

Generally useful information.

• The notation z = <x,y> denotes the pairing function with inverses x = <z>1 and y = <z>2.

• The minimization notation µ y [P(…,y)] means the least y (starting at 0) such that P(…,y) is
true. The bounded minimization (acceptable in primitive recursive functions) notation
µ y (u≤y≤v) [P(…,y)] means the least y (starting at u and ending at v) such that P(…,y) is true.
Unlike the text, I find it convenient to define µ y (u≤y≤v) [P(…,y)] to be v+1, when no y
satisfies this bounded minimization.

• The tilde symbol, ~, means the complement. Thus, set ~S is the set complement of set S, and
predicate ~P(x) is the logical complement of predicate P(x).

• A function P is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus,
P(x) means P evaluates to true on x, but we can also take advantage of the fact that true is 1 and
false is 0 in formulas like y × P(x), which would evaluate to either y (if P(x)) or 0 (if ~P(x)).

• A set S is recursive if S has a total recursive characteristic function χS, such that x ∈ S ⇔
χS(x). Note χS is a predicate. Thus, it evaluates to 0 (false), if x ∉ S.

• When I say a set S is re, unless I explicitly say otherwise, you may assume any of the following
equivalent characterizations:
1. S is either empty or the range of a total recursive function fS.
2. S is the domain of a partial recursive function gS.

• If I say a function g is partially computable, then there is an index g (I know that’s overloading,
but that’s okay as long as we understand each other), such that Φg(x) = Φ(x, g) = g(x). Here Φ is
a universal partially recursive function.
Moreover, there is a primitive recursive function STP, such that
STP(g, x, t) is 1 (true), just in case g, started on x, halts in t or fewer steps.
STP(g, x, t) is 0 (false), otherwise.
Finally, there is another primitive recursive function VALUE, such that
VALUE(g, x, t) is g(x), whenever STP(g, x, t).
VALUE(g, x, t) is defined but meaningless if ~STP(g, x, t).

• The notation f(x)↓ means that f converges when computing with input x, but we don’t care about
the value produced. In effect, this just means that x is in the domain of f.

• The notation f(x)↑ means f diverges when computing with input x. In effect, this just means that
x is not in the domain of f.

• The Halting Problem for any effective computational system is the problem to determine of an
arbitrary effective procedure f and input x, whether or not f(x)↓ . The set of all such pairs, K0, is
a classic re non-recursive one.

• The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure f,
whether or not f is an algorithm (halts on all input). The set of all such function indices is a
classic non re one.

• A ≤m B (A many-one reduces to B) means that there exists a total recursive function f such that
x ∈ A ⇔ f(x) ∈ B. If A ≤m B and B ≤m A then we say that A ≡m B (A is many-one equivalent
to B). If the reducing function is 1-1, then we say A ≤1 B (A one-one reduces to B) and A ≡1 B
(A is one-one equivalent to B).

COT 6410 SAMPLE EXAM#1 – 2 – Spring 2014 – Hughes

COT 6410 Spring 2014 Sample Midterm#1 Name: KEY

 1. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive,
(NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by
showing some minimal quantification of some known recursive predicate.

a.) { f | domain(f) is finite } NRNC

 Justification: ∃x ∀y≥x ∀t ~STP(f, y, t)
b.) { f | domain(f) is empty } CO

 Justification: ∀x ∀t ~STP(f, x, t)
c.) { <f,x> | f(x) converges in at most 20 steps } REC

Justification: STP(f, x, 20)
d.) { f | domain(f) converges in at most 20 steps for some input x } RE

 Justification: ∃x STP(f, x, 20)
 2. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC)

recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by
listing all possible categories. No justification is required.
a.) D = ~C RE, NR

b.) D ⊆ A ∪ C REC, RE, NR
c.) D = ~B NR

d.) D = B − A REC, RE

 3. Prove that the Halting Problem (the set HALT = K0 = Lu) is not recursive (decidable) within any
formal model of computation. (Hint: A diagonalization proof is required here.)

Look at notes.

 4. Using reduction from the known undecidable HasZero, HZ = { f | ∃x f(x) = 0 }, show the non-
recursiveness (undecidability) of the problem to decide if an arbitrary partial recursive function g has
the property IsZero, Z = { f | ∀x f(x) = 0 }. Hint: there is a very simple construction that uses STP
to do this. Just giving that construction is not sufficient; you must also explain why it satisfies
the desired properties of the reduction.

HZ = { f | ∃x ∃t [STP(f, x, t) & VALUE(f, x, t) == 0] }
Let f be the index of an arbitrary effective procedure.
Define gf(y) = 1 - ∃x ∃t [STP(f, x, t) & VALUE(f, x, t) == 0]
If ∃x f(x) = 0, we will find the x and the run-time t, and so we will return 0 (1 – 1)
If ∀x f(x) ≠ 0, then we will diverge in the search process and never return a value.
Thus, f ∈ HZ iff gf ∈ Z.

