Generally useful information.

- The notation $\mathbf{z}=\langle\mathbf{x}, \mathbf{y}\rangle$ denotes the pairing function with inverses $\mathbf{x}=\langle\mathbf{z}\rangle_{1}$ and $\mathbf{y}=\langle\mathbf{z}\rangle_{2}$.
- The minimization notation $\boldsymbol{\mu} \mathbf{y}[\mathbf{P}(\ldots, \mathbf{y})]$ means the least \mathbf{y} (starting at $\mathbf{0}$) such that $\mathbf{P}(\ldots, \mathbf{y})$ is true. The bounded minimization (acceptable in primitive recursive functions) notation $\boldsymbol{\mu} \mathbf{y}(\mathbf{u} \leq \mathbf{y} \leq \mathbf{v})[\mathbf{P}(\ldots, \mathbf{y})]$ means the least \mathbf{y} (starting at \mathbf{u} and ending at $\mathbf{v})$ such that $\mathbf{P}(\ldots, \mathbf{y})$ is true. Unlike the text, I find it convenient to define $\mu \mathbf{y}(\mathbf{u} \leq \mathbf{y} \leq \mathbf{v})[\mathbf{P}(\ldots, \mathbf{y})]$ to be $\mathbf{v}+\mathbf{1}$, when no \mathbf{y} satisfies this bounded minimization.
- The tilde symbol, \sim, means the complement. Thus, set $\sim \mathbf{S}$ is the set complement of set \mathbf{S}, and predicate $\sim \mathbf{P}(\mathbf{x})$ is the logical complement of predicate $\mathbf{P}(\mathbf{x})$.
- A function \mathbf{P} is a predicate if it is a logical function that returns either $\mathbf{1}$ (true) or $\mathbf{0}$ (false). Thus, $\mathbf{P}(\mathbf{x})$ means \mathbf{P} evaluates to true on \mathbf{x}, but we can also take advantage of the fact that true is $\mathbf{1}$ and false is $\mathbf{0}$ in formulas like $\mathbf{y} \times \mathbf{P}(\mathbf{x})$, which would evaluate to either \mathbf{y} (if $\mathbf{P}(\mathbf{x})$) or $\mathbf{0}$ (if $\sim \mathbf{P}(\mathbf{x})$).
- A set \mathbf{S} is recursive if \mathbf{S} has a total recursive characteristic function $\chi_{\mathbf{s}}$, such that $\mathbf{x} \in \mathbf{S} \Leftrightarrow$ $\chi_{\mathbf{s}}(\mathbf{x})$. Note $\chi_{\mathbf{s}}$ is a predicate. Thus, it evaluates to $\mathbf{0}$ (false), if $\mathbf{x} \notin \mathbf{S}$.
- When I say a set \mathbf{S} is re, unless I explicitly say otherwise, you may assume any of the following equivalent characterizations:

1. \mathbf{S} is either empty or the range of a total recursive function $\mathbf{f}_{\mathbf{S}}$.
2. \mathbf{S} is the domain of a partial recursive function $\mathbf{g}_{\mathbf{S}}$.

