
 

 

Generally useful information. 

• The notation z = <x,y> denotes the pairing function with inverses x = <z>1 and y = <z>2.  

• The minimization notation µ  y [P(…,y)] means the least y (starting at 0) such that P(…,y) is 
true. The bounded minimization (acceptable in primitive recursive functions) notation  
µ  y (u≤y≤v) [P(…,y)] means the least y (starting at u and ending at v) such that P(…,y) is true. 
Unlike the text, I find it convenient to define µ  y (u≤y≤v) [P(…,y)] to be v+1, when no y 
satisfies this bounded minimization.  

• The tilde symbol, ~, means the complement. Thus, set ~S is the set complement of set S, and 
predicate ~P(x) is the logical complement of predicate P(x). 

• A function P is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus, 
P(x) means P evaluates to true on x, but we can also take advantage of the fact that true is 1 and 
false is 0 in formulas like y ×  P(x), which would evaluate to either y (if P(x)) or 0 (if ~P(x)). 

• A set S is recursive if S has a total recursive characteristic function χS, such that x ∈  S  ⇔  
χS(x). Note χS is a predicate. Thus, it evaluates to 0 (false), if x ∉  S. 

• When I say a set S is re, unless I explicitly say otherwise, you may assume any of the following 
equivalent characterizations: 
1. S is either empty or the range of a total recursive function fS. 
2. S is the domain of a partial recursive function gS. 

• If I say a function g is partially computable, then there is an index g (I know that’s overloading, 
but that’s okay as long as we understand each other), such that Φg(x) = Φ(x, g) = g(x). Here Φ  is 
a universal partially recursive function.  
Moreover, there is a primitive recursive function STP, such that  
STP(g, x, t) is 1 (true), just in case g, started on x, halts in t or fewer steps.  
STP(g, x, t) is 0 (false), otherwise.  
Finally, there is another primitive recursive function VALUE, such that  
VALUE(g, x, t) is g(x), whenever STP(g, x, t).  
VALUE(g, x, t) is defined but meaningless if ~STP(g, x, t). 

• The notation f(x)↓  means that f converges when computing with input x, but we don’t care about 
the value produced. In effect, this just means that x is in the domain of f. 

• The notation f(x)↑  means f diverges when computing with input x. In effect, this just means that 
x is not in the domain of f. 

• The Halting Problem for any effective computational system is the problem to determine of an 
arbitrary effective procedure f and input x, whether or not f(x)↓ . The set of all such pairs, K0, is 
a classic re non-recursive one.  

• The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure f, 
whether or not f is an algorithm (halts on all input). The set of all such function indices is a 
classic non re one. 

• A ≤m B (A many-one reduces to B) means that there exists a total recursive function f such that  
x ∈  A  ⇔  f(x) ∈  B. If A ≤m B and B ≤m A then we say that A ≡m B (A is many-one equivalent 
to B). If the reducing function is 1-1, then we say A ≤1 B (A one-one reduces to B) and A ≡1 B 
(A is one-one equivalent to B). 
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COT 6410 Spring 2014 Sample Midterm#1 Name:    KEY  

 1. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, 
(NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by 
showing some minimal quantification of some known recursive predicate.  

a.) { f |  domain(f) is finite }         NRNC   

 Justification: ∃x ∀y≥x ∀t ~STP(f, y, t)         
b.) { f  | domain(f) is empty }          CO   

 Justification: ∀x ∀t ~STP(f, x, t)          
c.) { <f,x> | f(x) converges in at most 20 steps }     REC   

Justification: STP(f, x, 20)           
d.) { f | domain(f) converges in at most 20 steps for some input x }   RE   

 Justification: ∃x STP(f, x, 20) 
 2. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC) 

recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by 
listing all possible categories. No justification is required. 
a.) D = ~C  RE, NR         

b.) D ⊆  A  ∪  C  REC, RE, NR         
c.) D = ~B    NR         

d.) D = B −  A  REC, RE          

 3. Prove that the Halting Problem (the set HALT = K0 = Lu) is not recursive (decidable) within any 
formal model of computation. (Hint: A diagonalization proof is required here.)  

Look at notes. 

 4. Using reduction from the known undecidable HasZero, HZ = { f | ∃x f(x) = 0 }, show the non-
recursiveness (undecidability) of the problem to decide if an arbitrary partial recursive function g has 
the property IsZero, Z = { f | ∀x f(x) = 0 }. Hint: there is a very simple construction that uses STP 
to do this. Just giving that construction is not sufficient; you must also explain why it satisfies 
the desired properties of the reduction. 

HZ = { f | ∃x ∃t [ STP(f, x, t) & VALUE(f, x, t) == 0] } 
Let f be the index of an arbitrary effective procedure. 
Define gf(y) = 1 -  ∃x ∃t [ STP(f, x, t) & VALUE(f, x, t) == 0] 
If ∃x f(x) = 0, we will find the x and the run-time t, and so we will return 0 (1 – 1) 
If ∀x f(x) ≠  0, then we will diverge in the search process and never return a value. 
Thus, f ∈  HZ iff gf ∈  Z. 
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 5. Define RANGE_ALL = ( f | range(f) = ℵ  }.  
 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound 

for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.) 

