12 1. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.
a.) $\{f \mid$ there is a constant C such that, for every $x, f(x) \leq C$, \qquad
Justification: $\exists C \forall x \exists t[S T P(f, x, t) \& \& V A L U E(f, x, t) \leq C]$
If interpret as not requiring convergence then

$$
\exists C \forall<x, t>[S T P(f, x, t) \Rightarrow \operatorname{VALUE}(f, x, t) \leq C]
$$

b.) $\{<\mathbf{f}, \mathbf{x}, \mathbf{c}\rangle \mid \mathbf{f}(\mathbf{x})$ halts in no fewer than $\mathbf{c} * \mathbf{x}+1$ steps $\}$

REC Justification: $\sim \operatorname{STP}\left(\mathbf{f}, \mathbf{x}, \mathbf{c}^{*} \mathbf{x}\right)$
c.) $\{f \mid \operatorname{range}(f) \subseteq\{0,1\} / /$ This means range can be $\},\{0\},\{1\}$ or $\{0,1\}\}$ \qquad
Justification: $\forall<x, t>[S T P(f, x, t) \Rightarrow V A L U E(f, x, t) \leq 1]$
d.) $\{f \mid \operatorname{range}(f)$ contains at least two elements $\}$
$\boldsymbol{R E}$
Justification: $\exists<x, y, t>[\operatorname{STP}(f, x, t) \& S T P(f, y, t) \&(V A L U E(f, x, t) \neq \operatorname{VALUE}(f, y, t))]$
6 2. Let set \mathbf{A} be recursive, \mathbf{B} be re non-recursive and \mathbf{C} be non-re. Choosing from among (REC) recursive, (RE) re non-recursive, (NR) non-re, categorize the set \mathbf{D} in each of a) through d) by listing all possible categories. No justification is required.
a.) $\mathbf{D}=\sim \mathbf{A}$

REC
b.) $\mathbf{D}=\mathbf{B} \cap \sim \mathbf{A}$

REC, RE
c.) $\mathbf{D} \subseteq \mathbf{C}$

REC, RE, NR
d.) $D=A-C$

REC, RE, NR
3. Prove that the Uniform Halting Problem (the set TOTAL) is not recursive enumerable within any formal model of computation. (Hint: A diagonalization proof is required here.)

Assume TOTAL is re. As it is a non-empty set, e.g., the index of the function C_{0} is in TOTAL, then there must exist a total recursive function that enumerates TOTAL. Call this function A. Thus, the algorithms have indices $A(0), A(1), \ldots$ We also know that any complete model of computation must have a universal function. Call it φ. Here $\varphi(f, x)$ is just $\varphi_{f}(x)$, that is, the function whose index is f evaluated at x.

Define a new function $D(x)=\varphi(A(x), x)+1$. Clearly D is an algorithm as it just evaluates the x-th algorithm on the input x and then adds 1. As D is an algorithm, its index is in TOTAL and so is the d-th algorithm enumerated by A, for some natural number d.

Consider $D(d) . D(d)=\varphi(A(d), d)+1$ by D 's definition. But, then
$D(d)=\varphi(A(d), d)+1=\varphi_{A(d)}(d)+1=D(d)+1$
The above is clearly a contradiction since D is an algorithm.
This means that TOTAL cannot be re.

5 4. Using many-one redu\#3ction from the known non-recursive set HasADouble, where
HasADouble $=\left\{\mathbf{f} \mid \exists \mathbf{x} \varphi_{f}(\mathbf{x})=\mathbf{2 *} \mathbf{x}\right\}$, show that IsDouble is non-recursive,
where IsDouble $=\left\{\mathbf{f} \mid \forall \mathbf{x} \varphi_{f}(\mathbf{x})=\mathbf{2} * \mathbf{x}\right\}$
Just giving a construction is not sufficient; you must also explain why it satisfies the desired properties of the reduction.
Let f be an arbitrary natural number.
Define $G_{f, x}(y)=2 * y * \exists<x, t>[\operatorname{STP}(f, x, t) \& \operatorname{VALUE}(f, x, t)=2 * x]$
Thus, $f \in$ HasADouble iff $\exists x \varphi_{f}(x)=2 * x$ iff $\exists<x, t>[S T P(f, x, t) \& V A L U E(f, x, t)=2 * x]$
iff $\forall y G_{f, x}(y)=2 * y$ iff $G_{f, x} \in$ IsDouble.
This show HasADouble $\leq m$ IsDouble and so a solution to IsDouble implies one to HasADouble, which is known to be non-recursive. Thus, IsDouble must also be non-recursive.
5. Define NullDomain as $N D=\left\{\mathbf{f} \mid\right.$ for all $\left.\mathbf{x} \varphi_{\mathrm{f}}(\mathbf{x}) \uparrow\right\}$.

3 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.)
$\forall<x, t>[\sim S T P(f, x, t)]$ shows $N D$ is at worst co-RE
5 b.) Use Rice's Theorem to prove that ND is undecidable.
Clearly $\uparrow \in N D$, where \uparrow diverges for all input. However, $C_{0} \notin N D$ as it converges everything so has a non-empty domain. Thus, ND is non-trivial.
Let f, g be arbitrary unique natural numbers such that $\operatorname{dom}(f)=\operatorname{dom}(g)$.
$f \in N D \Leftrightarrow \operatorname{dom}(f)=\varnothing \Leftrightarrow \operatorname{dom}(g)=\varnothing$ iff $g \in N D$
This satisfies the second property of one of the weak forms of Rice's Theorem and so ND is undecidable.