- If I say a function \mathbf{g} is partially computable, then there is an index \mathbf{g} (I know that's overloading, but that's okay as long as we understand each other), such that $\boldsymbol{\Phi}_{\mathbf{g}}(\mathbf{x})=\boldsymbol{\Phi}(\mathbf{x}, \mathbf{g})=\mathbf{g}(\mathbf{x})$. Here $\boldsymbol{\Phi}$ is a universal partially recursive function.
Moreover, there is a primitive recursive function STP, such that
$\operatorname{STP}(\mathbf{g}, \mathbf{x}, \mathbf{t})$ is $\mathbf{1}$ (true), just in case \mathbf{g}, started on \mathbf{x}, halts in \mathbf{t} or fewer steps.
$\operatorname{STP}(\mathbf{g}, \mathbf{x}, \mathbf{t})$ is $\mathbf{0}$ (false), otherwise.
Finally, there is another primitive recursive function VALUE, such that
VALUE ($\mathbf{g}, \mathbf{x}, \mathbf{t})$ is $\mathbf{g}(\mathbf{x})$, whenever $\operatorname{STP}(\mathbf{g}, \mathbf{x}, \mathbf{t})$.
$\operatorname{VALUE}(\mathbf{g}, \mathbf{x}, \mathbf{t})$ is defined but meaningless if $\sim \operatorname{STP}(\mathbf{g}, \mathbf{x}, \mathbf{t})$.
- The notation $\mathbf{f}(\mathbf{x}) \downarrow$ means that \mathbf{f} converges when computing with input \mathbf{x}, but we don't care about the value produced. In effect, this just means that \mathbf{x} is in the domain of \mathbf{f}.
- The notation $\mathbf{f}(\mathbf{x}) \uparrow$ means \mathbf{f} diverges when computing with input \mathbf{x}. In effect, this just means that \mathbf{x} is not in the domain of \mathbf{f}.
- The Halting Problem for any effective computational system is the problem to determine of an arbitrary effective procedure \mathbf{f} and input \mathbf{x}, whether or not $\mathbf{f}(\mathbf{x}) \downarrow$. The set of all such pairs, $\mathbf{K}_{\mathbf{0}}$, is a classic re non-recursive one.
- The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure \mathbf{f}, whether or not \mathbf{f} is an algorithm (halts on all input). The set of all such function indices is a classic non re one.
- $\mathbf{A} \leq_{\mathrm{m}} \mathbf{B}(\mathbf{A}$ many-one reduces to $\mathbf{B})$ means that there exists a total recursive function \mathbf{f} such that $\mathbf{x} \in \mathbf{A} \Leftrightarrow \mathbf{f}(\mathbf{x}) \in \mathbf{B}$. If $\mathbf{A} \leq_{\mathrm{m}} \mathbf{B}$ and $\mathbf{B} \leq_{\mathrm{m}} \mathbf{A}$ then we say that $\mathbf{A} \equiv_{\mathrm{m}} \mathbf{B}$ (A is many-one equivalent to \mathbf{B}). If the reducing function is 1-1, then we say $\mathbf{A} \leq_{1} \mathbf{B}(\mathbf{A}$ one-one reduces to $\mathbf{B})$ and $\mathbf{A} \equiv_{1} \mathbf{B}$ (\mathbf{A} is one-one equivalent to \mathbf{B}).

1. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.
a.) $\{f \mid$ domain(f) is finite $\}$ \qquad
Justification: $\exists \mathrm{x} \forall \mathrm{y} \geq \mathrm{x} \forall \mathrm{t} \sim \operatorname{STP}(\mathrm{f}, \mathrm{y}, \mathrm{t})$
b.) $\{\mathbf{f} \mid$ domain(f) is empty $\}$

Justification: $\forall x \forall t \sim \operatorname{STP}(f, x, t)$
c.) $\{<\mathbf{f}, \mathbf{x}\rangle \mid f(x)$ converges in at most 20 steps $\}$

Justification: $\operatorname{STP}(f, x, 20)$
d.) $\{f \mid$ domain(f) converges in at most $\mathbf{2 0}$ steps for some input $\mathbf{x}\}$
\qquad
CO

Justification: ヨx $\operatorname{STP}(\mathbf{f}, \mathbf{x}, 20)$
2. Let set \mathbf{A} be recursive, \mathbf{B} be re non-recursive and \mathbf{C} be non-re. Choosing from among (REC) recursive, (RE) re non-recursive, (NR) non-re, categorize the set \mathbf{D} in each of a) through d) by listing all possible categories. No justification is required.
$\begin{array}{ll}\text { a.) } \mathbf{D}=\sim \mathbf{C} & \text { RE, NR } \\ \text { b.) } \mathbf{D} \subseteq \mathbf{A} \cup \mathbf{C} & \text { REC, RE, NR } \\ \text { c.) } \mathbf{D}=\sim \mathbf{B} & \mathbf{N R} \\ \text { d.) } \mathbf{D}=\mathbf{B}-\mathbf{A} \quad 1 & \text { REC, RE }\end{array}$
3. Prove that the Halting Problem (the set HALT $=\mathbf{K}_{\mathbf{0}}=\mathbf{L}_{\mathbf{u}}$) is not recursive (decidable) within any formal model of computation. (Hint: A diagonalization proof is required here.)

Look at notes.

