Assignment \#4 Key; Due February 13 at start of class

Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re nonrecursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d).
Justify your answer by showing some minimal quantification of some known recursive predicate.
a.) $\quad\{f \mid$ domain(f) is infinite \}

NRNC
Justification: $\forall \mathrm{x} \exists<\mathbf{y}, \mathrm{t}>[\mathbf{y} \geq \mathbf{x} \& \operatorname{STP}(\mathbf{f}, \mathbf{y}, \mathrm{t})]$
b.) $\quad\{\mathrm{f}||\operatorname{range}(f)|=1\}$
$\xrightarrow{\text { NRNC }}$
Justification: $\exists<\mathbf{x}, \mathbf{t}\rangle \forall\left\langle\mathbf{y}, \mathbf{t}{ }^{\prime}\right\rangle \quad[\operatorname{STP}(\mathbf{f}, \mathbf{x}, \mathbf{t}) \boldsymbol{\&} \&$
$\left.\left(\operatorname{STP}\left(\mathbf{f}, \mathbf{y}, \mathbf{t}^{\prime}\right) \Rightarrow\left(\operatorname{VALUE}\left(\mathbf{f}, \mathbf{y}, \mathbf{t}^{\prime}\right)=\operatorname{VALUE}(\mathbf{f}, \mathbf{x}, \mathbf{t})\right)\right)\right]$
c.) $\quad\{\langle\mathbf{f}, \mathrm{x}\rangle \mid \mathrm{f}(\mathrm{x})$ converges in at most $2 * \mathrm{x}+1$ steps $\}$

REC
Justification: $\operatorname{STP}(\mathbf{f}, \mathbf{x}, \mathbf{2 *} \mathbf{x}+\mathbf{1})$
d.) $\{f \mid$ domain(f) converges in at most $2 * x+1$ steps for all input $x\}$
\qquad
Justification: $\forall \mathrm{x} \operatorname{STP}(\mathbf{f}, \mathbf{x}, 2 * x+1)$

