Assignment\#2; Due January 28 at start of class

Let set A be non-empty recursive, \mathbf{B} be re non-recursive and \mathbf{C} be non-re. Using the terminology (REC) recursive, (RE) non-recursive recursively enumerable, (NR) non-re, categorize each set below, saying whether or not the set can be of the given category and justifying each answer. You may assume, for any set \mathbf{S}, the existence of comparably hard sets
$\mathbf{S}_{\mathbf{E}}=\{\mathbf{2} \mathbf{x} \mid \mathbf{x} \in \mathbf{S}\}$ and $\mathbf{S}_{\mathbf{D}}=\{\mathbf{2} \mathbf{x}+\mathbf{1} \mid \mathbf{x} \in \mathbf{S}\}$. The following is a sample of the kind of answer I require:
Sample.) $\quad A \cap C=\{x \mid x \in A$ and $x \in C\}$
REC: Yes. If $A=\{0\}$ then $A \cap C=\varnothing$ ot $\{0\}$, each of which is in REC.
RE: Yes. Let $A=\mathcal{N}_{E}=\{2 x \mid x \in \mathcal{N}\}$; let $C=$ TOT $_{D} \cup$ HALT $_{E}$ then $A \cap C=$ HALT $_{E}$ which is in RE
NR: Yes. If $A=\mathcal{N}$ then $A \cap C=C$, which is in NR.
a.) $\quad B-A=\{x \mid x \in B$ and $x \notin A\} / /$ Set difference
b.) $\quad A * B=\{x * y \mid x \in A$ and $y \in B\} / /$ Multiplication
c.) $A \cup C=\{x \mid x \in A$ or $x \in C\} / /$ Set union

Be careful: Some may not be possible. If so, you must justify why this is so.
Note:
TOT $=\left\{\mathrm{x} \mid \forall \varphi_{\mathrm{x}}(\mathrm{y}) \downarrow\right\}$. These are the indices of the set of algorithms.
HALT $\left.=\{<\mathrm{x}, \mathrm{y}\rangle \mid \varphi_{\mathrm{x}}(\mathrm{y}) \downarrow\right\}$. This is the set of pairs of procedures and input for which the given procedure halts.

The set S_{E} for any set S is defined as $\{2 \mathrm{x} \mid \mathrm{x} \in \mathrm{S}\}$
$S_{D}=\{2 x+1 \mid x \in S\}$.

