## Assignment\#2 Key; Due January 28 at start of class

Let set A be non-empty recursive, $\mathbf{B}$ be re non-recursive and $\mathbf{C}$ be non-re. Using the terminology (REC) recursive, (RE) non-recursive recursively enumerable, (NR) non-re, categorize each set below, saying whether or not the set can be of the given category and justifying each answer. You may assume, for any set $\mathbf{S}$, the existence of comparably hard sets
$\mathbf{S}_{\mathbf{E}}=\{\mathbf{2} \mathbf{x} \mid \mathbf{x} \in \mathbf{S}\}$ and $\mathbf{S}_{\mathbf{D}}=\{\mathbf{2} \mathbf{x}+\mathbf{1} \mid \mathbf{x} \in \mathbf{S}\}$. The following is a sample of the kind of answer I require:
Sample.) $\quad A \cap C=\{x \mid x \in A$ and $x \in C\}$
REC: Yes. If $A=\{0\}$ then $A \cap C=\varnothing$ ot $\{0\}$, each of which is in REC.
RE: Yes. Let $A=\mathcal{N}_{E}=\{2 x \mid x \in \mathcal{N}\}$; let $C=$ TOT $_{D} \cup$ HALT $_{E}$ then $A \cap C=$ HALT $_{E}$ which is in RE
NR: Yes. If $A=\mathcal{N}$ then $A \cap C=C$, which is in NR.
a.) $B-A=\{x \mid x \in B$ and $x \notin A\} / /$ Set difference

REC: Yes. Let $A=\kappa, B=$ HALT, then $B-A=\varnothing$, which is in REC
RE: Yes. Let $A=\{0\}, B=$ HALT, then $B-A=$ HALT $-\{0\}$, which is in RE
NR: This is not possible. To see this, consider that $B-A=B \cap \sim A$. Since $A$ is in REC, then so is $\sim A$. A semi-decision procedure for $B-A$ cab be constructed by first seeing the chosen number, call it $x$, is in $\sim A$. If it is not then answer "NO." If it is then run the semi-decision procedure for B. If it ever answers "YES," produce the answer "YES." Formally, if $\chi_{A}$ decides $A$ and $g_{B}$ semi-decides $B$, the $g_{B-A}(x)=\left(1-\chi_{A}(x)\right) * g_{B}(x)$ semi-decide $B-A$.
b.) $\quad A^{*} B=\{x * y \mid x \in A$ and $y \in B\} / /$ Multiplication

REC: Let $A=\{0\}, B=$ HALT, then $A * B=\{0\}$, which is in REC
RE: Let $A=\{1\}, B=$ HALT, then $A * B=$ HALT, which is in RE
NR: This is not possible. To see this, we need just show that we can semi-decide A * B. By definition $x \in A * B$ iff $\exists a \in A, b \in B$ such that $x=a * b$. But, the rules of multiplication of natural numbers then implies we can limit our search to values of $a, b$ such $0 \leq a, b \leq x$, so we have bounds on each value. To take advantage of this, let's get rid of 0 first. If $x=0$, then $x$ is in $A$ * $B$, if 0 is in $A$ (quick check) or 0 is in $B$ (semi-decidable). Thus, we can semi-decide this case. For all other cases, just search for each $a, 1 \leq a \leq x$ such that a divides $x$. Include each such $\mathbf{x} / \mathbf{a}$ in a list called Check. Now run the enumerating function for $B$ to see if any of these items show up. If any does, answer "yes." This provides a semi-decision procedure.
c.) $\quad \mathbf{A} \cup \mathbf{C}=\{\mathbf{x} \mid \mathbf{x} \in \mathbf{A}$ or $\mathbf{x} \in \mathbf{C}\} / /$ Set union

REC: Let $A=\mathcal{\kappa}, \mathbf{C}=\sim$ HALT, then $A \cup C=\mathcal{\kappa}$, which is in REC
RE: Let $A=\aleph_{D}, B=H A L T_{E} \cup \sim H A L T_{D}$, then $A \cup C=H A L T_{E} \cup \aleph_{D}$, which is in RE
NR: Let $A=\{0\}, C=\sim H A L T$, then $A \cup C=\sim \operatorname{HALT} \cup\{0\}$, which is in NR

