- The notation $\mathbf{z}=\langle\mathbf{x}, \mathbf{y}\rangle$ denotes the pairing function with inverses $\mathbf{x}=\langle\mathbf{z}\rangle_{1}$ and $\mathbf{y}=\langle\mathbf{z}\rangle_{\mathbf{2}}$.
- The minimization notation $\boldsymbol{\mu} \mathbf{y}[\mathbf{P}(\ldots, \mathbf{y})]$ means the least \mathbf{y} (starting at $\mathbf{0}$) such that $\mathbf{P}(\ldots, \mathbf{y})$ is true. The bounded minimization (acceptable in primitive recursive functions) notation $\boldsymbol{\mu} \mathbf{y}(\mathbf{u} \leq \mathbf{y} \leq \mathbf{v})[\mathbf{P}(\ldots, \mathbf{y})]$ means the least \mathbf{y} (starting at \mathbf{u} and ending at $\mathbf{v})$ such that $\mathbf{P}(\ldots, \mathbf{y})$ is true. I define $\boldsymbol{\mu} \mathbf{y}(\mathbf{u} \leq \mathbf{y} \leq \mathbf{v})[\mathbf{P}(\ldots, \mathbf{y})]$ to be $\mathbf{v}+\mathbf{1}$, when no \mathbf{y} satisfies this bounded minimization.
- The tilde symbol, \sim, means the complement. Thus, set $\sim \mathbf{S}$ is the set complement of set \mathbf{S}, and the predicate $\sim \mathbf{P}(\mathbf{x})$ is the logical complement of predicate $\mathbf{P}(\mathbf{x})$.
- A function \mathbf{P} is a predicate if it is a logical function that returns either $\mathbf{1}$ (true) or $\mathbf{0}$ (false). Thus, $\mathbf{P}(\mathbf{x})$ means \mathbf{P} evaluates to true on \mathbf{x}, but we can also take advantage of the fact that true is $\mathbf{1}$ and false is $\mathbf{0}$ in formulas like $\mathbf{y} \times \mathbf{P}(\mathbf{x})$, which would evaluate to either \mathbf{y} (if $\mathbf{P}(\mathbf{x})$) or $\mathbf{0}$ (if $\sim \mathbf{P}(\mathbf{x})$).
- A set \mathbf{S} is recursive if \mathbf{S} has a total recursive characteristic function $\chi_{\mathbf{s}}$, such that $\mathbf{x} \in \mathbf{S} \Leftrightarrow \chi_{\mathbf{s}}(\mathbf{x})$. Note $\chi_{\mathbf{S}}$ is a total predicate. Thus, it evaluates to $\mathbf{0}$ (false), if $\mathbf{x} \notin \mathbf{S}$.
- When I say a set \mathbf{S} is re, unless I explicitly say otherwise, you may assume any of the following equivalent characterizations:

1. \mathbf{S} is either empty or the range of a total recursive function $\mathbf{f}_{\mathbf{S}}$.
2. \mathbf{S} is the domain of a partial recursive function $\mathbf{g}_{\mathbf{s}}$.

