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 1. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC) 
recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by 
listing all possible categories. No justification is required. 
a.) D = ~C  RE, NR         

b.) D ⊆  (A∪C)  REC, RE, NR         
c.) D = ~B   NR          

d.) D = B −  A  REC, RE         

 2. Choosing from among (D) decidable, (U) undecidable, (?) unknown, categorize each of the 
following decision problems. No proofs are required.  

 

Problem / Language Class Regular Context Free Context Sensitive 

L = Σ* ? D U U 

L = φ  ? D D U 

L = L2 ? D U U 

x  ∈  L2, for arbitrary x ? D D D 

 3. Use PCP to show the undecidability of the problem to determine if the intersection of two context 
free languages is non-empty. That is, show how to create two grammars GA and GB based on some 
instance P = <<x1,x2,…,xn>, <y1,y2,…,yn>> of PCP, such that L(GA) ∩  L(GB) ≠  φ  iff P has a 
solution. Assume that P is over the alphabet Σ . You should discuss what languages your grammars 
produce and why this is relevant, but no formal proof is required. 

GA = ( { A } , Σ  ∪  { [ i ]  | 1≤i≤n } , A , PA }  GB = ( { B } , Σ  ∪  { [ i ]  | 1≤i≤n } , B , PB } 

PA : A →  xi A [ i ]  |  xi [ i ]    PB : A →  yi B [ i ]  |  yi [ i ] 

L(GA) = { xi1  xi2 … xip  [ip] … [i2] [i1]   | p ≥  1, 1 ≤ it ≤ n, 1 ≤ t  ≤ p  } 

L(GB) = { yj1  yj2 … yjq  [jq] … [j2] [j1]   | q ≥  1, 1 ≤ ju ≤ n, 1 ≤ u  ≤ q  } 

L(GA)  ∩   L(GB) = { w  [kr] … [k2] [k1]   | r ≥  1, 1 ≤ kv ≤ n, 1 ≤ v  ≤ r  }, where 
w = xk1 xk2 … xkr  =  yk1 yk2 … ykr   

If L(GA)  ∩   L(GB) ≠  φ  then such a w exists and thus k1 , k2 , … , kr is a solution to this instance 
of PCP. This shows that a decision procedure for the non-emptiness of the intersection of CFLs 
implies a decision procedure for PCP, which we have already shown is undecidable. Hence, the 
non-emptiness of the intersection of CFLs is undecidable.  Q.E.D. 
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 4. Consider the set of indices CONSTANT = { f | ∃K ∀y [ ϕ f(y) = K ] }. Use Rice’s Theorem to show 
that CONSTANT is not recursive. Hint: There are two properties that must be demonstrated. 

First, show CONSTANT is non-trivial. 
 Z(x) = 0, which can be implemented as the TM R, is in CONSTANT 
 S(x) = x+1, which can be implemented by the TM C11R, is not in CONSTANT 
 Thus, CONSTANT is non-trivial 
 
Second, let f, g be two arbitrary computable functions with the same I/O behavior. 
 That is, ∀x, if f(x) is defined, then f(x) = g(x); otherwise both diverge, i.e., f(x)↑  and g(x)↑  
 Now, f ∈  CONSTANT  

⇔  ∃K ∀x  [ f(x) = K ]   by definition of CONSTANT 
⇔  ∀x [ g(x) = C ]  where C is the instance of K above, since ∀x [  f(x) = 
g(x) ] 
⇔  ∃K ∀x [ g(x) = K ]  from above 
⇔  g ∈  CONSTANT by definition of CONSTANT 

 
Since CONSTANT meets both conditions of Rice’s Theorem, it is undecidable.  Q.E.D. 

 
 5. Show that CONSTANT ≡m TOT, where TOT = { f | ∀y ϕ f(y)↓  }. 

CONSTANT ≤m TOT  
Let f be an arbitrary effective procedure. 
 Define gf by 

gf (0) = f(0) 
gf (y+1) = f(y+1) + µ  z  [f(y+1) = f(y) ] 

 Now, if f ∈  CONSTANT then ∀y [ f(y)↓   and  [ f(y+1) = f(y) ] ].  
Under this circumstance, µ  z [f(y+1) = f(y) ] is 0 for all y and gf (y) = f(y) for all y.  
Clearly, then gf ∈  TOT 

 If, however, f ∉  CONSTANT then ∃y [f(y+1) ≠  f(y) ] and thus, ∃y gf (y)↑ .  
 Choose the least y meeting this condition.  

