
 

 

COT 6410 Spring 2014 Final Exam E1 Sample Name:     
• The notation z = <x,y> denotes the pairing function with inverses x = <z>1 and y = <z>2.  
• The minimization notation µ  y [P(…,y)] means the least y (starting at 0) such that P(…,y) is true. 

The bounded minimization (acceptable in primitive recursive functions) notation  
µ  y (u≤y≤v) [P(…,y)] means the least y (starting at u and ending at v) such that P(…,y) is true. I 
define µ  y (u≤y≤v) [P(…,y)] to be v+1, when no y satisfies this bounded minimization.  

• The tilde symbol, ~, means the complement. Thus, set ~S is the set complement of set S, and the 
predicate ~P(x) is the logical complement of predicate P(x). 

• A function P is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus, 
P(x) means P evaluates to true on x, but we can also take advantage of the fact that true is 1 and 
false is 0 in formulas like y ×  P(x), which would evaluate to either y (if P(x)) or 0 (if ~P(x)). 

• A set S is recursive if S has a total recursive characteristic function χS, such that x ∈  S  ⇔  χS(x). 
Note χS is a total predicate. Thus, it evaluates to 0 (false), if x ∉  S. 

• When I say a set S is re, unless I explicitly say otherwise, you may assume any of the following 
equivalent characterizations: 
1. S is either empty or the range of a total recursive function fS. 
2. S is the domain of a partial recursive function gS. 

• If I say a function g is partially computable, then there is an index g (we tend to overload the index 
as the function name), such that Φg(x) = Φ(x, g) = g(x). Here Φ  is a universal partially recursive 
function.  
Moreover, there is a primitive recursive function STP, such that  
STP(g, x, t) is 1 (true), just in case g, started on x, halts in t or fewer steps.  
STP(g, x, t) is 0 (false), otherwise.  
Finally, there is another primitive recursive function VALUE, such that  
VALUE(g, x, t) is g(x), whenever STP(g, x, t).  
VALUE(g, x, t) is defined but meaningless if ~STP(g, x, t). 

• The notation f(x)↓  means that f converges when computing with input x (x ∈  Dom(f)). The notation 
f(x)↑  means f diverges when computing with input x (x ∉  Dom(f)). 

• The Halting Problem for any effective computational system is the problem to determine of an 
arbitrary effective procedure f and input x, whether or not f(x)↓ . The set of all such pairs, K0, is a 
classic re non-recursive set. K0 is also known as Lu, the universal language. The related set, K, is the 
set of all effective procedures f such that f(f)↓  or more precisely Φ f(f). 

• The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure f, 
whether or not f is an algorithm (halts on all input). This set, TOTAL, is a classic non re set. 

• When I ask for a reduction of one set of indices to another, the formal rule is that you must produce a 
function that takes an index of one function and produces the index of another having whatever 
property you require. However, I allow some laxness here. You can start with a function, given its 
index, and produce another function, knowing it will have a computable index. For example, given f, 
a unary function, I might define Gf, another unary function, by  
Gf(0) = f(0); Gf(y+1) = Gf(y) + f(y+1) 
This would get Gf(x) as the sum of the values of f(0)+f(1)+…+f(x). 

• The Post Correspondence Problem (PCP) is known to be undecidable. This problem is 
characterized by instances that are described by a number n>0 and two n-ary sequences of non-
empty words <x1,x2,…,xn>, <y1,y2,…,yn>. The question is whether or not there exists a sequence, 
i1,i2,…,ik, such that 1≤ij≤n, 1≤j≤k, and xi1xi2

…xik = yi1yi2
…yik  



COT6410 – ii – Final Exam E1 Sample – Hughes 

 

• When I ask you to show one set of indices, A, is many-one reducible to another, B, denoted  
A ≤m B, you must demonstrate a total computable function f, such that x ∈  A ⇔  f(x) ∈  B. The 
stronger relationship is that A and B are many-one equivalent, A ≡m B, requires that you show  
A ≤m B  and B ≤m A. The related notion of one-one reducibility and equivalence require that the 
reducing function, f above, be 1-1. The notation just replaces the m with a 1, as in A ≤1 B. 
 



 

 

COT 6410 Spring2014 Final Exam Sample E1 Questions 
 

 1. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC) 
recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by 
listing all possible categories. No justification is required. 

a.) D = ~C           

b.) D ⊆  (A∪C)           
c.) D = ~B            

d.) D = B −  A           

 2. Choosing from among (D) decidable, (U) undecidable, (?) unknown, categorize each of the 
following decision problems. No proofs are required.  

 

Problem / Language Class Regular Context Free Context Sensitive 

L = Σ* ?    

L = φ  ?    

L = L2 ?    

x  ∈  L2, for arbitrary x ?    

 3. Use PCP to show the undecidability of the problem to determine if the intersection of two context 
free languages is non-empty. That is, show how to create two grammars GA and GB based on some 
instance P = <<x1,x2,…,xn>, <y1,y2,…,yn>> of PCP, such that L(GA) ∩  L(GB) ≠  φ  iff P has a 
solution. Assume that P is over the alphabet Σ . You should discuss what languages your grammars 
produce and why this is relevant, but no formal proof is required. 

  
  



COT 6410 – 2– Spring 2014: Final E1 Sample – Hughes 

 

  

 4. Consider the set of indices CONSTANT = { f | ∃K ∀y [ ϕ f(y) = K ] }. Use Rice’s Theorem to show 
that CONSTANT is not recursive. Hint: There are two properties that must be demonstrated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5. Show that CONSTANT ≡m TOT, where TOT = { f | ∀y ϕ f(y)↓  }. 

 
  



COT 6410 – 3– Spring 2014: Final E1 Sample – Hughes 

 

 
 6. Why does Rice’s Theorem have nothing to say about the following? Explain by showing some 

condition of Rice’s Theorem that is not met by the stated property.  
  AT-LEAST-LINEAR = { f | ∀y ϕ f(y) converges in no fewer than y steps }. 

 
 
 
 
 
 
 
 
  

 7. The trace language of a computational device like a Turing Machine is a language of the form 
Trace = { C1#C2# … Cn#  |  Ci ⇒  Ci+1, 1 ≤  i <  n } 
Trace is Context Sensitive, non-Context Free. Actually, a trace language typically has every other 
configuration word reversed, but the concept is the same. Oddly, the complement of such a trace is 
Context Free. Explain what makes its complement a CFL. In other words, describe the 
characteristics of this complement and why these characteristics are amenable to a CFG description.  

 
 
 
 
 
 

 8. We demonstrated a proof that the context sensitive languages are not closed under homomorphism, 
To start, we assumed G = (N, Σ , S, P) is an arbitrary Phrase Structured Grammar, with N its set of 
non-terminals, Σ  its terminal alphabet, S its starting non-terminal and P its productions (rules). Since 
G is a PSG, it can have length increasing, length preserving and length decreasing rules. We wished 
to convert G to a CSG, G’ = (N’, Σ’, S’, P’) where there are no rules that are length decreasing 
(since a CSG cannot have these). We developed a way to pad the length decreasing rules from G and 
then a homomorphism that gets rid of these padding characters. Define G’ and the homomorphism h 
that we discussed in class and then briefly discuss why this new grammar and homomorphism 
combine so h(L(G’)) = L(G), thereby showing that all re sets are the homomorphic images of CSLs. 
 


