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12. ¥ = is called the "harmonic scrics” and is often denoted by H, = l+-i-+?+ ce +;. It has no
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nown closed form solution but H, = log(n) for large n. In terms of log base 2, it can be shown
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An "axiom" is an acccpted true statemcent; i.e. a statcment that needs no proof of validity.

A "lemma" is usually a statement that needs a proof of its validity. oftcn though, it is rather sim-
ple to prove and its uscfulncss is usually that it is used as a step in the proof of a more complex

statement.

A "theorem” is the more complex thing you are trying 10 prove. Its proof is usually the thing you
are trying 1o solve or bears directly on the problem you arc trying to solve.

A "corollary” is usually a straight forward conscquence of a theorem, possibly a special case, and
is of some interest in itsclf but may not rcally be related 1o the problem you arc trying to solve.

Ncte: these definitions arc not definitive in the sense that one person’s corollary might be another
person’s theorem, ctc.

Also note that definitions are often thought of as axioms.

Common "Proof” Techniques .

The object is to "prove” the validity of some statcment S. (somclimes you may want to
"disprove” the validity of S, but that is the same as "proving” the validity of not S.) A proof that state-
ment S is true consists of using a sct of axioms, previously proven lemmas, thcorems and/or corollaries,
and the rules of logic to arrive at a conclusion that S is uncquivocally and undeniably true. A "proof”
is invalid (really, a contradiction in terms, since an invalid proof is not a proof) when either (1) an
assumecd axiom is not really an axiom, (2) an assumcd thcorem is not rcally true (i.e., its "proof” is
really invalid), or (3) a rule of logic was improperly used or applicd in the steps Icading to the conclu-
sion,

To prove S is true we are rcally trying to prove the statcment

"if A then §”

is true, where A is a set of all relevant axioms and previously proven Theorems (and Lemmas and
Corollarics). The validity of this statcment is equivalent to the validity of S. The trick is to find the

- statements needed in the sct A and the scquence of logic rules.
Therc are scveral ways to go about doing this. Three of the most common and most uscful arc
(1) Dircct Proofs, (2) Contradiction Proofs, and (3) Induction Proofs.




(1) Direct Proofs. A
The idca here is to start with known dcfinitions, axioms and proven thcorems and then to try to
prove a sequence of new results (lemmas) which lead closer and closer to Statcment S. And finally you
have built enough "tools™ to draw the conclusion that S must be true. For example
If A then L,
IfAuUL,then L,
ifAULIUI.qlhan3

IfAUL;uU..UL then S

The trick is lo determine what each L; statement should be and to prove the corresponding " If A
vl u. UL, then L; " statement. .

(Notice: this is a classic case of Divide-and-Conquer applicd to proving thcorems)

(2) Contradiction Proofs A

To prove "If A then S" true is cquivalent to proving "If not S then not A" is true. Notice — this
is not proving "not A" is true. This is proving the statement "if not S then not A" is true. When this
statement is proven then, since we know not A is always false (since A is always true), we can con-
clude that not S must always be false, i.e., S must always be true.

So, how do we go about proving "if not S then not A"? We do it by assuming not S is a previ-
ously proven theorem and then by, e.g. the techniques in (l) try to conclude some statement in A must
be false.

In essence the techniques used in a direct proof and a contradiction proof are identical, and usu-
ally it can be shown that if there is a direct proof there is also a contradiction proof and vice-versa. So,
why use one over the other? Sometimes one way just seems to be clearer, easier or more straightfor-
ward than the other. The proofs of some theorems just seem to lend themselves to contradiction rather
than a direct approach (and vice-versa). Somctimes it’s simply a personal preference of the thcorem
prover.

(3) Induction Proofs

Proving the validity of a statement S by induction is probably thc most misunderstood of all the
~ proof techniques, yct it is also probably thc easicst and most uscful of the proof techniques for com-
puter science. There arc scveral variations and versions of the induction process. What I'll describe

~ here is the most common.

Induction is not applicable in all cascs. Usually it is used to establish the validity of statements S
where S claims some property holds for some function f, where f is a function of an intcger variable n,
e.g. possibly

S: f(n) 2 c for all n 2 5.

where ¢ is a constant, say. (C could also be variable and itself a function of n.)

The idea is the following and requires two steps.

(1) first you try to establish some rclationship between f(l-l) and {(i) that holds for all intcgers i (at
least for those 2 5). This might be given to you or it may be somcthing you have to derive and
prove holds. This rclationship must be strong enough for you to make the following conclusion
(which also must be proven.)

"If the property were to hold at i-1 then the relationship allows you to prove that it would also
hold at i.”

