1 C2 C3 D1 D2

Ē E1 E2 E3 E4 F G1 G2 G3 G4 H glider gun

Figure 4. This shows all the known gliders that exist in the standard background,
or ether, of Rule 110. Also, a “glider gun” is shown, which emits A and B gliders
once per cycle. The lower gliders are shown for a longer time to make their
longer periods more evident. A gliders can pack very closely together, and n
such closely packed As are denoted by An as if they were a single glider. The
other gliders with exponents are internally extendable, and the exponent can
again be any positive integer, indicating how extended it is. The subscripts for
C and D gliders indicate different alignments of the ether to the left of the glider,
and may only have the values shown. Gliders are named by the same letter iff
they have the same slope. The glider gun, H, B̂n, and B̄n!2 are all rare enough
that we say they do not arise naturally. Since the B̄n arises naturally only for
n " 1, B̄1 is usually written as just B̄.

gliders produced by a reaction. In short, if we hope to create a pattern
of coherent interaction among discernable entities, our best odds are if
we take what Rule 110 willingly offers us, and play with it until we see
how to build something out of it.

3.1 Glider Properties

One of the first things we can calculate for the gliders is their width,
as given in Figure 5. Given a glider, if we consider the ether to its left
compared with the ether to its right, we will probably find that these
ether regions would not match up exactly if we were to extend them so
that they overlapped. The ether to its right can be thought of as shifted
w cells to the right from where it would be if it were just a continuation
of the ether on the left. Since the ether has a horizontal period of 14,
the value of w is a number mod 14, and we say that it is the width of
the glider. We see that the sum of the widths of several adjacent gliders,
mod 14, gives the offset of the ether on the far right compared to the
ether on the far left, and so it is a conserved quantity that is not affected
by collisions among the gliders.

Complex Systems, 15 (2004) 1–40

I Will primarily use An, C2 and Ē gliders

I Note the ether – background pattern of triangles
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Rule 110 Universality of Rule 110 Questions

Proof Structure Rule 110 Gliders Data Encoding Implementation

Data Encoding

I Collisions generate gliders based on the location and identity
of the colliding gliders

I Important result – when C2s cross Ē s, the newly created C2

and Ē gliders have the same relative positions as when they
started

I Since spacing is preserved, we can represent data in terms of
spacings between gliders of the same type

I Collision with an A4 can convert an Ē into a C2

I Can convert data from one type to another

I Can precisely arrange gliders to preserve spacings and allow
for collisions without interference

A Turing Complete Elementary Cellular Automaton 5 / 9



Rule 110 Universality of Rule 110 Questions

Proof Structure Rule 110 Gliders Data Encoding Implementation

Implementing a Glider System in Rule 110

I Simulating a glider system:
I Ē s: moving data (left-moving “tag” glider)
I C2s: tape data (stationary glider)
I A4s: “ossifiers” that convert Ē s into C2s (right-moving gliders)
I Encode Y s and Ns by varying spacing between C2s and Ē s
I Collisions with produced Y s and Ns result in acceptance or

deletion of data, respectively, allowing for emulation of a glider
system within Rule 110

A Turing Complete Elementary Cellular Automaton 6 / 9



Universality in Elementary Cellular Automata 27

Figure 13. Components getting accepted or rejected. The left pictures show
primary components; the right pictures show standard components. The upper
pictures show acception; the lower pictures show rejection.

Complex Systems, 15 (2004) 1–40
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Figure 13. Components getting accepted or rejected. The left pictures show
primary components; the right pictures show standard components. The upper
pictures show acception; the lower pictures show rejection.
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Rule 110 Universality of Rule 110 Questions

Undecidable Questions Further Questions

Undecidable Rule 110 Questions

I Will the system reach periodic behavior having some specified
period?

I Will the system ever reach periodic behavior?

I Will the system ever produce a specific glider?

I Will the system ever produce a given sequence of bits?

A Turing Complete Elementary Cellular Automaton 8 / 9



Rule 110 Universality of Rule 110 Questions

Undecidable Questions Further Questions

Further Questions

I Are there any other Turing complete elementary cellular
automata?

I Is Rule 110 still universal on a finite tape?

I Are there other gliders that could be used to prove universality
of Rule 110 or other Class 4 CAs (like rules 30, 90, and 184)?

I Are all Class 4 elementary cellular automata universal?

A Turing Complete Elementary Cellular Automaton 9 / 9
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The complexity of UNO 
Rui Hou, Yicong Tian 



What’s UNO? 



Normal cards 



Action cards 



Game settings 

• No action cards or draw pile 

• Perfect information 

• Rational play 

 



Notations 

• Color 𝑋 = 1,2, … , 𝑐   

• Number 𝑌 =  {1,2, … , 𝑏} 

 

• A card: 𝑡 = 𝑥, 𝑦 𝑖 

•              𝑡′ = 𝑥′, 𝑦′ 𝑖′ 

 

• 𝑡′ matches 𝑡 
 ( 𝑥’ == 𝑥 ∨ (𝑦’ == 𝑦)) ∧ (𝑖’ == 𝑖 + 1(𝑚𝑜𝑑 𝑝)) 



Cooperative UNO 

• Instance 

The number of players 𝑝, and player 𝑖’s card set 𝐶𝑖 
with 𝑐 colors and 𝑏 numbers. 

 

• Question 

Can all the players make player 1 win, i.e., make 
player 1’s card set empty before any of the other 
players become finished? 



Cooperative UNO-2 

• Reduction from Hamiltonian Path to UNO-2 

• UNO-2 is NP-complete 



Uncooperative UNO 

• Instance 

The number of players 𝑝, and player 𝑖’s card set 𝐶𝑖 
with 𝑐 colors and 𝑏 numbers. 