- If I say a function \mathbf{g} is partially computable, then there is an index \mathbf{g} (we tend to overload the index as the function name), such that $\boldsymbol{\Phi}_{\mathbf{g}}(\mathbf{x})=\boldsymbol{\Phi}(\mathbf{x}, \mathbf{g})=\mathbf{g}(\mathbf{x})$. Here $\boldsymbol{\Phi}$ is a universal partially recursive function.
Moreover, there is a primitive recursive function STP, such that
$\operatorname{STP}(\mathbf{g}, \mathbf{x}, \mathbf{t})$ is $\mathbf{1}$ (true), just in case \mathbf{g}, started on \mathbf{x}, halts in \mathbf{t} or fewer steps.
$\operatorname{STP}(\mathbf{g}, \mathbf{x}, \mathbf{t})$ is $\mathbf{0}$ (false), otherwise.
Finally, there is another primitive recursive function VALUE, such that
$\operatorname{VALUE}(\mathbf{g}, \mathbf{x}, \mathbf{t})$ is $\mathbf{g}(\mathbf{x})$, whenever $\operatorname{STP}(\mathbf{g}, \mathbf{x}, \mathbf{t})$.
VALUE ($\mathbf{g}, \mathbf{x}, \mathbf{t}$) is defined but meaningless if $\sim \operatorname{STP}(\mathbf{g}, \mathbf{x}, \mathbf{t})$.
- The notation $\mathbf{f}(\mathbf{x}) \downarrow$ means that \mathbf{f} converges when computing with input $\mathbf{x}(\mathbf{x} \in \operatorname{Dom}(\mathbf{f})$). The notation $\mathbf{f}(\mathbf{x}) \uparrow$ means \mathbf{f} diverges when computing with input $\mathbf{x}(\mathbf{x} \notin \operatorname{Dom}(\mathbf{f}))$.
- The Halting Problem for any effective computational system is the problem to determine of an arbitrary effective procedure \mathbf{f} and input \mathbf{x}, whether or not $\mathbf{f}(\mathbf{x}) \downarrow$. The set of all such pairs, $\mathbf{K}_{\mathbf{0}}$, is a classic re non-recursive set. $\mathbf{K}_{\mathbf{0}}$ is also known as $\mathbf{L}_{\mathbf{u}}$, the universal language. The related set, \mathbf{K}, is the set of all effective procedures \mathbf{f} such that $\mathbf{f}(\mathbf{f}) \downarrow$ or more precisely $\boldsymbol{\Phi}_{f}(\mathbf{f})$.
- The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure \mathbf{f}, whether or not \mathbf{f} is an algorithm (halts on all input). This set, TOTAL, is a classic non re set.
- When I ask for a reduction of one set of indices to another, the formal rule is that you must produce a function that takes an index of one function and produces the index of another having whatever property you require. However, I allow some laxness here. You can start with a function, given its index, and produce another function, knowing it will have a computable index. For example, given \mathbf{f}, a unary function, I might define \mathbf{G}_{f}, another unary function, by
$\mathbf{G}_{\mathrm{f}}(\mathbf{0})=\mathbf{f}(\mathbf{0}) ; \mathbf{G}_{\mathrm{f}}(\mathbf{y}+\mathbf{1})=\mathbf{G}_{\mathrm{f}}(\mathbf{y})+\mathbf{f}(\mathbf{y}+\mathbf{1})$
This would get $\mathbf{G}_{\mathrm{f}}(\mathbf{x})$ as the sum of the values of $\mathbf{f}(\mathbf{0})+\mathbf{f}(\mathbf{1})+\ldots+\mathbf{f}(\mathbf{x})$.
- The Post Correspondence Problem (PCP) is known to be undecidable. This problem is characterized by instances that are described by a number $\mathbf{n}>\mathbf{0}$ and two \mathbf{n}-ary sequences of nonempty words $\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{n}}\right\rangle,\left\langle\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{\mathbf{n}}\right\rangle$. The question is whether or not there exists a sequence, $\mathbf{i}_{1}, \mathbf{i}_{2}, \ldots, \mathbf{i}_{\mathbf{k}}$, such that $\mathbf{1} \leq \mathbf{i}_{\mathbf{j}} \leq \mathbf{n}, \mathbf{1} \leq \mathbf{j} \leq \mathbf{k}$, and $\mathbf{x}_{\mathbf{i}_{1}} \mathbf{x}_{\mathbf{i}_{2}}{ }^{\cdots} \mathbf{x}_{\mathbf{i}_{\mathbf{k}}}=\mathbf{y}_{\mathbf{i}_{1}} \mathbf{y}_{\mathbf{i}_{2}} \cdots \mathbf{y}_{\mathbf{i}_{\mathbf{k}}}$
- When I ask you to show one set of indices, \mathbf{A}, is many-one reducible to another, \mathbf{B}, denoted $\mathbf{A} \leq \mathbf{m} \mathbf{B}$, you must demonstrate a total computable function \mathbf{f}, such that $\mathbf{x} \in \mathbf{A} \Leftrightarrow \mathbf{f}(\mathbf{x}) \in \mathbf{B}$. The stronger relationship is that \mathbf{A} and \mathbf{B} are many-one equivalent, $\mathbf{A} \equiv \mathbf{m} \mathbf{B}$, requires that you show $\mathbf{A} \leq \mathbf{m} \mathbf{B}$ and $\mathbf{B} \leq \mathbf{m} \mathbf{A}$. The related notion of one-one reducibility and equivalence require that the reducing function, \mathbf{f} above, be 1-1. The notation just replaces the \mathbf{m} with a $\mathbf{1}$, as in $\mathbf{A} \leq \mathbf{1} \mathbf{B}$.

1. Let set \mathbf{A} be recursive, \mathbf{B} be re non-recursive and \mathbf{C} be non-re. Choosing from among (REC) recursive, (RE) re non-recursive, (NR) non-re, categorize the set \mathbf{D} in each of a) through d) by listing all possible categories. No justification is required.
a.) $\mathbf{D}=\sim \mathbf{C}$
b.) $\mathbf{D} \subseteq(\mathbf{A} \cup \mathbf{C})$
c.) $\mathbf{D}=\sim \mathbf{B}$
d.) $\mathbf{D}=\mathbf{B}-\mathbf{A}$
2. Choosing from among (D) decidable, (U) undecidable, (?) unknown, categorize each of the following decision problems. No proofs are required.