For example, with S as above

S:f(ny2cforalln25
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Suppose you are given, or can prove, that f(i-1) + 1 = (i), (the relationship) for all integers i.
Now, "if the property were to hold at i-1," i.e. f(i-1) 2 ¢, "then the rclationship”, i.e. f(i) = {(i-1) +
1, allows us to prove that it would also hold at i." i.e. f(i) 2 c.

So, what we have proven is that if it holds at some i then it holds at all intcgers greater than i,
since transitivity holds here, i.e.,

if (i) 2 c then f(i+1) 2 c, f(i+2) 2 C .

There is one last step.

@

You must show it does indeed hold for some integer i ahd determine what that i is. (in this case
we want to make sure i is € 5.) So what you try to do, usually, is to pick some valve of i S 5.
Now try to prove, for that specific i, that (i) 2 c.

That's it

Most discussions of induction give step (2) first and call it the "basis™ step. In many ways it

makes more sense 10 me to make it the second step.

An old analogy is proving you can climb to the top of ladder (assuming no loss of energy or fear

* of heights). You must prove two things:

¢))

@

No mater where you are on the laddcr say rung i-1, you must prove you can make it up one
more rung, rung i,
You must prove you can get on the ladder in the first place.

Notice: these two steps are sufficient to prove you can get to the top. They both are also neces-
sary: if you haven’t proven (1) you don't know you can even get to the second step above where
you got on, and if you haven’t proven (2) you surely can’t guaranice you can get to the top
because you haven't guaranteed you can even get on the ladder.

Consider the following statcments:

"For any simple graph G with p nodes and e edges we must have ¢ S PSELI— "

We may assume the nodes are labeled 1,2, ..., p. One axiom we have is a definition — a simple

graph has at most one edge between any pair of nodes and no edge from a node back to itself.

A Direct Proof:

The "degree” of node i, d;, is the number of edges incident to node i. By looking at each node in turn
and counting the number of edges coming into cach node, we will count d; +dy + -+ +d, edges.
Since each edge "comes into" exactly two differcnt nodes, we will have counted each edge twice. Thus

or

2Zc=d,+dy+ - +d,,==f;di
=1

P
e=¥%yd.
=1

Since no node can have more than one edge from each of the other p-1 nodes, we know
d;sp-1 for 1<igp. Therefore

e= ‘/de,<‘/¢Ep—1 P(P Ll taud) )

and we have proven the result. O
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A Second Direct Proof:
There are p nodes and each edge can go between exacily two of them. So, the maximum number
of ways you could place an edge in the graph is thc number of ways you can select two nodes from a
[;

set of p nodes, i.e. P . Tﬁcrcforc

Pl _pt _ p(p-D)
'°S[2]‘2!(p-2)!" 2

And again we have proven the result. [J

A Proof by Contradiction

We will prove the stalement "if ¢ > E;Ll)- then some axiom or known theorem must be false.”
We assume the nodes are labeled 1,2,....P. For each edge make a copy of that edge. Label the first
edge with the same label as one of the nodes it is adjacent to and label the second copy with the label

of the other node. We now have 2e > p(p-1) edges each with a label on it. Notice that label i must
occur exactly d; times, thus 2c=d, + d + - -+ + d, (you've seen that before). Therefore

g dy+dy+ -+ +d,>p(p-1) %
or ,
' di+dy+ --- +4d, @&%\x
12 >p-1 Q\
P
The term on the left is the average degree of the p nodes. So this says the average degree is

gfeater than p-1. But that cannot be true since we know the maximum degree is < p-1.
Since our argument is true and we have found a contradiction with a known result, we can con-

clude that e > ﬂ;Lll must be false, i.e., e < 2@2—_11 must be true.

The theorem is again proven. O

Note this proof is very much like the "reverse” of our first direct proof. This possibility was mentioned
earlier. Both are valid but here it scems the contradiction proof is a litle more awkward and/or not as
intuitive as the direct proof. (on other theorcms the reverse may be true).

An Induction Proof.

(1) Let ¢ be the maximum number of edge a graph with i nodes can have. When you allow one
more node you can add at most one edge from the new node to each of the first i nodes. There-

fore .

Ciut S&+i
If the property were to hold for i, that is ¢; < l(%ll. does the property hold for i+1? Notice that

g+is ——= iG=1) l) = '('-1;4' 2 ('4'21)' . Thus ey, < (14-21)1. and that’s the property.

