## Generally useful information.

- The notation $\mathbf{z}=\left\langle\mathbf{x}, \mathbf{y}>\right.$ denotes the pairing function with inverses $\mathbf{x}=\langle\mathbf{z}\rangle_{1}$ and $\mathbf{y}=\langle\mathbf{z}\rangle_{\mathbf{2}}$.
- The minimization notation $\boldsymbol{\mu} \mathbf{y}[\mathbf{P}(\ldots, \mathbf{y})]$ means the least $\mathbf{y}$ (starting at $\mathbf{0}$ ) such that $\mathbf{P}(\ldots, \mathbf{y})$ is true. The bounded minimization (acceptable in primitive recursive functions) notation $\boldsymbol{\mu} \mathbf{y}(\mathbf{u} \leq \mathbf{y} \leq \mathbf{v})[\mathbf{P}(\ldots, \mathbf{y})]$ means the least $\mathbf{y}$ (starting at $\mathbf{u}$ and ending at $\mathbf{v})$ such that $\mathbf{P}(\ldots, \mathbf{y})$ is true. Unlike the text, I find it convenient to define $\boldsymbol{\mu} \mathbf{y}(\mathbf{u} \leq \mathbf{y} \leq \mathbf{v})[\mathbf{P}(\ldots, \mathbf{y})]$ to be $\mathbf{v}+\mathbf{1}$, when no $\mathbf{y}$ satisfies this bounded minimization.
- The tilde symbol, $\sim$, means the complement. Thus, set $\sim \mathbf{S}$ is the set complement of set $\mathbf{S}$, and predicate $\sim \mathbf{P}(\mathbf{x})$ is the logical complement of predicate $\mathbf{P}(\mathbf{x})$.
- A function $\mathbf{P}$ is a predicate if it is a logical function that returns either $\mathbf{1}$ (true) or $\mathbf{0}$ (false). Thus, $\mathbf{P}(\mathbf{x})$ means $\mathbf{P}$ evaluates to true on $\mathbf{x}$, but we can also take advantage of the fact that true is $\mathbf{1}$ and false is $\mathbf{0}$ in formulas like $\mathbf{y} \times \mathbf{P}(\mathbf{x})$, which would evaluate to either $\mathbf{y}$ (if $\mathbf{P}(\mathbf{x})$ ) or $\mathbf{0}$ (if $\sim \mathbf{P}(\mathbf{x})$ ).
- A set $\mathbf{S}$ is recursive if $\mathbf{S}$ has a total recursive characteristic function $\chi_{\mathbf{s}}$, such that $\mathbf{x} \in \mathbf{S} \Leftrightarrow$ $\chi_{s}(\mathbf{x})$. Note $\chi_{\mathbf{s}}$ is a predicate. Thus, it evaluates to $\mathbf{0}$ (false), if $\mathbf{x} \notin \mathbf{S}$.
- When I say a set $\mathbf{S}$ is re, unless I explicitly say otherwise, you may assume any of the following equivalent characterizations:

1. $\mathbf{S}$ is either empty or the range of a total recursive function $\mathbf{f}_{\mathbf{S}}$.
2. $\mathbf{S}$ is the domain of a partial recursive function $\mathbf{g}_{\mathbf{S}}$.

- If I say a function $\mathbf{g}$ is partially computable, then there is an index $\mathbf{g}$ (I know that's overloading, but that's okay as long as we understand each other), such that $\boldsymbol{\Phi}_{\mathbf{g}}(\mathbf{x})=\boldsymbol{\Phi}(\mathbf{x}, \mathbf{g})=\mathbf{g}(\mathbf{x})$. Here $\boldsymbol{\Phi}$ is a universal partially recursive function.
Moreover, there is a primitive recursive function STP, such that
$\mathbf{S T P}(\mathbf{g}, \mathbf{x}, \mathbf{t})$ is $\mathbf{1}$ (true), just in case $\mathbf{g}$, started on $\mathbf{x}$, halts in $\mathbf{t}$ or fewer steps.
$\operatorname{STP}(\mathbf{g}, \mathbf{x}, \mathbf{t})$ is $\mathbf{0}$ (false), otherwise.
Finally, there is another primitive recursive function VALUE, such that
$\operatorname{VALUE}(\mathbf{g}, \mathbf{x}, \mathbf{t})$ is $\mathbf{g}(\mathbf{x})$, whenever $\operatorname{STP}(\mathbf{g}, \mathbf{x}, \mathbf{t})$.
VALUE $(\mathbf{g}, \mathbf{x}, \mathbf{t})$ is defined but meaningless if $\sim \operatorname{STP}(\mathbf{g}, \mathbf{x}, \mathbf{t})$.
- The notation $\mathbf{f}(\mathbf{x}) \downarrow$ means that $\mathbf{f}$ converges when computing with input $\mathbf{x}$, but we don't care about the value produced. In effect, this just means that $\mathbf{x}$ is in the domain of $\mathbf{f}$.
- The notation $\mathbf{f}(\mathbf{x}) \uparrow$ means $\mathbf{f}$ diverges when computing with input $\mathbf{x}$. In effect, this just means that $\mathbf{x}$ is not in the domain of $\mathbf{f}$.
- The Halting Problem for any effective computational system is the problem to determine of an arbitrary effective procedure $\mathbf{f}$ and input $\mathbf{x}$, whether or not $\mathbf{f}(\mathbf{x}) \downarrow$. The set of all such pairs, $\mathbf{K}_{\mathbf{0}}$, is a classic re non-recursive one.
- The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure $\mathbf{f}$, whether or not $\mathbf{f}$ is an algorithm (halts on all input). The set of all such function indices is a classic non re one.
- $\mathbf{A} \leq_{\mathrm{m}} \mathbf{B}$ (A many-one reduces to $\mathbf{B}$ ) means that there exists a total recursive function $\mathbf{f}$ such that $\mathbf{x} \in \mathbf{A} \Leftrightarrow \mathbf{f}(\mathbf{x}) \in \mathbf{B}$. If $\mathbf{A} \leq_{\mathrm{m}} \mathbf{B}$ and $\mathbf{B} \leq_{\mathrm{m}} \mathbf{A}$ then we say that $\mathbf{A} \equiv_{\mathrm{m}} \mathbf{B}$ (A is many-one equivalent to $\mathbf{B})$. If the reducing function is 1-1, then we say $\mathbf{A} \leq_{1} \mathbf{B}(\mathbf{A}$ one-one reduces to $\mathbf{B})$ and $\mathbf{A} \equiv_{1} \mathbf{B}$ ( $\mathbf{A}$ is one-one equivalent to $\mathbf{B}$ ).
$\qquad$

1. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.
a.) $\{f \mid$ domain(f) is finite $\}$

Justification:
b.) $\{\mathbf{f} \mid$ domain(f) is empty $\}$

Justification:
c.) $\{<\mathbf{f}, \mathbf{x}\rangle \mid \mathbf{f}(\mathbf{x})$ converges in at most 20 steps $\}$

Justification:
d.) $\{\mathbf{f} \mid$ domain(f) converges in at most 20 steps for some input $\mathbf{x}\}$

Justification:
2. Let set $\mathbf{A}$ be recursive, $\mathbf{B}$ be re non-recursive and $\mathbf{C}$ be non-re. Choosing from among (REC) recursive, (RE) re non-recursive, (NR) non-re, categorize the set $\mathbf{D}$ in each of a) through d) by listing all possible categories. No justification is required.
a.) $\mathbf{D}=\sim \mathbf{C}$
b.) $\mathbf{D} \subseteq \mathbf{A} \cup \mathbf{C}$
c.) $\mathbf{D}=\sim \mathbf{B}$
d.) $\mathbf{D}=\mathbf{B}-\mathbf{A}$
3. Prove that the Halting Problem (the set $\mathbf{H A L T}=\mathbf{K}_{\mathbf{0}}=\mathbf{L}_{\mathbf{u}}$ ) is not recursive (decidable) within any formal model of computation. (Hint: A diagonalization proof is required here.)

## Look at notes.

4. Using reduction from the known undecidable HasZero, $\mathbf{H Z}=\{\mathbf{f} \mid \boldsymbol{\exists x} \mathbf{f}(\mathbf{x})=\mathbf{0}\}$, show the nonrecursiveness (undecidability) of the problem to decide if an arbitrary partial recursive function $\mathbf{g}$ has the property IsZero, $\mathbf{Z}=\{\mathbf{f} \mid \forall \mathbf{x} \mathbf{f}(\mathbf{x})=\mathbf{0}\}$. Hint: there is a very simple construction that uses STP to do this. Just giving that construction is not sufficient; you must also explain why it satisfies the desired properties of the reduction.
5. Define RANGE_ALL $=(\mathbf{f} \mid \operatorname{range}(f)=\boldsymbol{\kappa}\}$.
a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.)
b.) Use Rice's Theorem to prove that RANGE_ALL is undecidable.
c.) Show that TOTAL $\leq_{\mathrm{m}}$ RANGE_ALL, where TOTAL $=\left\{\mathbf{f} \mid \forall \mathbf{y} \varphi_{\mathrm{f}}(\mathbf{y}) \downarrow\right\}$.
d.) Show that RANGE_ALL $\leq_{m}$ TOTAL.
e.) From a.) through d.) what can you conclude about the complexity of RANGE_ALL?
6. This is a simple question concerning Rice's Theorem.
a.) State the strong form of Rice's Theorem. Be sure to cover all conditions for it to apply.
b.) Describe a set of partial recursive functions whose membership cannot be shown undecidable through Rice's Theorem. What condition is violated by your example?
7. Using the definition that $\mathbf{S}$ is recursively enumerable iff $\mathbf{S}$ is either empty or the range of some algorithm $\mathbf{f}_{\mathbf{S}}$ (total recursive function), prove that if both $\mathbf{S}$ and its complement $\sim \mathbf{S}$ are recursively enumerable then $\mathbf{S}$ is decidable. To get full credit, you must show the characteristic function for $\mathbf{S}$, $\chi_{\mathbf{s}}$, in all cases. Be careful to handle the extreme cases (there are two of them). Hint: This is not an empty suggestion.