 

• Question 

Determine the first loser; i.e., the player that cannot 
play one’s card any more in spite that his/her hand is 
not empty. 



Uncooperative UNO-2 

• Reduction from uncooperative UNO-2 to 
undirected vertex geography 

• Uncooperative UNO-2 is in P 



UNO-1 

• Instance 

A set 𝐶 of 𝑛 cards 𝑥𝑖 , 𝑦𝑖  (𝑖 = 1,2, … , 𝑛), where 
𝑥𝑖 ∈ {1,2, … , 𝑐} and 𝑦𝑖 ∈ {1,2, … , 𝑏}. 

 

• Question 

Determine whether the player can play all the cards. 

 

• The cooperative and uncooperative versions of 
UNO become equivalent 



UNO-1 intractable case 

• Reduction from Hamiltonian Path to UNO-1  

• UNO-1 is NP-complete 

 



UNO-1 tractable case 

• Can be solved in P by dynamic programming (if 𝑏 or 
𝑐 is a constant) 

 



Question 

• If we add action card ‘skip’ to the card set, how 
would the model and the complexity change? 



Modeling Multiple-object 
Tracking as Constrained Flow 

Optimization Problem 

Maryam Jaberi 

Amara Tariq  

Muhammad Ali 

 



Introduction 

• Multiple-object tracking 

1. Detection Step: time-Independent  

2. Linking Step: connect detections into most likely 
trajectories: NP-Complete 

• Problem: Linking detections into trajectories for multiple 
visually-similar objects 

• Solutions: 

– Filtering, Greedy dynamic programming etc.: don’t 
ensure global optimum 

– Integer Linear Programming (ILP): Ensures global 
optimum but NP-Complete  



Multi-Object Tracking as Constrained 
Flow optimization 

• Model occupancy map 
over time using directed 
graph.  

 



Multi-Object Tracking as Constrained 
Flow optimization 



Integer Linear Programming (ILP) 
Formulation 



From Integer to Continuous Linear Program 

• Integer LP solution: NP-complete problem 

• Continuous LP: Polynomial time average 
complexity 

• Relax the ‘integer’ condition to reduce 
complexity 

• Problem: continuous LP does not usually 
converge to optimal solution of original ILP!! 

• Solution: Total-unimodularity of constraint 
matrix  



Total Unimodularity 

• Total-Unimodular Matrix:  

– all square sub-matrices has determinants 1,0 or -1 

•  Theorem: 

– For every subset of rows R  {1,2…,m}, there is a 
partition of rows such that R = R1 U R2, R1 ∩ R2 = Ø  

              j = 1,2,…n (Σi∈R1 aij - Σi∈R2 aij) ∈ {-1,0,1}  

• Ensures integer solution even for continuous 
LP 

• Constraint matrix is Total-Unimodular 

 



Total-Unimodularity of Constraint Matrix 

• Constraint matrix:  
– arrange columns in  

ascending order of  

time; each column  

represent one location 

 at one time instant 

• Rows:  
– divided into 2 parts  

based on  

conditions 

 

 



Total-Unimodularity of Constraint Matrix 

• Only 3 rows can be non-zero (∈ {-1,0,1} ) for one 
column 

• Eight cases  

    for partitions  

 R1 = R∩U1,R2 = R∩U2 for any R  {1,2…,m} 

• Every possibility satisfies total-unimodularity 
but 3rd –Problem 

• Solution: Move non-zero row of R1 to R2 for 3rd 
case 

 



K-shortest paths (KSP) formulation 

• Relaxed ILP solution polynomial but practically 
not efficient, Need real time efficiency for 
practical problems 

• KSP:  Given a graph G(V,E), compute a set of k 
shortest paths {p1,p2,…..,pk} such that the total 
cost is minimum 

• Path constraints: 
1. Node disjoint 

2. Node simple 

 



ILP to KSP 
• Maximizing flow ≈ Minimizing cost function in        

 in ILP                          KSP 

• Optimality of ‘k’: guaranteed 

by convexity of the path 

cost function  

• Dijkstra’s algorithm for  

  Path computation in each 

   iteration 

• Complexity:   O(k(m+nlogn)) 

 



Applications 
• 2D segmentation to 3D segmentation: 

– 2D: shortest path problem; Dijkstra’s algorithm 

– 3D: minimal weight surface problem 

• can be presented as instance of ILP with totally 
unimodular constraint matrix 

• Optimization by LP: 

– LP provides an upper/ lower bound for original ILP 

– Branch-and-bound: optimization of ILP through recursive 
LP solution. 

• Min-Cost flow problems: efficient network routing 

• Tracking multiple humans in surveillance videos 



Question: How does Total-Unimodularity ensure 

Integer solution even for continuous LP? 

• Quadratic system: Cx = y  

• Cramer’s rule:  xj = |Cy
j|/|C| 

• Cy
j  = C with jth column replaced with y,  (C1, C2, 

..Cj-1 ,y, Cj+1 ,..Cm) 

• |Cy
j| = Σi (-1)i+j yi |Cij| 

• Cij = C with ith row, jth column deleted   

• If |C| ∈ {-1,1} and Cij ∈ {-1,0,1} for all I and j, 
then x is integer  

•  Total Unimodularity => Integer solution 

 



Question: Why is the path cost function of 

KSP convex? 

• Edge costs can be negative and total path 
cost function is summation of successive 
shortest path costs that are monotonically 
increasing! 