4. Using reduction from the known undecidable HasZero, $\mathbf{H Z}=\{\mathbf{f} \mid \boldsymbol{\exists x} \mathbf{f}(\mathbf{x})=\mathbf{0}\}$, show the nonrecursiveness (undecidability) of the problem to decide if an arbitrary partial recursive function \mathbf{g} has the property IsZero, $\mathbf{Z}=\{\mathbf{f} \mid \forall \mathbf{x} \mathbf{f}(\mathbf{x})=\mathbf{0}\}$. Hint: there is a very simple construction that uses STP to do this. Just giving that construction is not sufficient; you must also explain why it satisfies the desired properties of the reduction.
$H Z=\{f \mid \exists x \exists t[\operatorname{STP}(f, x, t) \& \operatorname{VALUE}(f, x, t)==0]\}$
Let f be the index of an arbitrary effective procedure.
Define $g_{f}(y)=1-\exists x \exists t[\operatorname{STP}(f, x, t) \& \operatorname{VALUE}(f, x, t)==0]$
If $\exists x f(x)=0$, we will find the x and the run-time t, and so we will return $0(1-1)$
If $\forall x f(x) \neq 0$, then we will diverge in the search process and never return a value.
Thus, $f \in H Z$ iff $g_{f} \in Z$.
5. Define RANGE_ALL $=(\mathbf{f} \mid$ range $(\mathbf{f})=\boldsymbol{\mathcal { N }}\}$.
a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.)
$\boldsymbol{\forall x} \boldsymbol{\exists}<\mathbf{y}, \mathbf{t}>[\operatorname{STP}(\mathbf{f}, \mathbf{y}, \mathbf{t}) \boldsymbol{\&} \boldsymbol{\&} \operatorname{Value}(\mathbf{f}, \mathbf{y}, \mathrm{t})=\mathbf{x}]$
b.) Use Rice's Theorem to prove that RANGE_ALL is undecidable.

This is non-trivial as $I(x)=x \in$ RANGE_ALL and $C_{0}(x)=0 \notin$ RANGE_ALL
Let f, g be such that $\forall \mathrm{x} \varphi_{\mathrm{f}}(\mathrm{x})=\varphi_{\mathrm{g}}(\mathrm{x})$.
$f \in$ RANGE_ALL $\quad \Leftrightarrow$ range $(f)=\kappa$

$$
\Leftrightarrow \text { range }(g)=\mathcal{\aleph} \quad \text { since } g \text { outputs the same value as } f \text { for any input }
$$

$$
\Leftrightarrow \mathbf{g} \in \text { RANGE_ALL }
$$

Since the property is non-trivial and is an I/O property, Rice's Theorem says it is undecidable.
c.) Show that TOTAL \leq_{m} RANGE_ALL, where TOTAL $=\left\{\mathbf{f} \mid \forall \mathbf{y} \varphi_{\mathrm{f}}(\mathbf{y}) \downarrow\right\}$.

Let f be the index of an arbitrary effective procedure φ_{f}. Define g such that $g(f)$, denoted g_{f}, is the index of the function $\varphi_{g_{f}}$ defined by $\varphi_{g_{f}}(x)=\varphi_{f}(x)-\varphi_{f}(x)+x$.
$\mathrm{f} \in$ TOTAL $\Leftrightarrow \forall \mathrm{x} \varphi_{\mathrm{f}}(\mathrm{x}) \downarrow \Leftrightarrow \forall \mathrm{x} \varphi_{\mathrm{g}_{\mathrm{f}}}(\mathrm{x})=\mathrm{x} \Rightarrow \forall \mathrm{x} \in \operatorname{range}\left(\mathrm{g}_{\mathrm{f}}\right) \Rightarrow \mathrm{g}_{\mathrm{f}} \in$ RANGE_ALL
$\mathrm{f} \notin$ TOTAL $\Leftrightarrow \exists \mathrm{x} \varphi_{\mathrm{f}}(\mathrm{x}) \uparrow \Leftrightarrow \exists \mathrm{x}_{\mathrm{g}}(\mathrm{x}) \uparrow \Rightarrow \exists \mathrm{x} \mathbf{x} \notin$ range $\left(\mathrm{g}_{\mathrm{f}}\right) \Rightarrow \mathrm{g}_{\mathrm{f}} \notin$ RANGE_ALL
This shows that TOTAL \leq_{m} RANGE_ALL, as was desired.
d.) Show that RANGE_ALL \leq_{m} TOTAL.

