
COT 6410 Spring2014 Final Exam Sample E1 Key

 1. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC)
recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by
listing all possible categories. No justification is required.
a.) D = ~C RE, NR

b.) D ⊆ (A∪C) REC, RE, NR
c.) D = ~B NR

d.) D = B − A REC, RE

 2. Choosing from among (D) decidable, (U) undecidable, (?) unknown, categorize each of the
following decision problems. No proofs are required.

Problem / Language Class Regular Context Free Context Sensitive

L = Σ* ? D U U

L = φ ? D D U

L = L2 ? D U U

x ∈ L2, for arbitrary x ? D D D

 3. Use PCP to show the undecidability of the problem to determine if the intersection of two context
free languages is non-empty. That is, show how to create two grammars GA and GB based on some
instance P = <<x1,x2,…,xn>, <y1,y2,…,yn>> of PCP, such that L(GA) ∩ L(GB) ≠ φ iff P has a
solution. Assume that P is over the alphabet Σ . You should discuss what languages your grammars
produce and why this is relevant, but no formal proof is required.

GA = ({ A } , Σ ∪ { [i] | 1≤i≤n } , A , PA } GB = ({ B } , Σ ∪ { [i] | 1≤i≤n } , B , PB }

PA : A → xi A [i] | xi [i] PB : A → yi B [i] | yi [i]

L(GA) = { xi1 xi2 … xip [ip] … [i2] [i1] | p ≥ 1, 1 ≤ it ≤ n, 1 ≤ t ≤ p }

L(GB) = { yj1 yj2 … yjq [jq] … [j2] [j1] | q ≥ 1, 1 ≤ ju ≤ n, 1 ≤ u ≤ q }

L(GA) ∩ L(GB) = { w [kr] … [k2] [k1] | r ≥ 1, 1 ≤ kv ≤ n, 1 ≤ v ≤ r }, where
w = xk1 xk2 … xkr = yk1 yk2 … ykr

If L(GA) ∩ L(GB) ≠ φ then such a w exists and thus k1 , k2 , … , kr is a solution to this instance
of PCP. This shows that a decision procedure for the non-emptiness of the intersection of CFLs
implies a decision procedure for PCP, which we have already shown is undecidable. Hence, the
non-emptiness of the intersection of CFLs is undecidable. Q.E.D.

COT 6410 – 2 – Spring 2014: Sample Final E1 Key – Hughes

 4. Consider the set of indices CONSTANT = { f | ∃K ∀y [ϕ f(y) = K] }. Use Rice’s Theorem to show
that CONSTANT is not recursive. Hint: There are two properties that must be demonstrated.

First, show CONSTANT is non-trivial.
 Z(x) = 0, which can be implemented as the TM R, is in CONSTANT
 S(x) = x+1, which can be implemented by the TM C11R, is not in CONSTANT
 Thus, CONSTANT is non-trivial

Second, let f, g be two arbitrary computable functions with the same I/O behavior.
 That is, ∀x, if f(x) is defined, then f(x) = g(x); otherwise both diverge, i.e., f(x)↑ and g(x)↑
 Now, f ∈ CONSTANT

⇔ ∃K ∀x [f(x) = K] by definition of CONSTANT
⇔ ∀x [g(x) = C] where C is the instance of K above, since ∀x [f(x) =
g(x)]
⇔ ∃K ∀x [g(x) = K] from above
⇔ g ∈ CONSTANT by definition of CONSTANT

Since CONSTANT meets both conditions of Rice’s Theorem, it is undecidable. Q.E.D.

 5. Show that CONSTANT ≡m TOT, where TOT = { f | ∀y ϕ f(y)↓ }.

CONSTANT ≤m TOT
Let f be an arbitrary effective procedure.
 Define gf by

gf (0) = f(0)
gf (y+1) = f(y+1) + µ z [f(y+1) = f(y)]

 Now, if f ∈ CONSTANT then ∀y [f(y)↓ and [f(y+1) = f(y)]].
Under this circumstance, µ z [f(y+1) = f(y)] is 0 for all y and gf (y) = f(y) for all y.
Clearly, then gf ∈ TOT

 If, however, f ∉ CONSTANT then ∃y [f(y+1) ≠ f(y)] and thus, ∃y gf (y)↑ .
 Choose the least y meeting this condition.