• Therefore, the path  

   cost function over ‘k’  

    is convex  

 



Universality in Elementary 
Cellular Automata 

Kangsoo Kim, Myungho Lee, Sungchul Jung 



Wolfram Rule 110 

• One of the elementary cellular automaton rules 
• Turing Complete 
• Extremely simple system (possibly naturally occurring), 

yet capable of universality 
• http://eli.fox-epste.in/rule110-full.html 

 

http://eli.fox-epste.in/rule110-full.html
http://eli.fox-epste.in/rule110-full.html
http://eli.fox-epste.in/rule110-full.html
http://eli.fox-epste.in/rule110-full.html
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Tag System 
A C D A B B E 

D A B B E C C D D 

A CCDD 

… … 

D … 

… … 

Lookup table 

Tape 



TM to Tag System 
To emulate a Turing machine with m states, we will use a tag 
system with 10m symbols: 

1 1 0 1 1 0 1 1 

Head 

TL TR 

TL = 0x110 = 6 
TR = 0x1101 = 13  

Our tag system tape will represent these numbers in unary like this: 

1 -> read k1 
0 -> read k0  



TM to Tag System 



TM to Tag System 

1 1 0 1 1 0 1 1 

Move to the right and writing 1 

1 1 0 1 1 0 1 1 

TL = 0x110 = 6 
TR = 0x1101 = 13  

TL = 0x1101 = 13 
TR = 0x110 = 6  

Hk1Hk0Lk1Lk0Lk1Lk0Lk1Lk0Lk1Lk0Lk1Lk0Lk1Lk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0 

1 -> read k1 
0 -> read k0  



TM to Tag System 

1 1 0 1 1 0 1 1 

Move to the right and writing 1 

1 1 0 1 1 0 1 1 

TL = 0x110 = 6 
TR = 0x1101 = 13  

TL = 0x1101 = 13 
TR = 0x110 = 6  

Hk1Hk0Lk1Lk0Lk1Lk0Lk1Lk0Lk1Lk0Lk1Lk0Lk1Lk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0 

1 -> read k1 
0 -> read k0  

Lk1Lk0Lk1Lk0Lk1Lk0Lk1Lk0Lk1Lk0Lk1Lk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Hk’Lk’Lk’ 

Lk1Lk0Lk1Lk0Lk1Lk0Lk1Lk0Lk1Lk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Hk’Lk’Lk’Lk’Lk’Lk’Lk’ 

Lk1Lk0Lk1Lk0Lk1Lk0Lk1Lk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Hk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’ 

Lk1Lk0Lk1Lk0Lk1Lk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Hk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk

’Lk’ 

Lk1Lk0Lk1Lk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Hk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’

Lk’Lk’Lk’ 



TM to Tag System 
Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Hk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Rk’Rk’Rk’Rk’Rk’ 

Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Hk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Rk’Rk’Rk’Rk’Rk’Rk’ 

Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Hk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’ 

Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Hk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’ 

Rk1Rk0Rk1Rk0Rk1Rk0Rk1Rk0Hk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’ 

Rk1Rk0Rk1Rk0Rk1Rk0Hk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’ 

Rk1Rk0Rk1Rk0Hk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’ 

Rk1Rk0Hk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’ 

Hk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’ 

Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Hk’1Hk’0 

Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Lk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Hk’1Hk’0Lk’1Lk’0 



TM to Tag System 
Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Hk’1Hk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0 

Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Hk’1Hk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Rk’1Rk’0 

Rk’Rk’Rk’Rk’Rk’Rk’Rk’Rk’Hk’1Hk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Rk’1Rk’0Rk’1Rk’0 

Rk’Rk’Rk’Rk’Rk’Rk’Hk’1Hk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Rk’1Rk’0Rk’1Rk’0Rk’1Rk’0 

Rk’Rk’Rk’Rk’Hk’1Hk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Rk’1Rk’0Rk’1Rk’0Rk’1Rk’0Rk’1Rk’0 

Rk’Rk’Hk’1Hk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Rk’1Rk’0Rk’1Rk’0Rk’1Rk’0Rk’1Rk’0Rk’1Rk’0 

Hk’1Hk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Lk’1Lk’0Rk’1Rk’0Rk’1Rk’0Rk’1Rk’0Rk’1Rk’0Rk’1Rk’0Rk’1Rk’0 

1 1 0 1 1 0 1 1 

Move to the right and writing 1 

1 1 0 1 1 0 1 1 

TL = 0x110 = 6 
TR = 0x1101 = 13  

TL‘= 0x1101 = 13 
TR‘= 0x110 = 6  



Tag to Cyclic Tag System 
YNN…NNNNNN: 1st Symbol of k symbols 
NYN…NNNNNN: 2nd 
NNY…NNNNNN: 3rd 
… 
NNN…NNNNNY: kth Symbol 

1st  NNNYNNN…NNYNNN…NN 

2nd NN….Y…NNN…Y…NN 

… … 

k NNN..Y…NYN…NN 

1 

2 

… 

k 

2k 

k appendants of length zero 

Symbol 
Encoding 

It’s not a 
lookup table. 
Each step the 

machine moves 
on to the next 
appendant in 

the list 
cyclically!  