Problem / Language Class	Regular	Context Free	Context Sensitive
$\mathbf{L}=\Sigma^{*} ?$			
$\mathbf{L}=\phi$?			
$\mathbf{L}=\mathbf{L}^{2} ?$			
$\mathbf{x} \in \mathbf{L}^{2}$, for arbitrary $\mathbf{x} ?$			

3. Use PCP to show the undecidability of the problem to determine if the intersection of two context free languages is non-empty. That is, show how to create two grammars $\mathbf{G}_{\mathbf{A}}$ and $\mathbf{G}_{\mathbf{B}}$ based on some instance $\left.\mathbf{P}=\ll \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{n}}\right\rangle,\left\langle\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{\mathbf{n}} \gg\right.$ of $\mathbf{P C P}$, such that $\mathbf{L}\left(\mathbf{G}_{\mathbf{A}}\right) \cap \mathbf{L}\left(\mathbf{G}_{\mathbf{B}}\right) \neq \phi$ iff \mathbf{P} has a solution. Assume that \mathbf{P} is over the alphabet $\boldsymbol{\Sigma}$. You should discuss what languages your grammars produce and why this is relevant, but no formal proof is required.
4. Consider the set of indices CONSTANT $=\left\{\mathbf{f} \mid \exists \mathbf{K} \forall \mathbf{y}\left[\varphi_{\mathrm{f}}(\mathbf{y})=\mathbf{K}\right]\right\}$. Use Rice's Theorem to show that CONSTANT is not recursive. Hint: There are two properties that must be demonstrated.
5. Show that CONSTANT \equiv_{m} TOT, where TOT $=\left\{\mathbf{f} \mid \forall \mathbf{y} \varphi_{\mathrm{f}}(\mathbf{y}) \downarrow\right\}$.
6. Why does Rice's Theorem have nothing to say about the following? Explain by showing some condition of Rice's Theorem that is not met by the stated property.
AT-LEAST-LINEAR $=\left\{\mathbf{f} \mid \forall \mathrm{y} \varphi_{\mathrm{f}}(\mathrm{y})\right.$ converges in no fewer than y steps $\}$.
7. The trace language of a computational device like a Turing Machine is a language of the form Trace $=\left\{\mathrm{C}_{1} \# \mathrm{C}_{2} \# \ldots \mathrm{C}_{\mathrm{n}} \# \mid \mathrm{C}_{\mathrm{i}} \Rightarrow \mathrm{C}_{\mathrm{i}+1}, \mathbf{1} \leq \mathrm{i}<\mathrm{n}\right\}$
Trace is Context Sensitive, non-Context Free. Actually, a trace language typically has every other configuration word reversed, but the concept is the same. Oddly, the complement of such a trace is Context Free. Explain what makes its complement a CFL. In other words, describe the characteristics of this complement and why these characteristics are amenable to a CFG description.
8. We demonstrated a proof that the context sensitive languages are not closed under homomorphism, To start, we assumed $\mathbf{G}=(\mathbf{N}, \boldsymbol{\Sigma}, \mathbf{S}, \mathbf{P})$ is an arbitrary Phrase Structured Grammar, with \mathbf{N} its set of non-terminals, $\boldsymbol{\Sigma}$ its terminal alphabet, \mathbf{S} its starting non-terminal and \mathbf{P} its productions (rules). Since \mathbf{G} is a PSG, it can have length increasing, length preserving and length decreasing rules. We wished to convert \mathbf{G} to a CSG, $\mathbf{G}^{\mathbf{\prime}}=\left(\mathbf{N}^{\prime}, \mathbf{\Sigma}^{\prime}, \mathbf{S}^{\prime}, \mathbf{P}^{\prime}\right)$ where there are no rules that are length decreasing (since a CSG cannot have these). We developed a way to pad the length decreasing rules from \mathbf{G} and then a homomorphism that gets rid of these padding characters. Define \mathbf{G}^{\prime} and the homomorphism \mathbf{h} that we discussed in class and then briefly discuss why this new grammar and homomorphism combine so $\mathbf{h}\left(\mathbf{L}\left(\mathbf{G}^{\prime}\right)\right)=\mathbf{L}(\mathbf{G})$, thereby showing that all re sets are the homomorphic images of CSLs.