Let f be the index of an arbitrary effective procedure φ_{f}. Define g such that $g(f)$, denoted g_{f}, is the index of the function $\varphi_{g_{f}}$ defined by $\varphi_{g_{f}}(x)=\exists<y, t>[\operatorname{STP}(f, y, t) \& \operatorname{Value}(f, y, t)=x]$.
$\mathbf{f} \in$ RANGE_ALL $\Leftrightarrow \forall x \exists<\mathbf{y}, \mathbf{t}>[\operatorname{STP}(\mathbf{f}, \mathbf{y}, \mathbf{t}) \& \& \operatorname{Value}(\mathbf{f}, \mathbf{y}, \mathrm{t})=\mathbf{x}] \Leftrightarrow \forall \mathrm{x} \varphi_{\mathrm{g}_{\mathrm{f}}}(\mathbf{x}) \downarrow \Leftrightarrow \mathbf{g}_{\mathrm{f}} \in$ TOTAL
This shows that RANGE_ALL \leq_{m} TOTAL, as was desired.
e.) From a.) through d.) what can you conclude about the complexity of RANGE_ALL?
a) shows that RANGE_ALL is no more complex than others that must use the alternating qualifiers $\forall \exists$. b) shows the problem is non-recursive. c) and d) combine to show that the problem is in fact of equal complexity with the non-re problem TOTAL, so the result in a) was optimal.
6. This is a simple question concerning Rice's Theorem.
a.) State the strong form of Rice's Theorem. Be sure to cover all conditions for it to apply.

Let P be a property of indices of partial recursive function such that the set
$S_{P}=\{f \mid f$ has property $P\}$ has the following two restrictions
(1) S_{P} is non-trivial. This means that S_{P} is neither empty nor is it the set of all indices.
(2) P is an I / O behavior. That is, if f and g are two partial recursive functions whose I / O behaviors are indistinguishable, $\forall x f(x)=g(x)$, then either both of f and g have property P or neither has property P.
Then P is undecidable.
b.) Describe a set of partial recursive functions whose membership cannot be shown undecidable through Rice's Theorem. What condition is violated by your example?
There are many possibilities here. For example $\{f \mid \exists x \sim \operatorname{STP}(f, x, x)\}$ is not an I/O property and $\{f \mid \exists x f(x) \neq f(x)\}$ is trivial (empty).
7. Using the definition that \mathbf{S} is recursively enumerable iff \mathbf{S} is either empty or the range of some algorithm $\mathbf{f}_{\mathbf{S}}$ (total recursive function), prove that if both \mathbf{S} and its complement $\sim \mathbf{S}$ are recursively enumerable then \mathbf{S} is decidable. To get full credit, you must show the characteristic function for \mathbf{S}, $\chi_{\mathbf{s}}$, in all cases. Be careful to handle the extreme cases (there are two of them). Hint: This is not an empty suggestion.
Let $S=\phi$ then $\sim S=\boldsymbol{N}$. Both are re and $\forall x \chi_{S}(x)=0$ is S 's characteristic function.
Let $S=\mathcal{N}$ then $\sim S=\phi$. Both are re and $\forall x \chi_{S}(x)=1$ is S 's characteristic function.
Assume then that $S \neq \phi$ and $S \neq \mathcal{N}$ then each of S and $\sim S$ is enumerated by some total recursive function. Let S be enumerated by f_{S} and $\sim S$ by $f_{\sim S}$. Define
$\chi_{\mathrm{s}}(\mathbf{x})=\mathbf{f}_{\mathrm{s}}\left(\mu_{\mathrm{y}}\left[\mathbf{f}_{\mathrm{s}}(\mathbf{y})==\mathrm{x} \| \mathbf{f}_{\sim}(\mathbf{y})==\mathrm{x}\right]\right)==\mathbf{x}$.
Moreover, the minimization, while conceptually unbounded, always converges because both f_{S} and by $f_{\sim S}$ are algorithms.
Further, x must be in the range of one and only one of f_{S} or $f_{\sim S}$. Thus, $\exists y f_{S}(y)==x$ or $\exists y f_{\sim S}(y)=x$.

The min operator ($\mu \mathrm{y}$) finds the smallest such y and the predicate
$f_{S}\left(\mu y\left[f_{S}(y)=x \| f_{\sim}(y)==x\right]\right)==x$ checks that x is in the range of f_{S}.
If it is, then $\chi_{s}(x)=1$ else $\chi_{s}(x)=0$, as desired.