1 NYN YNN (=BA) 
2 NYN YNN 
3 NYN YNN YNN NYN NNY 
4 NYN YNN YNN NYN NNY 
5 NYN YNN YNN NYN NNY 
6 NYN YNN YNN NYN NNY 
1 NYN YNN YNN NYN NNY (=ABH) 
2 NYN YNN YNN NYN NNY NYN NYN 
3 NYN YNN YNN NYN NNY NYN NYN 
4 NYN YNN YNN NYN NNY NYN NYN 
5 NYN YNN YNN NYN NNY NYN NYN 
6 NYN YNN YNN NYN NNY NYN NYN 
1 NYN YNN YNN NYN NNY NYN NYN 
2 NYN YNN YNN NYN NNY NYN NYN 

… 

Tag to Cyclic Tag System 
B A 

A B H 

H B B 

A YNN 

B NYN 

H NNY 

NYN NYN 

YNN NYN NNY 

NNY 

- 

- 

- 



CTS to Glider System 
End Front 

time 

N Leader 

Rejector 

Y 

Acceptor 

Tape data Table data Ossifier 

N 

Y 



CTS to Glider System 

YYY 

N 

1 Y 
2 YYYY 
1 YYYYN 
2 YYYYNYYY 
1 YYYYNYYYN 

… 

NNN Y 

Y 
YYY 
YYN 
YNYYY 
NYYYN 
… 



Gliders in Rule 110 
Spacing are preserved! 
=> moving data crossing tape data 

Converting moving data to tape data 
=> A4s : ossifiers 

Components getting accepted(upper) 
or rejected(lower) 



Question! 

• Will the behavior become periodic at all? 



On the Computational 
Complexity of a Game of 
Cops and Robbers 
Leah Fortier, Michael Kirsche, Marcos Arribas 



Cops and Robbers (C&R) 
 Undirected graph with n cops and one robber 

 Game takes place in turns, cops move simultaneously 
then robber moves 

 Cops win if they “catch” the robber by occupying the 
same vertex as the robber at the end of a turn 

 



Cops and Robbers with Protection (C&RP) 
 Equivalent variation of original C&R problem 

 Edges can be protected or unprotected 

 Cops can only win by taking an unprotected edge to 
catch the robber 

 



QSAT ≤T C&RP* 
 C&RP* is a variation with fixed starting points 

 QSAT expression must contain an equal number of 
existential and universal quantifiers (trivial 
modification) 

 

 



Gadgets 



QSAT ≤T C&RP 



Open Questions 
 Is there a tighter bound than PSPACE-hard on the 

complexity of C&R? 

 Is C&RP* computationally equivalent to C&RP? 



Theory of Algorithmic 
Self-Assembly

Gregory Morse and Lisa Soros

( Doty, David. "Theory of algorithmic self-assembly." Communications of 
the ACM 55.12 (2012): 78-88. )



Algorithmic Self-Assembly

(ex. crystal growth)

http://www.youtube.com/watch?v=eHfO8pmaXMg


Algorithmic Self-Assembly

(ex. DNA tiling)



abstract Tile Assembly Model (aTAM)



Why is this interesting?

Universal computation
+  Massive parallelization

Solution to NP-Complexity?



Open Questions

● Better error correction?
● Limits on parallelization?
● Optimization == pattern assembly?
● Power of cooperative binding?



etc. questions

1. Is algorithmic self-assembly using DNA 
molecules a universal model of computation?  
(yes)

2. Can DNA tile be assembled in sublinear 
time? (no)



Classic Nintendo Games are  
(Computationally) Hard 

BY: Chris Ross and Corey 
Pittman 



The General Framework 



The Gadgets 

X          ~X 

Variable 



The Gadgets 

Clause 

X           ~Y         Z 



The General Framework 



In the Game (An example) 

• Super Mario Bros. 

• No glitches (Ideal game) 

– This can be addressed 

 



In the Game (An example) 







The General Framework 



Other Games 

• Legend of Zelda 

• Pokémon 

• Donkey Kong Country 

• Metroid 

• Etc. 



Open Questions: 

• More Games? 

• Something of a novelty 

• What else can be done by humans that is 
(Computationally) hard 

• Limited utility in modern games 

 Turing-complete scripting 

 



Closing Complexity Gaps for Coloring Problems on H-
Free Graphs 
MARJANEH SAFAEI  

VILDAN ATALAY 

POOYAN BALOUCHIAN 

 



Outline 

1. Terminology 

2. Goal 

3. Classifying Precoloring Extension & 3-List Coloring 

4. List Coloring for Complete Graphs Minus a Matching 

5. List 4-Coloring for P6-Free Graphs 

6. Conclusion 

7. Questions 



1. Terminology (Continued) 

•Graph Coloring:  
• A mapping c : V → {1,2,…}  
• No two adjacent vertices of a graph G=(V, E) have the same color; i.e., c(u)≠c(v) if uv ϵ E; if |c(V)|≤ k then c is a k-

coloring  

•H-free Graph:  
• A graph G contains no subgraph isomorphic to some graph H 

•Pr: 
• The path on r vertices in a graph G 

•List Assignment: 
• A function L that assigns a list L(u) of admissible colors to each vertex in G 

•k-List Assignment: 
• L(u) ⊆ {1,…,k} for each vertex. A coloring c respects L if c(u) ∈ L(u) for each u∈V 

 

 

 



1. Terminology (Continued) 

•List Coloring: 
• Decide whether a given graph allows a coloring, such that every vertex u receives a color from some given set L(u) 

•l-list Coloring:  
• An upper bound l on the size of each L(u) 

•List k-coloring:  
• Decide whether G has a coloring that respects L, when given graph G with a k-list assignment L 

•Precoloring Extension:  
• Decide for some integer k, whether a partial k-coloring of a graph can be extended to a k-coloring of the whole 

graph 

•k-Precoloring Extension: 
• Decide whether we can extend cW to a k-coloring of G, where  

• cW : W  {1, 2, … k} for some integer k 

• W ⊆ V of G 

 

 



1. Terminology 

•k-Coloring as a special case of k-Precoloring Extension 
• W = Ø 

•k-Precoloring Extension as a special case of List k-Coloring 
• L(u) = {cW(u)} if u ϵ W and L(u) = {1, …, k} if u ϵ W \ V.                                        

•List k-Coloring as a special case of k-List Coloring. 