If f(y)↑   then gf (y)↑  since f(y) is in gf (y)’s definition (the 1st  term). 
If f(y)↓   but  [f(y+1) ≠  f(y)] then gf (y)↑  since µ  z [ f(y+1) = f(y) ]↑  (the 2nd  term). 
Clearly, then gf ∉  TOT 

Combining these, f ∈  CONSTANT ⇔   gf ∈  TOT and thus CONSTANT ≤m TOT 
 
TOT  ≤m CONSTANT  
Let f be an an arbitrary effective procedure. 
 Define gf by 

gf (y) = f(y) – f(y) 
 Now, if f ∈  TOT then ∀y [ f(y)↓  ] and thus ∀y gf (y) = 0 . Clearly, then gf ∈  CONSTANT 
 If, however, f ∉  TOT then ∃y [f(y)↑  ] and thus, ∃y [gf (y)↑]. Clearly , then gf ∉  
CONSTANT 
Combining these, f ∈  TOT ⇔   gf ∈  CONSTANT and thus TOT  ≤m CONSTANT 
 
Hence, CONSTANT ≡m TOT.  Q.E.D. 
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 6. Why does Rice’s Theorem have nothing to say about the following? Explain by showing some 

condition of Rice’s Theorem that is not met by the stated property.  
  AT-LEAST-LINEAR = { f | ∀y ϕ f(y) converges in no fewer than y steps }. 

We can deny the 2nd condition of Rice’s Theorem since 
Z, where Z(x) = 0, implemented by the TM R converges in one step no matter what x is and 
hence is not in AT-LEAST-LINEAR 

Z’, defined by the TM R L  R, is in AT-LEAST-LINEAR  

However, ∀x [ Z(x) = Z’(x) ], so they have the same I/O behavior and yet one is in and the 
other is out of AT-LEAST-LINEAR, denying the 2nd condition of Rice’s Theorem 
  

 7. The trace language of a computational device like a Turing Machine is a language of the form 
Trace = { C1#C2# … Cn#  |  Ci ⇒  Ci+1, 1 ≤  i <  n } 
Trace is Context Sensitive, non-Context Free. Actually, a trace language typically has every other 
configuration word reversed, but the concept is the same. Oddly, the complement of such a trace is 
Context Free. Explain what makes its complement a CFL. In other words, describe the 
characteristics of this complement and why these characteristics are amenable to a CFG description.  
The complement of a trace needs to include strings that either do not look like a trace (that’s 
easy) or look like one, but have one or more errors. By one or more errors, we just mean that 
there is a pair Cj#Cj+1# where it is not the case that Cj ⇒  Cj+1. A PDA can guess which 
configuration starts this pair, push that configuration into its stack and check that the next one 
is in error (of course, this generally means one element of the pair is reversed). Such checking 
is within the capabilities of a PDA. 

 8. We demonstrated a proof that the context sensitive languages are not closed under homomorphism, 
To start, we assumed G = (N, Σ , S, P) is an arbitrary Phrase Structured Grammar, with N its set of 
non-terminals, Σ  its terminal alphabet, S its starting non-terminal and P its productions (rules). Since 
G is a PSG, it can have length increasing, length preserving and length decreasing rules. We wished 
to convert G to a CSG, G’ = (N’, Σ’, S’, P’) where there are no rules that are length decreasing 
(since a CSG cannot have these). We developed a way to pad the length decreasing rules from G and 
then a homomorphism that gets rid of these padding characters. Define G’ and the homomorphism h 
that we discussed in class and then briefly discuss why this new grammar and homomorphism 
combine so h(L(G’)) = L(G), thereby showing that all re sets are the homomorphic images of CSLs. 
Define N’ = N ∪  {S’, D}, where D and S’ are new symbols;   

Σ’ = Σ  ∪  {$}, where $ is a new symbol;  
P’ contains 
 S’ →  S$ is in P’ 
 If α  →  β  is in P and |α | ≤  |β |, then α  →  β  is in P’ 
 If α  →  β  is in P and |α | > |β |, then α  →  βDk is in P’, where k = |α | - |β  

Dx →  xD is in P’, for all x ∈  N ∪  Σ   
D$ →  $$ is in P’ 

It is clear that these rules are all length increasing or length preserving and hence G’ is a CSG.   
L(G’) = {w$j | w ∈  L(G) and j is some integer >0 } 
Define the homomorphism h by  

h(a) = a for all a ∈  Σ  
h($) = λ  (the string of length 0) 

h(L(G’)) = { w | w∈  L(G) } = L(G) 
This completes our constructive justification. 