COT 6410 SAMPLE EXAM#1 – 3 – Spring 2014 – Hughes

 5. Define RANGE_ALL = (f | range(f) = ℵ }.
 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound

for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.)

 ∀x ∃<y,t>[STP(f,y,t) && Value(f,y,t)=x]
 b.) Use Rice’s Theorem to prove that RANGE_ALL is undecidable.

This is non-trivial as I(x) = x ∈ RANGE_ALL and C0(x) = 0 ∉ RANGE_ALL
Let f,g be such that ∀x ϕ f(x) = ϕg(x).
f∈ RANGE_ALL ⇔ range(f) = ℵ
 ⇔ range(g) = ℵ since g outputs the same value as f for any input
 ⇔ g ∈ RANGE_ALL
Since the property is non-trivial and is an I/O property, Rice’s Theorem says it is undecidable.

 c.) Show that TOTAL ≤m RANGE_ALL, where TOTAL = { f | ∀y ϕ f(y)↓ }.

Let f be the index of an arbitrary effective procedure ϕ f. Define g such that g(f), denoted gf, is
the index of the function ϕgf

 defined by ϕgf
(x) = ϕ f(x) - ϕ f(x)+x.

f ∈ TOTAL ⇔ ∀x ϕ f(x)↓ ⇔ ∀x ϕgf
(x) = x ⇒ ∀x x∈range(gf) ⇒ gf ∈ RANGE_ALL

f ∉ TOTAL ⇔ ∃x ϕ f(x)↑ ⇔ ∃x ϕgf
(x)↑ ⇒ ∃x x∉range(gf) ⇒ gf ∉ RANGE_ALL

This shows that TOTAL ≤m RANGE_ALL, as was desired.
 d.) Show that RANGE_ALL ≤m TOTAL.

Let f be the index of an arbitrary effective procedure ϕ f. Define g such that g(f), denoted gf, is
the index of the function ϕgf

 defined by ϕgf
(x) = ∃<y,t> [STP(f,y,t) & Value(f,y,t)=x].

f ∈ RANGE_ALL ⇔ ∀x ∃<y,t> [STP(f,y,t) && Value(f,y,t)=x] ⇔ ∀x ϕgf
(x)↓ ⇔ gf ∈ TOTAL

This shows that RANGE_ALL ≤m TOTAL, as was desired.
 e.) From a.) through d.) what can you conclude about the complexity of RANGE_ALL?

a) shows that RANGE_ALL is no more complex than others that must use the alternating
qualifiers ∀∃ . b) shows the problem is non-recursive. c) and d) combine to show that the
problem is in fact of equal complexity with the non-re problem TOTAL, so the result in a) was
optimal.

COT 6410 SAMPLE EXAM#1 – 4 – Spring 2014 – Hughes

 6. This is a simple question concerning Rice’s Theorem.
 a.) State the strong form of Rice’s Theorem. Be sure to cover all conditions for it to apply.

Let P be a property of indices of partial recursive function such that the set
SP = { f | f has property P } has the following two restrictions
(1) SP is non-trivial. This means that SP is neither empty nor is it the set of all indices.
(2) P is an I/O behavior. That is, if f and g are two partial recursive functions whose I/O

behaviors are indistinguishable, ∀x f(x)=g(x), then either both of f and g have property P
or neither has property P.

Then P is undecidable.
 b.) Describe a set of partial recursive functions whose membership cannot be shown undecidable

through Rice’s Theorem. What condition is violated by your example?
There are many possibilities here. For example { f | ∃x ~STP(f,x,x) } is not an I/O property and
{ f | ∃x f(x) ≠ f(x) } is trivial (empty).

 7. Using the definition that S is recursively enumerable iff S is either empty or the range of some
algorithm fS (total recursive function), prove that if both S and its complement ~S are recursively
enumerable then S is decidable. To get full credit, you must show the characteristic function for S,
χS, in all cases. Be careful to handle the extreme cases (there are two of them). Hint: This is not an
empty suggestion.

Let S = φ then ~S = ℵ . Both are re and ∀x χS(x) = 0 is S’s characteristic function.

Let S = ℵ then ~S = φ . Both are re and ∀x χS(x) = 1 is S’s characteristic function.

Assume then that S ≠ φ and S ≠ ℵ then each of S and ~S is enumerated by some total recursive
function. Let S be enumerated by fS and ~S by f~S. Define

χS(x) = fS(µy [fS(y)==x || f~S(y)==x]) == x.
Moreover, the minimization, while conceptually unbounded, always converges because both fS
and by f~S are algorithms.
Further, x must be in the range of one and only one of fS or f~S. Thus,
∃y fS (y) == x or ∃y f~S(y) == x.

The min operator (µy) finds the smallest such y and the predicate

fS(µy [fS(y)==x || f~S(y)==x]) == x checks that x is in the range of fS.

If it is, then χS(x) = 1 else χS(x) = 0, as desired.