•k-Coloring is NP-Complete for G  

•  k-Precoloring Extension is NP-Complete for G 

•  List k-Coloring is NP-Complete  

•  k-List Coloring is NP-Complete 
 

 

 

 

k-Coloring 

k-Precoloring 
Extension 

List k-Coloring 

k-List Coloring 



2. Goal 

1. Classify the Precoloring Extension problem and the l-List Coloring problem for  
H-free graphs 

2. 3-List Coloring is NP-Complete for n-vertex graphs of minimum degree n-2 

3. List 4-Coloring is NP-Complete for P6-Free graphs 

 

 



3. Classifying Precoloring Extension & 3-List Coloring (Continued) 

 

•Theorem 1. Let H be a fixed graph. If H is a (not necessarily proper) induced sub-graph of P4 or of  
P1+P3, then Coloring can be solved in polynomial time for H-free graphs; otherwise, it is  
NP-Complete for H-free graphs. 
• The disjoint union of two graphs G and H is denoted G+H. 

 

•Lemma 1. List Coloring can be solved in O((n+k)5/2) time on n-vertex complete graphs with a k-list 
assignment. 

 
 

 

 

 

 

 



3. Classifying Precoloring Extension & 3-List Coloring 

 

•Theorem 2. Let l be a fixed integer, and let H be a fixed graph. If l ≤ 2 or H is a (not necessarily 
proper) induced sub-graph of P3, then l-List Coloring is polynomial time solvable on H-free graphs; 
otherwise, l-List Coloring is NP-Complete for H-free graphs. 

 

•Theorem 3. Let H be a fixed graph. If H is a (not necessarily proper) induced sub-graph of P4 or of  
P1 + P3, then Precoloring Extension can be solved in polynomial time for H-free graphs; otherwise it is 
NP-Complete for H-free graphs. 

 

 

 

 

 

 



4. List Coloring for Complete Graphs Minus a Matching (Continued) 

 

◦ Using Reduction: Theorem 4. The 3-List Coloring problem is NP-Complete for complete graphs minus a 
matching. 
◦ A REDUCTION from NOT-ALL-EQUAL(≤3, 2/3)-SATISFIABILITY. 

◦ NOT-ALL-EQUAL-3-SATISFIABILITY: At least one TRUE and one FALSE literal in each clause 

◦ NOT-ALL-EQUAL(≤3, 2/3)-SATISFIABILITY: Input is an instance I with the following properties:  

I. each CI contains 2 or 3 literals which are all positive,  

II. each literal occurs in at most three clauses.  

 

◦ Using Lemma 1: Theorem 5. The List Coloring problem can be solved in O(2p(n+k)5/2) time on pairs (G, L) 
where G is an n-vertex graph with p pairs of nonadjacent vertices and L is a k-list assignment. 

 
 

 

 

  

  

  



4. List Coloring for Complete Graphs Minus a Matching 

 
 

 

 

  

  

  



5. List 4-Coloring for P6-Free Graphs 

◦ Using Reduction: Theorem 6. The List 4-Coloring problem is NP-complete for P6-free graphs. 
◦ Reduce from NOT-ALL-EQUAL-3-SATISFIABILITY with positive literals 

◦ Given an instance I of NOT-ALL-EQUAL-3-SATISFIABILITY, build a  graph GI with 4-list assignment L. 

◦ GI is shown to be P6-free and has a coloring that respects L if and only if I has a satisfying truth assignment.  

 

 

 

 
 

 

 

  

  

  



6. Conclusion 

 

•k-Coloring, k-Precoloring Extension and List k-Coloring behave similarly on P6-free graphs 

 

•The NP-Completeness result obtained on List 4-Coloring for P6-free graphs indicates: 
• 4-Coloring for P6-free graphs is NP-Complete 

• New proof techniques not based on subroutines that solve List 4-Coloring are required for proving 
polynomial-time solvability. 

 

 

  

  

  



7. Questions 

Determine the computational complexity of: 

a) coloring for AT-free graphs 

b) List 4-Coloring for (P2 + P3)-free graphs, for 2P3-free graphs and for (P2 + P4)-free graphs? 

c) The open cases marked “?” in Table 1 

 
 

 

 

  

  

  



  

Deterministic Function Computation 
with Chemical Reaction Networks

Ho-Lin Chen, David Doty, David Soloveichik

Fast Forward Presentation by

Brent Miller

&

 Emily Sassano



  



  

Chemical Reaction Networks (CRN):
Modivation

● A cells method for computation and memory 
● Widely used to model signaling and regulatory 

networks
– The computation that is achievable by CRNs is not 

well understood

● We need a better understanding to engineer 
controllers for artificial biochemical systems



  

Chemical Reaction Network Model

● Finite set of species {A, B, C..}. Each with a 
state (non-negative integer) representing the 
molecular count of each species.

● Finite set of reactions. 

                                A + B → C 
– This reaction decrease both A and B's molecular 

count by 1 and increases C's by 1. 

– Each reaction also has an associated rate constant 
k in units of liters x molecules-1 x sec-1 



  

Chemical Reaction Network Model

Probability a
j
 of the reaction 

in time instance dt
Reaction j 

V = volume of solution
K = rate constant
# = the number of molecules 

A → 

A + B →

A + A → 

k . #A

k/v. #A .#B

k/v.  #A.  (#A-1)/2



  

CRCs and Semilinear Functions

● Every function that 
is stably computed 
by a CRC(chemical 
reaction computer) is 
semilinear because 
we can stably 
decide the graph of 
f with a 
CRD(chemical reaction 
decider). 