5 c.) Show that NotHalt \leq_{m} ND, where NotHalt $=\left\{\langle f, x\rangle \mid \varphi_{f}(x) \uparrow\right\}$. Justify your construction.
Let f, x be an arbitrary pair of natural numbers. Define $G_{f, x}(y)=f(x)$.
We can see that $\operatorname{Dom}\left(G_{f, x}\right)=\varnothing$ iff $\varphi_{f}(x) \uparrow$
Thus, $\langle f, x\rangle \in$ NotHalt iff $\varphi_{f}(x) \uparrow$ iff $\forall y G_{f, x}(y) \uparrow$ iff $G_{f, x} \in N D$
d.) Show that ND \leq_{m} NotHalt. Justify your construction.

Let f be an arbitrary natural number. Define $G_{f}(y)=\exists<x, t>[S T P(f, x, t)]$.
$f \in N D$ iff $\forall<x, t>[\sim S T P(f, x, t)]$ iff $\sim \exists<x, t>[S T P(f, x, t)]$ iff $\forall y G_{f}(y) \uparrow$ iff $<G_{f}, 0>\in$ NotHalt

Here, we note that G_{f} is either the constant 1 (converges everywhere) or diverges everywhere.
Hence we can choose any natural number as the argument to G_{f} when checking membership in NotHalt.
e.) From (a.) through (d.) what can you conclude about the complexity of ND (choose from REC, RE, RE-MANY-ONE-COMPLETE, CO-RE, CO-RE-MANY-ONE -COMPLETE, NON-RE/NON-CO-RE)? Briefly justify your conclusion, stating what each of (a), (b), (c) and (d) show.
ND is co-RE Many-One Complete
a) Shows ND is co-RE; b) Shoes ND is non-recursive; c) Shows ND is at least as hard as NotHalt, which is the complement of Halt, a Complete RE m-1 problem; d) adds nothing.
6. Rice's Theorem has a strong and two weak forms. Given the problem of determining membership in IsDouble $=\left\{\mathbf{f} \mid \boldsymbol{\forall x} \varphi_{\mathrm{f}}(\mathbf{x})=\mathbf{2}^{*} \mathbf{x}\right\}$
Show how the strong form can prove this undecidable, but the weak forms cannot. Be sure to cover all conditions that must apply, indicating what is common between the three forms and what is not.

Clearly, $d(x)=2 x \in$ IsDouble However, $C_{0} \notin$ IsDouble. Thus, IsDouble is non-trivial.

Strong Form:

Let f, g be arbitrary unique natural numbers such that $\forall x \varphi_{f}(x)=\varphi_{g}(x)$
$f \in$ IsDouble $\Leftrightarrow \forall x \varphi_{f}(x)=2 * x \Leftrightarrow \forall x \varphi_{g}(x)=2 * x$ iff $g \in$ IsDouble
This satisfies the second property of one of the strong forms of Rice's Theorem and so IsDouble is undecidable.

Weak Form \#1 (Domains)

Let f, g be arbitrary unique natural numbers such that $\operatorname{dom}\left(\varphi_{f}\right)=\operatorname{dom}\left(\varphi_{g}\right)$
Consider $\varphi_{f}(x)=2 x$ and $\varphi_{f}(x)=2 x-2$. Both have domains of all natural numbers and yet one is in IsDouble and the other is not, so this form does not give us the desired result.
Weak Form \#2 (Ranges)
Let f, g be arbitrary unique natural numbers such that range $\left(\varphi_{f}\right)=$ range $\left(\varphi_{g}\right)$
Consider $\varphi_{f}(x)=2 x$ and $\varphi_{f}(x)=2 x-2$. Both have ranges of all even natural numbers and yet one is in IsDouble and the other is not, so this form does not give us the desired result.
7. Let \mathbf{S} be an arbitrary infinite re set. Furthermore, let \mathbf{S} be the range of some total recursive function $\mathbf{f}_{\mathbf{s}}$. Show that \mathbf{S} has an infinite recursive subset enumerated by some monotonically increasing total recursive function \mathbf{g}_{s}. You must give an explicit definition of \mathbf{g}_{s} that you form from $\mathbf{f}_{\mathbf{s}}$. Justify that your \mathbf{g}_{s} enumerates a subset of S and that it is monotonically increasing. The fact that \mathbf{g}_{s} is a monotonically increasing function is sufficient to show the subset it enumerates is infinite and recursive, so you do not have to show those properties.

Define g_{S} using primitive recursion as follows:
$g_{S}(0)=f_{S}(0)$
$g_{S}(x)=f_{S}\left(\mu z\left[f_{S}(z)>g_{S}(x)\right]\right)$
First, since S is infinite, it has a first element $f_{S}(0)$ and it has no largest number.
The first property gives us the basis for g_{s} and the second guarantees that the search, $\mu z\left[f_{S}(z)>g_{S}(x)\right]$ will always succeed in finding a value in the range of f_{S} that is greater than all previous values enumerated by g_{S}.

Clearly the range of g_{S} is a subset of that of f_{S} and g_{S} is monotonically increasing. Thus, the range of g_{S} is an infinite recursive subset of S.