  ∀x ∃<y,t>[STP(f,y,t) && Value(f,y,t)=x] 
 b.) Use Rice’s Theorem to prove that RANGE_ALL is undecidable. 

This is non-trivial as I(x) = x ∈  RANGE_ALL and C0(x) = 0 ∉  RANGE_ALL 
Let f,g be such that ∀x ϕ f(x) = ϕg(x).  
f∈  RANGE_ALL ⇔  range(f) = ℵ  
 ⇔  range(g) = ℵ  since g outputs the same value as f for any input 
 ⇔  g ∈  RANGE_ALL 
Since the property is non-trivial and is an I/O property, Rice’s Theorem says it is undecidable. 

 c.) Show that TOTAL ≤m RANGE_ALL, where TOTAL = { f | ∀y ϕ f(y)↓  }. 

Let f be the index of an arbitrary effective procedure ϕ f. Define g such that g(f), denoted gf, is 
the index of the function ϕgf

 defined by ϕgf
(x) = ϕ f(x) - ϕ f(x)+x. 

f ∈  TOTAL ⇔  ∀x ϕ f(x)↓  ⇔  ∀x ϕgf
(x) = x ⇒  ∀x x∈range(gf) ⇒  gf ∈  RANGE_ALL 

f ∉  TOTAL ⇔  ∃x ϕ f(x)↑  ⇔  ∃x ϕgf
(x)↑  ⇒  ∃x x∉range(gf) ⇒  gf ∉  RANGE_ALL  

This shows that TOTAL ≤m RANGE_ALL, as was desired. 
 d.) Show that RANGE_ALL ≤m TOTAL. 

Let f be the index of an arbitrary effective procedure ϕ f. Define g such that g(f), denoted gf, is 
the index of the function ϕgf

 defined by ϕgf
(x) = ∃<y,t> [STP(f,y,t) & Value(f,y,t)=x].   

f ∈  RANGE_ALL ⇔  ∀x ∃<y,t> [STP(f,y,t) && Value(f,y,t)=x] ⇔  ∀x ϕgf
(x)↓  ⇔  gf ∈  TOTAL 

This shows that RANGE_ALL ≤m TOTAL, as was desired. 
 e.) From a.) through d.) what can you conclude about the complexity of RANGE_ALL? 

a) shows that RANGE_ALL is no more complex than others that must use the alternating 
qualifiers ∀∃ . b) shows the problem is non-recursive. c) and d) combine to show that the 
problem is in fact of equal complexity with the non-re problem TOTAL, so the result in a) was 
optimal. 
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 6. This is a simple question concerning Rice’s Theorem. 
 a.) State the strong form of Rice’s Theorem. Be sure to cover all conditions for it to apply. 

Let P be a property of indices of partial recursive function such that the set  
SP = { f | f has property P } has the following two restrictions 
(1) SP is non-trivial. This means that SP is neither empty nor is it the set of all indices. 
(2) P is an I/O behavior. That is, if f and g are two partial recursive functions whose I/O 

behaviors are indistinguishable, ∀x f(x)=g(x), then either both of f and g have property P 
or neither has property P. 

Then P is undecidable. 
 b.) Describe a set of partial recursive functions whose membership cannot be shown undecidable 

through Rice’s Theorem. What condition is violated by your example?  
There are many possibilities here. For example { f | ∃x ~STP(f,x,x) } is not an I/O property and  
{ f | ∃x f(x) ≠  f(x) } is trivial (empty). 

 7. Using the definition that S is recursively enumerable iff S is either empty or the range of some 
algorithm fS (total recursive function), prove that if both S and its complement ~S are recursively 
enumerable then S is decidable. To get full credit, you must show the characteristic function for S, 
χS, in all cases. Be careful to handle the extreme cases (there are two of them). Hint: This is not an 
empty suggestion. 

Let S = φ  then ~S = ℵ . Both are re and ∀x χS(x) = 0 is S’s characteristic function. 

Let S = ℵ  then ~S = φ . Both are re and ∀x χS(x) = 1 is S’s characteristic function. 

Assume then that S ≠  φ  and S ≠  ℵ  then each of S and ~S is enumerated by some total recursive 
function. Let S be enumerated by fS and ~S by f~S. Define 

χS(x) = fS( µy [fS(y)==x || f~S(y)==x] ) == x. 
Moreover, the minimization, while conceptually unbounded, always converges because both fS 
and by f~S are algorithms. 
Further, x must be in the range of one and only one of fS or f~S. Thus,  
∃y fS (y) == x or ∃y f~S(y) == x. 

The min operator (µy) finds the smallest such y and the predicate 

fS( µy [fS(y)==x || f~S(y)==x] ) == x checks that x is in the range of fS. 

If it is, then χS(x) = 1 else χS(x) = 0, as desired. 
 

 