  

Semilinear Functions as Piecewise 
Linear Functions



  

Semilinear Functions as Piecewise 
Linear Functions

● Every semilinear 
function can be 
piecewise defined by 
linear functions with 
decisions as semilinear 
predicates 



  

Deciding a Semilinear Function

● Given this simple piecewise definition,

the following computation is done in parallel.



  

Deciding a Semilinear Function

● Given this simple piecewise definition,

the following computation is done in parallel.

– Each of the m partial functions f
i
 is computed by a CRC



  

Deciding a Semilinear Function

● Given this simple piecewise definition,

the following computation is done in parallel.

– Each of the m partial functions f
i
 is computed by a CRC

– Each semilinear predicate is computed by a CRD



  

Deciding a Semilinear Function

● Given this simple piecewise definition,

the following computation is done in parallel.

– Each of the m partial functions f
i
 is computed by a CRC

– Each semilinear predicate is computed by a CRD

– A single predicate will stabilize to true, and it will act as 
an “activator” for the output of the corresponding CRC



  

Exciting Questions!

● Why are the behaviors used in biology << then 
the behaviors of all “syntactically correct” 
CRNs?
– Why does biology use this limited set of behaviors?

– In an artificial biological system are we also 
constrained to using this set of behaviors?



  

Exploring The Turing and Super-
Turing Computational Power of 

Neural Networks

A collection of papers by: 
Hava Siegelmann et. al.

Presented by:
Gene Sher

Joshua Kuxhausen



  

Overview

● What's a Neural Network?
● How Powerful Are Neural Networks?
● Rational Valued Recurrent Neural Networks
● Real Valued Recurrent Neural Networks
● Adaptive Rational Valued Neural Networks
● Adaptive Real Valued Neural Networks
● Physical Implementation
● What does it all mean?



  

Neural Network

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

L1    L2 L3

3 Layers total

Layer Densities

 3     1   3

...494
Input Output

The randomly evolved NN topology

-1       -0.5          0 0.5  1

...425

...396

...212

...407

Layer Indices

Feedforward Recurrent



  

Neural Process using a 
saturated-linear function

x1

x2

u1

oa1
a2

b1

c



  

Retrieval Network



  

Rational Valued RNN

Rational



  

Real Valued RNN

Real



  

Evolving Rational & Real Valued 
RNN

Both rational and real valued 
evolving/adaptive RNNs are super-
turing, and equivalently as powerful.

Real/
Rational

Adaptive_Rule 
For All Weights



  

Are any of these really realizable?
● Thorough analysis of this system was performed by, and flaws found by, Douglass Keith:

 Douglas, Keith. "Super-Turing Computation: A Case Study Analysis." Unpublished MS Thesis, Carnegie Mellon University 
(2003).

● “Since this weight can be an arbitrary real numbered value, it can do its trick by simply having the non-Turing computable 
arrangement of gates stored in it as a weight. (This makes it not too surprising that the Siegelmann networks can do one thing 
super-Turing: whether they can compute other super-Turing functions is not discussed.)”

● “She does not give the proof of the above result herself, but instead appeals to a volume by Balcázar, Díaz and Cabarró 1995. 
However, this volume does not support her claim as fully stated.”

● “Note the difficulty even in computing a constant function. Since the weights of each node in a Siegelmann network are of 
infinite precision, outputting their value directly is impossible by the protocol described.”

● “Siegelmann’s networks require infinite sensitivity in order to make use of infinitely large “registers” (interpreting them in the 
usual way as containing a number between 0 and 1). Siegelmann uses Cantor set style encoding (in order to minimize the 
difficulties in recognition between two close register values). However, this trades one problem for another. How do the Cantor 
sets in turn get represented?”

● How exactly is it super turing “The class of languages decided by rational and real Ev-RNN’s in polynomial time corresponds 
precisely to the complexity class P/poly"? Publications spanning the past 20 years, but details in all papers are vague.
– Journal of computer and system sciences (1991)

– Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions (1997)

– Applied Mathematics Letters

– Science 268.5210 (1995)

– The 2011 International Joint Conference on Neural Networks (IJCNN). IEEE, 2011.



  

The End

Questions:

1. What do these results mean for the field of 
Computational Intelligence?

2. Are such systems realizable?
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University of Central Florida 

 Introduction about Self-Assembly 

 A popular example of self-Assembly 

 

   

 Complexity  

 Types 

 Applications 

 Examples 

 

 

 

 

 DNA Tile self-Assembly model 

 Error correction methods 



University of Central Florida 

 Theory of Algorithmic Self-Assembly 

 

 A practical implementation of this method was conducted 

using DNA as the main basis. 

 

 Computing and Computational Universality 



University of Central Florida 

(a) Double-crossover tile with four 
sticky end  

(b).Representation of a tile as a 
square with sides labeled by string 
“glues”  

(c). Seven tile types. Bond strengths 
indicated by the number of small 
black squares on a side: total 
strength 2 is required to attach a tile 
to a partially formed assembly of 
tiles. One tile type is designated as 
the end, from which growth is 
assumed to nucleate.  

(d). Growth of the tiles into an 
assembly with the discrete 
Sierpinski triangle pattern. 

  

[1] D. Doty, “Theory of Algorithmic self-assembly”, Communications of the ACM, vol. 55, Issue 12, pp. 78-88, Dec 2012. 

 



University of Central Florida 

(a). Growth error  
 
 
 
 
 
 
 
 
 
 
 
(b). 2×2 proofreading. Each 
tile type t is replaced by a 
k×k block of tile types, with 
glues internal to the block 
unique to t. 

[1] D. Doty, “Theory of Algorithmic self-assembly”, Communications of the ACM, vol. 55, Issue 12, pp. 78-88, Dec 2012. 



