Assignment \#7 Key

Consider the boolean CNF expression $E=(a+b+c+d)(\sim a)(\sim b+d)(a+b+\sim d)$ Here + is or and catenation of terms is and.

1. Recast E in 3-CNF form (that is, with each term being a disjunct of three items)
$E=(a+b+e)(c+d+\sim e)(\sim a+\sim a+\sim a)(\sim b+d+d)(a+b+\sim d)$
2. Present the table that represents a conversion of E's satisfiability to an instance of SubsetSum

	a	b	C	d	e	a+b+e	$\mathrm{c}+\mathrm{d}+\sim \mathrm{e}$	$\sim a+\sim a+\sim a$	$\sim \mathrm{b}+\mathrm{d}+\mathrm{d}$	$a+b+\sim d$
a	1					1				1
\sim	1							3 (or 1)		
b		1				1				1
\sim		1							1	
c			1				1			
$\sim \mathrm{c}$			1							
d				1			1		2 (or 1)	
$\sim \mathrm{d}$				1						1
e					1	1				
\sim					1		1			
C1						1			1	
C1'						1			1	
C2							1			
C2'							1			
C3								1		
C3'								1		
C4									1	
C4'									1	
C5										1
C5'										1
	1	1	1	1	1	3	3	3	3	3

3. Explicitly write down the numbers that comprise this instance of SubsetSum

$$
\begin{array}{llllllllll}
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}
$$

4. Show a solution to this SubsetSum instance that encodes a solution to E's satisfiability $\sim a, b, c, d, e$ 1000000300 0100010001 0010001000 0001001020 0000110000 0000010000 0000001000 0000000010 0000000001 0000000001
= 111113333
5. Recast the SubsetSum instance you have as an instance of Partition Add two numbers to set from 3. These are:
3333377777 2*Sum - G 3333388888 Sum + G
6. Show an explicit solution to this instance of Partition -- that's easy given (3) P1
3333377777 1000000300 0100010001 0010001000 0001001020 0000110000 0000010000 0000001000 0000000010 0000000001 0000000001
= 4444511110

P2

3333388888 0100000010 0010000000 0001000001 0000101000 0000010000 0000001000 0000000100 0000000100 0000000010
$=4444511110$

1000010001
7. Recast the 3-CNF form of E as an instance of k-Vertex Covering and present a solution to the latter
$E=(a+b+e)(c+d+\sim e)(\sim a+\sim a+\sim a)(\sim b+d+d)(a+b+\sim d)$
Look at notes on the needed gadgets and connections
The k-Vertex cover goal is the number of variables $+2 *$ number of cluases $=5+10=15$.
8. Recast the 3-CNF form of E as an instance of the k-Coloring problem and present a solution to the latter
$E=(a+b+e)(c+d+\sim e)(\sim a+\sim a+\sim a)(\sim b+d+d)(a+b+\sim d)$
Look at notes on the needed gadgets and connections. The $k=3$ here.

