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 1. We described the proof that 3SAT is polynomial reducible to Subset-Sum.  
a.) Describe Subset-Sum 
Let n1, n2, …, nk, G be a set of k positive whole numbers and G be a goal number. The decision 
problem is to determine if there is a subset ni1, ni2, .., nij of the original set that sums to G. 
b.) Show that Subset-Sum is in NP 
Let n1, n2, …, nk, G be an instance of SubsetSum and let ni1, ni2, .., nij be a proposed subset. We 
merely need to add these j numbers together and check that they sum to G. If so, we verify the 
proposed solution; else we reject it. That process is linear and hence there is a polynomial time 
verifier, and so SubsetSum is in NP. 
c.) Assuming a 3SAT expression (a + ~b + c) (~a + b + ~c), fill in the upper right part of the 
reduction from 3SAT to Subset-Sum. 

 a b c a + ~b + c ~a + b + ~c 
a 1   1  

~a 1    1 
b  1   1 

~b  1  1  
c   1 1  

~c   1  1 
C1    1  
C1’    1  
C2     1 
C2’     1 

 1 1 1 3 3 

  d.) List some subset of the numbers above (each associated with a row) that sums to 1 1 1 3 3. 
Indicate what the related truth values are for a, b and c. 

   a = T; b = T; c = T 
  a 1 0 0 1 0 
  b 0 1 0 0 1 
  c 0 0 1 1 0 
  C1 0 0 0 1 0 
  C2 0 0 0 0 1 
  C2’ 0 0 0 0 1 
  SUM 1 1 1 3 3 

 2. Partition refers to the decision problem as to whether some set of positive integers S can be 
partitioned into two disjoint subsets whose elements have equal sums. Subset-Sum refers to the 
decision problem as to whether there is a subset of some set of positive integers S that precisely 
sums to some goal number G. 

 a.) Show that Partition ≤p Subset-Sum. 

  Look at notes 

 b.) Show that Subset-Sum ≤p Partition. 

  Look at notes 
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 3.  Consider the decision problem asking if there is a coloring of a graph with at most k colors, and the 
optimization version that asks what is the minimum coloring number of a graph. You can reduce in 
both directions. So, do that. Make sure you carefully explain for each direction just what it is that 
you are proving. 
1. Show that k-Color is polynomial time Turing reducible to MinColor: 
Let G=(V, E) be an arbitrary graph and k>0 an arbitrary positive whole number. We can solve 
k-Color by asking an oracle for MinColor to provide the minimum coloring of G. We then 
check the MinColor answer. If it is less than or equal to k, we answer yes; else we answer no. 
This proves that MinColor is NP-Hard, based on our knowledge that k-Color is NP-Complete. 

2. Show that MinColor is polynomial time Turing reducible to k-Color: 
Let G=(V, E) be an arbitrary graph. Let n=|V|.  Do a binary search using an oracle for k-Color 
in order to find the minimum k such that k-Color returns yes.  This takes at most log n 
questions of the oracle. Thus, MinColor is NP-Easy since we asked just log n questions, and 
spent just polynomial time at each stage of this Turing reduction. Together, these show 
MinColor is in NP-Equivalent.  

 4. QSAT is the decision problem to determine if an arbitrary fully quantified Boolean expression is 
true. Note: SAT only uses existential, whereas QSAT can have universal qualifiers as well so it 
includes checking for Tautologies as well as testing Satisfiability. What can you say about the 
complexity of QSAT (is it in P, NP, NP-Complete, NP-Hard)? Justify your conclusion. 

  QSAT is NP-Hard. This is so since SAT trivially reduces to QSAT (it is a subproblem of 
QSAT). Since SAT is known to be NP-Complete then some NP-Complete problem 
polynomially reduces to QSAT. This makes QSAT NP-Hard. As we cannot (at least not yet) 
show QSAT is in NP, then NP-Hard is the best we can do. 

 5. Consider the following set of independent tasks with associated task times: 
(T1,7), (T2,6), (T3,2), (T4,5), (T5,6), (T7,1), (T8,2) 
Fill in the schedules for these tasks under the associated strategies below. 
Greedy using the list order above: 

T1 T1 T1 T1 T1 T1 T1 T4 T4 T4 T4 T4 T7 T8 T8 

T2 T2 T2 T2 T2 T2 T3 T3 T5 T5 T5 T5 T5 T5  

Greedy using a reordering of the list so that longest running tasks appear earliest in the list: 

T1 T1 T1 T1 T1 T1 T1 T4 T4 T4 T4 T4 T3 T3 T7 

T2 T2 T2 T2 T2 T2 T5 T5 T5 T5 T5 T5 T8 T8  

Greedy using a reordering of the list so that shortest running tasks appear earliest in the list: 

T7 T8 T8 T2 T2 T2 T2 T2 T2 T2 T1 T1 T1 T1 T1 T1 T1 

T3 T3 T4 T4 T4 T4 T4 T5 T5 T5 T5 T5 T5     
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 6. Present a gadget used in the reduction of 3-SAT to some graph theoretic problem where the gadget 
guarantees that each variable is assigned either True or False, but not both. Of course, you must tell 
me what graph theoretic problem is being shown NP-Complete and you must explain why the 
gadget works. 

  Vertex Cover     3-Color 
  Must Cover each Edge    Cannot choose B for either a or ~a 
  Set goal to min vertices    So one must be T and other F 
  Must choose one but not both are needed  
  This translates to choosing a or ~a 

 

 

 

 F  T 

 B 

~a  a 

 a ~a 