University of Central Florida 

 Tile Complexity 

 

 Computational Complexity 

 NP-Complete  

 

 Assembly Time Complexity 

 Linear for a shape of size N 



University of Central Florida 

Types of Self-Assembly  

 Static: involves systems that are at global or 

local equilibrium and do not dissipate energy.  



University of Central Florida 

Types of Self-Assembly  

 Dynamic: the interactions responsible for the 

formation of structures or patterns between 

components only occur if the system is 

dissipating energy.   



University of Central Florida 

Present and Future Application 
 Crystallization at All Scales 
 Robotics and Manufacturing 
 Nano-science and Technology 
 Microelectronics 
 Netted Systems 

 
Although self-assembly originated in the study of 

molecules, it is a strategy that is, in principle, 
applicable at all scales. 



University of Central Florida 

 



University of Central Florida 

DNA Brick Structure  Similar to LEGO Brick 

Structure  



University of Central Florida 

[1] D. Doty, “Theory of Algorithmic self-assembly”, Communications of the ACM, vol. 55, Issue 

12, pp. 78-88, Dec 2012. 

[2] M. Cook, Y. Fu, and R. Schweller, “Tempreture 1 self-assembly: deterministic assembly in 3D 

and probabilistic assembly in 2D”, SIAM: Proceedings of the twenty-second annual ACM-SIAM 

symposium on Discrete Algorithms (SODA’11), Jan 2011. 
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Algorithms (SODA’11), Jan 2011. 
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and Martin M. Hanczyc, “Specific and reversible DNA-directed of oil-in-water emulsion 

droplets”, PNSA, Vol. 109, Issue 50, (2012).  

[6] Nathan J. Mlot, Craig A. Tovey and David L. Hu, “Fire ants self-assemble into waterproof rafts 

to survive floods”, PNSA., (2011).  
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The tile self-assembly is build on two assumptions, the 

one is tiles never detach from an assembly, the other is 

tiles only attach when their binding strength exceed the 

temperature threshold. These are not the truth, how can 

we improve these assumptions to make the model more 

realistic? 



ON OPTIMAL AND BALANCED SPARSE 
MATRIX PARTITIONING PROBLEMS

Fast Forward

by Kyle Burnett, Brian Woods, 

John Edison



THE PROBLEM - DEFINITION

 A constrained version of the parallel sparse matrix-vector multiplication problem can be 
reduced to a form of the hypergraph partitioning problem

 Hypergraph models have proved to be convenient abstractions in formulating the partitioning 
problems

 The hypergraph partitioning problems involves dividing a given hypergraph into two or more 
parts while satisfying some balancing condition

Figure 1: Partitioning a Sparse Matrix [2]



THE PROBLEM - APPLICATIONS

 Sparse matrix partitioning is an important problem arising in many applications including 

 sparse matrix ordering

 parallelization of sparse matrix vector multiplication operations for distributed shared memory systems

 crypto-system analysis

 All these applications, although different in nature, have two distinct partitioning constraints 
and three distinct partitioning objective functions [3]



THE PROBLEM - COMPLEXITY

 The standard one dimensional (1D) partitioning scheme of sparse matrices partitions either the 
rows or the columns of the matrix

 The standard 1D sparse matrix partitioning problem which is equivalent to the hypergraph
partitioning problem is NP-hard

 In this work, we consider a variant of the standard 1D partitioning problem, called order 
restricted 1D partitioning problem

 A modified version of the algorithm presented by B. W. Kernighan is used to solve the 
restricted problem [3]



CUT-NET METRIC

 The first metric that the authors cover is the 
cut-net metric.  We begin with the same 
collection of vertices V and no edges. For each 
net ni in H, we add an edge from the first 
vertex in ni to the last vertex in ni with weight 1. 
If the vertex already exists, we add 1 to the 
weight. In the figure on the right, we start from 
the hypergraph in the top left. For h1, we add 
an edge from 1 to 4 with weight one. For h2, 
we add an edge from 1 to 3 with weight one. 
Since there is already an edge from 1 to 4, for 
h3, we simply increase the weight of that edge 
by one.

Figure 2: Original hypergraph and it’s Cut-net, 

connectivity-1, and SOED equivalents [3]



CONNECTIVITY-1 AND SOED METRICS

 The connectivity-1 metric is also 
straightforward. We begin in the same fashion 
as before — with a collection of unconnected 
vertices. For each consecutive pair in each net ni

in H, we add an edge from the first vertex in the 
pair to the last vertex in the pair with weight 1. 
If it already exists we add 1 to the weight of 
the edge.

 The sum of the edge weights from cut-net 
metric and the connectivity-1 metric constructs 
the SOED metric

Figure 2: Original hypergraph and it’s Cut-net, 

connectivity-1, and SOED equivalents [3]



KERNIGHAN’S DYNAMIC PROGRAMMING ALGORITHM

 Input: A weighted graph G = (V, E) 
whose vertices are ordered, and an 
upper bound U

 Output: A set of Breakpoints z1, z2, …, 
zk in descending order

T(1) ← 0

R(1) ← 0

for x from 2 to M + 1 do

Y ← {y|dy,x-1 ≤ U}

T(x) ← miny∈Y(T(y) + C(x,y))

R(x) ← argminy∈Y(T(y) + C(x,y))

➤Break ties by choosing minimum y

z ← M + 1

while z > 1 do

z ← R(z)

OUTPUT z 



PROPOSED ALGORITHM

 Input: A weighted graph G = (V, E) 
whose vertices are ordered, a number of 
parts K ∈ ℕ, and upper and lower 
bounds L, U on part sizes

