Assignment\#1 Key; Due January 19 at start of class Review of Formal Languages

Consider some language \mathbf{L}. For each of the following cases, write in one of (i) through (vi), to indicate what you can say conclusively about L's complexity, where
(i) \mathbf{L} is definitely regular
(ii) \mathbf{L} is context-free, possibly not regular, but then again it might be regular
(iii) \mathbf{L} is context-free, and definitely not regular
(iv) \mathbf{L} might not even be context-free, but then again it might even be regular
(v) \mathbf{L} is definitely not regular, and it may or may not be context-free
(vi) \mathbf{L} definitely is not even context-free

Follow each answer with example languages \mathbf{A} (and \mathbf{B}, where appropriate) to back up the complexity claims inherent in your answer; and/or state some known closure property that reflects a bound on the complexity of \mathbf{L}.

Example.) $\quad \mathbf{L}=\mathbf{A} \cup \mathbf{B}$, where \mathbf{A} and \mathbf{B} are both context free, and definitely not regular \mathbf{L} can be characterized by Property (ii), above.
\mathbf{L} is context-free, since the class of context-free languages is closed under union.
\mathbf{L} can be regular. For example,
$\mathbf{A}=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{m}} \mid \mathbf{m} \geq \mathbf{n}\right\}, \mathbf{B}=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{m}} \mid \mathbf{m} \leq \mathbf{n}\right\}$,
$\mathbf{L}=\mathbf{A} \cup \mathbf{B}=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{m}} \mid \mathbf{n}, \mathbf{m} \geq \mathbf{0}\right\}$, which is regular since it can be represented by the regular expression $\mathbf{a}^{*} \mathbf{b}^{*}$.
But \mathbf{L} is in general not guaranteed to be regular, e.g., if we just make \mathbf{A} and \mathbf{B} the same contextfree, non-regular set, then $\mathbf{L}=\mathbf{A} \cup \mathbf{A}=\mathbf{A}$, which is not regular.
a.) $\mathbf{L}=\mathbf{A}-\mathbf{B}$, where \mathbf{A} is context-free, non-regular and \mathbf{B} is regular
(ii)

$$
\begin{array}{ll}
\text { Regular: } & \mathbf{A}=\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}}, \mathbf{B}=\mathbf{a}^{*} \mathbf{b}^{*}, \mathbf{L}=\varnothing \\
\text { Context-Free: } & \mathbf{A}=\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}}, \mathbf{B}=\varnothing, \mathbf{L}=\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}}
\end{array}
$$

Non-Context-Free (NO): Cannot be so as $\mathbf{A}-\mathbf{B}=\mathbf{A} \cap \sim \mathbf{B} . \sim \mathbf{B}$ is regular since regular are closed under complement and context free are closed under intersection with regular.
b.) $\mathbf{L}=\mathbf{B}-\mathbf{A}$, where \mathbf{A} is context-free, non-regular and \mathbf{B} is regular
(iv)

Regular: $\quad \mathbf{A}=\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}}, \mathbf{B}=\varnothing, \mathbf{L}=\varnothing$
Context-Free: $\quad \mathbf{A}=\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}}, \mathbf{B}=\mathbf{a}^{*} \mathbf{b}^{*}, \mathbf{L}=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{m}} \mid \mathbf{n} \neq \mathbf{m}\right\}$
Non-Context-Free: $\quad \mathbf{A}=\left\{\mathbf{a}^{\mathbf{s}} \mathbf{b}^{\mathbf{t}} \mathbf{c}^{\mathbf{u}} \mid \mathbf{s} \neq \mathbf{t}\right.$ or $\left.\mathbf{t} \neq \mathbf{u}\right\}, \mathbf{B}=\mathbf{a} * \mathbf{b}^{*} \mathbf{c}^{*}, \mathbf{L}=\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}} \mathbf{c}^{\mathbf{n}}$
c.) $\mathbf{A}=\mathbf{L}-\mathbf{B}$, where \mathbf{A} is context-free, non-regular and \mathbf{B} is regular
(v)

Regular (NO): \quad Cannot be so as $\mathbf{L}-\mathbf{B}=\mathbf{A} \cap \sim \mathbf{B} . \sim \mathbf{B}$ is regular since regular are closed under complement and so $\mathrm{L}-\mathrm{B}$ is regular since regular are closed under intersection.
Context-Free: $\quad \mathbf{A}=\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}}, \mathbf{L}=\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}}, \mathbf{B}=\varnothing$
Non-Context-Free: $\quad \mathbf{A}=\mathbf{a}^{n} \mathbf{b}^{\mathbf{n}}, \mathbf{L}=\mathbf{a}^{n} \mathbf{b}^{\mathbf{n}} \mathbf{d}^{\mathbf{n + 1}} . \cup \mathbf{a}^{\mathrm{n}} \mathbf{b}^{\mathbf{n}}, \mathbf{L}=\mathbf{a}^{\mathrm{n}} \mathbf{b}^{\mathbf{n}}, \mathbf{B}=\mathbf{a}^{*} \mathbf{b}^{*} \mathbf{d}+$
d.) $\mathbf{L} \subset \mathbf{A}$, where \mathbf{A} is context-free, but not regular
(iv)

Regular:
$A=\mathbf{a}^{\mathrm{n}} \mathbf{b}^{\mathrm{n}} \mathbf{c}^{\mathrm{n}}, \mathrm{L}=\varnothing$
Context-Free:
$A=\left\{a^{n} b^{n} c^{m}, \mid m \neq n\right\}, L=a^{n+1} b^{n+1}$
Non-Context-Free: $A=\mathbf{a}^{n} b^{n} c^{n}, L=a^{2 n} b^{2 n} c^{2 n}$

