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· The notation z = <x,y> denotes the pairing function with inverses x = <z>1 and y = <z>2. 
· The minimization notation  y [P(…,y)] means the least y (starting at 0) such that P(…,y) is true. The bounded minimization (acceptable in primitive recursive functions) notation 
 y (uyv) [P(…,y)] means the least y (starting at u and ending at v) such that P(…,y) is true. I define  y (uyv) [P(…,y)] to be v+1, when no y satisfies this bounded minimization. 
· The tilde symbol, ~, means the complement. Thus, set ~S is the set complement of set S, and the predicate ~P(x) is the logical complement of predicate P(x).
· A function P is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus, P(x) means P evaluates to true on x, but we can also take advantage of the fact that true is 1 and false is 0 in formulas like y  P(x), which would evaluate to either y (if P(x)) or 0 (if ~P(x)).
· A set S is recursive if S has a total recursive characteristic function S, such that x  S   S(x). Note S is a total predicate. Thus, it evaluates to 0 (false), if x  S.
· When I say a set S is re, unless I explicitly say otherwise, you may assume any of the following equivalent characterizations:
1. S is either empty or the range of a total recursive function fS.
2. S is the domain of a partial recursive function gS.
· If I say a function g is partially computable, then there is an index g (we tend to overload the index as the function name), such that g(x) = (x, g) = g(x). Here  is a universal partially recursive function. 
Moreover, there is a primitive recursive function STP, such that 
STP(g, x, t) is 1 (true), just in case g, started on x, halts in t or fewer steps. 
STP(g, x, t) is 0 (false), otherwise. 
Finally, there is another primitive recursive function VALUE, such that 
VALUE(g, x, t) is g(x), whenever STP(g, x, t). 
VALUE(g, x, t) is defined but meaningless if ~STP(g, x, t).
· The notation f(x) means that f converges when computing with input x (x  Dom(f)). The notation f(x) means f diverges when computing with input x (x  Dom(f)).
· The Halting Problem for any effective computational system is the problem to determine of an arbitrary effective procedure f and input x, whether or not f(x). The set of all such pairs, K0, is a classic re non-recursive set. K0 is also known as Lu, the universal language. The related set, K, is the set of all effective procedures f such that f(f) or more precisely f(f).
· The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure f, whether or not f is an algorithm (halts on all input). This set, TOTAL, is a classic non re set.
· When I ask for a reduction of one set of indices to another, the formal rule is that you must produce a function that takes an index of one function and produces the index of another having whatever property you require. However, I allow some laxness here. You can start with a function, given its index, and produce another function, knowing it will have a computable index. For example, given f, a unary function, I might define Gf, another unary function, by 
Gf(0) = f(0); Gf(y+1) = Gf(y) + f(y+1)
This would get Gf(x) as the sum of the values of f(0)+f(1)+…+f(x).
· The Post Correspondence Problem (PCP) is known to be undecidable. This problem is characterized by instances that are described by a number n>0 and two n-ary sequences of non-empty words <x1,x2,…,xn>, <y1,y2,…,yn>. The question is whether or not there exists a sequence, i1,i2,…,ik, such that 1≤ij≤n, 1≤j≤k, and xi1xi2…xik = yi1yi2…yik 
· 
When I ask you to show one set of indices, A, is many-one reducible to another, B, denoted 
A ≤m B, you must demonstrate a total computable function f, such that x  A  f(x)  B. The stronger relationship is that A and B are many-one equivalent, A m B, requires that you show 
A ≤m B  and B ≤m A. The related notion of one-one reducibility and equivalence require that the reducing function, f above, be 1-1. The notation just replaces the m with a 1, as in A ≤1 B.
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	1.	Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC) recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by listing all possible categories. No justification is required.
a.)	D = ~C										
b.)	D  (AC)										
c.)	D = ~B											
d.)	D = B  A										
	2.	Choosing from among (D) decidable, (U) undecidable, (?) unknown, categorize each of the following decision problems. No proofs are required. 

	Problem / Language Class
	Regular
	Context Free
	Context Sensitive

	L = * ?
	
	
	

	L =  ?
	
	
	

	L = L2 ?
	
	
	

	x   L2, for arbitrary x ?
	
	
	


	3.	Use PCP to show the undecidability of the problem to determine if the intersection of two context free languages is non-empty. That is, show how to create two grammars GA and GB based on some instance P = <<x1,x2,…,xn>, <y1,y2,…,yn>> of PCP, such that L(GA)  L(GB)   iff P has a solution. Assume that P is over the alphabet . You should discuss what languages your grammars produce and why this is relevant, but no formal proof is required.
	


	
	4.	Consider the set of indices CONSTANT = { f | K y [ f(y) = K ] }. Use Rice’s Theorem to show that CONSTANT is not recursive. Hint: There are two properties that must be demonstrated.


















	5.	Show that CONSTANT m TOT, where TOT = { f | y f(y) }.




	6.	Why does Rice’s Theorem have nothing to say about the following? Explain by showing some condition of Rice’s Theorem that is not met by the stated property. 
		AT-LEAST-LINEAR = { f | y f(y) converges in no fewer than y steps }.








	
	7.	The trace language of a computational device like a Turing Machine is a language of the form
Trace = { C1#C2# … Cn#  |  Ci  Ci+1, 1  i  n }
Trace is Context Sensitive, non-Context Free. Actually, a trace language typically has every other configuration word reversed, but the concept is the same. Oddly, the complement of such a trace is Context Free. Explain what makes its complement a CFL. In other words, describe the characteristics of this complement and why these characteristics are amenable to a CFG description. 






	8.	We demonstrated a proof that the context sensitive languages are not closed under homomorphism, To start, we assumed G = (N, , S, P) is an arbitrary Phrase Structured Grammar, with N its set of non-terminals,  its terminal alphabet, S its starting non-terminal and P its productions (rules). Since G is a PSG, it can have length increasing, length preserving and length decreasing rules. We wished to convert G to a CSG, G’ = (N’, ’, S’, P’) where there are no rules that are length decreasing (since a CSG cannot have these). We developed a way to pad the length decreasing rules from G and then a homomorphism that gets rid of these padding characters. Define G’ and the homomorphism h that we discussed in class and then briefly discuss why this new grammar and homomorphism combine so h(L(G’)) = L(G), thereby showing that all re sets are the homomorphic images of CSLs.