 Output: A set of Breakpoints z1, z2, …, 
zK in descending order

Find xmin such that L ≤ dy,xmin - 1 and L > dy,xmin - 2

T(x,0) ← inf for all x ≤ M

for x from 0 to xmin - 1 do

T(x,k) ← inf for all k ∈ 0, …, K

T(xmin,1) ← d1,xmin

R(1,0) ← 0

for x from xmin to M + 1 do

for k from 1 to K do

Y ← {y|L≤dy,x-1≤U}

T(x,k) ← miny∈Y(T(y,k - 1) + C(x,y))

R(x,k) ← argminy∈Y(T(y,k - 1) + C(x,y))

➤Break ties by choosing the minimum y

z ← M + 1

k ← K

while z > 1 do

z ← R(z, k)

k ← k - 1

OUTPUT z



RESULTS

 Using a collection of sparse matrices from the University of Florida, the authors tested their 
algorithm’s performance compared with PaToH, an established hypergraph partitioner

 PaToH uses a multilevel framework that can be broken down into three phases

 Coarsening – hierarchical and agglomerative clustering

 initial partitioning – greedy hypergraph growing algorithm

 Uncoarsening – boundary FM hypergraph bitartitioning algorithm

 Setting K to 16 quickly indicated that PaToH is best suited for lower values of K, and the 
dynamic programming algorithm is not

 The dynamic programming solution performed twice as fast as PaToH when K was large, tried 
raising K to 256



QUESTIONS

 Can the algorithm be improved to run as fast 
as PaToH even for partitioning input into a 
small number of large parts?

 Are there any row-ordering heuristics that 
could be used in the initialization stage of the 
algorithm to speed up the average run time?

 Does sequential partitioning seem like a good 
approach?

 Could a k-nearest neighbor clustering 
algorithm be used to find the optimal 
partitions?

What about agent based simulation?
Figure 3: An optimal partitioning procedure by

Kernighan’s dynamic programming algorithm [1]
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Why focus on reducing energy consumption

• The ever‐increasing energy 
consumption of data centers

• Explosive growth of personal 
computing devices

• Smart phones, handhelds, 
notebooks...

• Energy conservation means 
INCREASING RUNTIME of your 
device

Google's server farm in Douglas County, Iowa 

http://www.dailymail.co.uk/sciencetech/article‐2219188/Inside‐Google‐pictures‐gives‐look‐8‐vast‐data‐centres.html



Energy management across the computing desk

• Computer architecture (hardware design)

• Virtual Machine Hypervisors

• Operating System

• System Software

•But Applications and Algorithms ???



Two Energy models

• Work‐oblivious
• Server consumes same power irrespective of the working load
• E.g., 2004 IBM Power5

• Work‐proportional
• A linear relationship between computational complexity and energy usage of 
an algorithm on a server running at a fixed frequency

• For parallel algorithms

BUT experiment proves that energy consumption is neither oblivious 
nor proportional



Energy model for an algorithm 

• A weighted linear combination of 
• The work complexity of Α

• Time complexity in the traditional RAM model
• The number of parallel accesses to the memory

• A simple variation of the parallel disk I/O model

• Only consider power drawn by processors and memory. Storage 
power is beyond this scope.

The first work naturally combines the work complexity and parallel I/O 
complexity



Processor Power

• Leakage power drawn by the processor clock
• The power drawn by the processing elements, which is determined by 
the number of operations performed by the processor

Computational 
Power

Leakage 
Power

Total Time  
of algorithm

Total Time of the Non‐IO 
operations by the algorithm

Power 
Consumption per 

operation



Memory Power

Leakage 
Power

Memory 
Power

Incremental cost for banks to be 
activated and waiting for command

Incremental cost of various 
commands



A “complex” energy complexity model

• Combine processor and memory power

Do not worry!



• After derivation

Total time of non‐
I/O operations

(work)

Activation cycles
(latency)

Algorithm Independent
(P ‐ # of blocks, 

B – # of items per block)

Average I/O 
parallelism of 
the algorithm 

Final Energy Complexity Model



Other Contributions

• Simulations of broad classes of algorithms
• Usually do not change the work complexities but mildly blowup the parallel 
I/O complexity parameter

• Energy complexity analysis of classic algorithms sorting, matrix 
transpose, matrix multiplication and matrix vector multiplication.



Simulations of some certain class of algorithms

• Simulations of broad classes of algorithms
• Usually do not change the work complexities but mildly blowup the parallel I/O complexity 
parameter

• Definition of k‐stripped algorithm and bounded algorithm
• Two sufficient conditions for simulation



Corollaries for Specific Problems

• Inner Product of two vectors of length N
• Work complexity: O(ܰ)                 I/O complexity: O(ܰ/ܤ)
• Energy complexity:  Θሺܰሻ

• Sorting
• Work	complexity:	Oሺ݈ܰܰ݃݋ሻ										I/O complexity: O(ே

஻
log௉ሺܰ/ܤሻ)

• Energy complexity: Θሺ݈ܰܰ݃݋ሻ
• Permuting a given vector of N items according to permutation

• Work complexity: O(ܰ)         I/O complexity: Ω(min	ሺܰ, ே
஻
logெሺܰ/ܤሻሻ)

• Energy complexity of Θ(ܰ log௉ሺܰ/ܤሻ)
• Matrix Transpose

• Apply recursive Matrix Transpose algorithm which is (P/2, 1) parallelizable
• Energy complexity of Θ(ܰ logଵା௉ሺܤ/ܲሻ)



• What are the similarities and differences between the 
energy complexity model and cache oblivious model?

Frigo, Matteo, et al. "Cache‐oblivious algorithms." Foundations of 
Computer Science, 1999. 40th Annual Symposium on. IEEE, 1999.

• How to efficiently calculate the energy complexity of 
an algorithm?