If f(y)↑ then gf (y)↑ since f(y) is in gf (y)’s definition (the 1st term).
If f(y)↓ but [f(y+1) ≠ f(y)] then gf (y)↑ since µ z [f(y+1) = f(y)]↑ (the 2nd term).
Clearly, then gf ∉ TOT

Combining these, f ∈ CONSTANT ⇔ gf ∈ TOT and thus CONSTANT ≤m TOT

TOT ≤m CONSTANT
Let f be an an arbitrary effective procedure.
 Define gf by

gf (y) = f(y) – f(y)
 Now, if f ∈ TOT then ∀y [f(y)↓] and thus ∀y gf (y) = 0 . Clearly, then gf ∈ CONSTANT
 If, however, f ∉ TOT then ∃y [f(y)↑] and thus, ∃y [gf (y)↑]. Clearly , then gf ∉
CONSTANT
Combining these, f ∈ TOT ⇔ gf ∈ CONSTANT and thus TOT ≤m CONSTANT

Hence, CONSTANT ≡m TOT. Q.E.D.

COT 6410 – 3 – Spring 2014: Sample Final E1 Key – Hughes

 6. Why does Rice’s Theorem have nothing to say about the following? Explain by showing some

condition of Rice’s Theorem that is not met by the stated property.
 AT-LEAST-LINEAR = { f | ∀y ϕ f(y) converges in no fewer than y steps }.

We can deny the 2nd condition of Rice’s Theorem since
Z, where Z(x) = 0, implemented by the TM R converges in one step no matter what x is and
hence is not in AT-LEAST-LINEAR

Z’, defined by the TM R L R, is in AT-LEAST-LINEAR

However, ∀x [Z(x) = Z’(x)], so they have the same I/O behavior and yet one is in and the
other is out of AT-LEAST-LINEAR, denying the 2nd condition of Rice’s Theorem

 7. The trace language of a computational device like a Turing Machine is a language of the form
Trace = { C1#C2# … Cn# | Ci ⇒ Ci+1, 1 ≤ i < n }
Trace is Context Sensitive, non-Context Free. Actually, a trace language typically has every other
configuration word reversed, but the concept is the same. Oddly, the complement of such a trace is
Context Free. Explain what makes its complement a CFL. In other words, describe the
characteristics of this complement and why these characteristics are amenable to a CFG description.
The complement of a trace needs to include strings that either do not look like a trace (that’s
easy) or look like one, but have one or more errors. By one or more errors, we just mean that
there is a pair Cj#Cj+1# where it is not the case that Cj ⇒ Cj+1. A PDA can guess which
configuration starts this pair, push that configuration into its stack and check that the next one
is in error (of course, this generally means one element of the pair is reversed). Such checking
is within the capabilities of a PDA.

 8. We demonstrated a proof that the context sensitive languages are not closed under homomorphism,
To start, we assumed G = (N, Σ , S, P) is an arbitrary Phrase Structured Grammar, with N its set of
non-terminals, Σ its terminal alphabet, S its starting non-terminal and P its productions (rules). Since
G is a PSG, it can have length increasing, length preserving and length decreasing rules. We wished
to convert G to a CSG, G’ = (N’, Σ’, S’, P’) where there are no rules that are length decreasing
(since a CSG cannot have these). We developed a way to pad the length decreasing rules from G and
then a homomorphism that gets rid of these padding characters. Define G’ and the homomorphism h
that we discussed in class and then briefly discuss why this new grammar and homomorphism
combine so h(L(G’)) = L(G), thereby showing that all re sets are the homomorphic images of CSLs.
Define N’ = N ∪ {S’, D}, where D and S’ are new symbols;

Σ’ = Σ ∪ {$}, where $ is a new symbol;
P’ contains
 S’ → S$ is in P’
 If α → β is in P and |α | ≤ |β |, then α → β is in P’
 If α → β is in P and |α | > |β |, then α → βDk is in P’, where k = |α | - |β

Dx → xD is in P’, for all x ∈ N ∪ Σ
D$ → $$ is in P’

It is clear that these rules are all length increasing or length preserving and hence G’ is a CSG.
L(G’) = {w$j | w ∈ L(G) and j is some integer >0 }
Define the homomorphism h by

h(a) = a for all a ∈ Σ
h($) = λ (the string of length 0)

h(L(G’)) = { w | w∈ L(G) } = L(G)
This completes our constructive justification.