So if we can show, for a particular i, that ¢; < '('21) the result will hold for all integers greater
than that i.
(2) Consider i=l, i.c., G has 1 node and therefore e, = 0. Note -‘(‘%‘)- also equals zero. Therefore, 1

is our particular value.
The theorem is true for all graphs with on¢ or more nodes. OO
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Construétive Induction
The goal, as before, is to obtain a closed form solution for a function given in a recursive form.
Normal induction is a technique by which a *quessed’ closed form solution is verified. (Induction is not
a method by which an answer is produced from scratch.) On the other hand, if one quess does not
work out we can try another, etc. Hopefully the failure of one quess will lead to modifications that will
provide a better next quess.
~ Constructive Induction is a technique in which we leave certain elements of the quess unspecified,
that is, as unknown constants. Then, after the inductive argument is carried out, try to determine values

 for the constants which are consistent with the specification of the problem. Consider

f(n) = f(n-1)+n, and f(1) = 1.
We know this to be f(n) = n(n+1)/2, in closed form, but suppose we didn’t and only suspected f(n) was
some quadratic function of n, i.e.,

f(n) = an? +bn+c, where a, b, and ¢ are not yet known.
It is certainly possible to ﬁnd values for a, b, and ¢ so that f(1) = 1. So, suppose it is possible to
find them so that

f(n-1) = a(n-1)? +b(n—-1)+c for some n > 1.
Then f(n) = f(n-1)+n = a(n-1)? +b(n-1)+c+n = an? +(b—28+1)n—a—b0—c The question now: is it possible
to find a, b, and ¢ so that :

1) atb+c =1, and
2) an® +(b—2a+1)n-a-b+c = an? +bn+c?

The latter implies that we must have b~2a+1 = b and -a-b+c = c, or that a = 1/2 and a = b. Therefore,
with 1), we must have ¢ = 0. The conclusion is then that

f(n) = n? 2+n/2 = n(n+1)/2,

as we already knew, but were able to obtain by induction without actually utilizing that knowledge in
the hypothesis. Notice, we do not need to still prove f(n) = n(n+1)/2 by standard induction.

Constructive induction has limitations. For instance, one necds to know at least the general form
of the solution, Further, this form cannot be oo complex or the mechanics of manipulating the induc-
tion hypothesis to the desired form becomes unmanageable (as it also would for standard induction.)

Notice that this technique is applicable when equality is replaced by inequality. This, and the
comments in the last paragraph might lead one to believe that constructive induction could be used in
order analysis. Indeed that is the case since then our goal is to use rather ’simple’ expressions. For
example, showing f(n) <= cg(n), where ¢ is a constant and g(n) is often of the form n* log(n), nlog(n),
etc. To be even more specific, suppose we simply wanted to prove f(n) = f(n-1)+n is order n* Then
we merely need to show there exists a constant ¢, for large enough n, so that f(n) < cn?. Letting the
induction hypothesis be that f(n-1) < c(n—1)?, we have

f(n) = f(n—1)+n < c(n~1)%n = c(n?>~2n+1)}+n = cn®-2cnHc+n,
or

f(n) € cn?®~(2c-1)n+c.
The right hand quantity is bound above by cn? for all n 2 1 and ¢ 2 1. All that remains is to select ¢ to
satisfy the basis of f(1) = 1. Letting ¢ = max{1,£(1)} is sufficient.
Other examples are admittedly not as straightforward. For instance, consider

f(n) = 4f(@/2)+n, for n > 1 and £(1) =




-7-

By rather simple techniques, it is possible to show f(n) is order n* But constructive induction, when
blindly applicd, may be mislcading. Begin with thc normal hypothesis that f(/2) < c(n/2)?, for some

constant ¢. Then we have :

f(n) = 4f(W2)+n < 4c(W2)*+n = cn’+n.
Clearly, cnn > cn?, for all n > 0 and any positive constant c. Notice, this does not say f(n)>cn?, only
that the right hand side is larger than cn®. So our desired conclusion may still be valid. If it is this
only implies our hypothesis is simply not 'strong enough.” On the other hand it may be false — you
just can’t tell at this point. '

[note: a common'fallacy here is to take the right hand side, cn®tn, and conclude that
cn?n < ¢'n? for some constant ¢’. Thus, that f(n) < c¢’n? and is therefore order n2. This is

in error. We MUST use the same constant ¢ throughout. Otherwise it would be possible to
show things like '

f(n) = f(n-1)}+n <= cn,

which we know to be n(n+1)/2.]

The remedy here is indicative of similar situations and lics in the statement above that our hypothesis
was not strong enough, Here, not strong enough means not restrictive enough. Towards that idea, let
our constructive induction hypothesis be that

f(n/2) < c(n/2)>-b(n/2), for positive constants ¢ AND b.
Then, )

f(n) = 4f(/2)}+n < 4(c(/2)>~b(/2)}+n = cn>~-2bn+n.
It is clear that this right hand side can be bounded above by cn?-bn for any positive constant ¢ and
constant b 2 1. Now, from the base condition, f(1), we must have

f(1) = 1 < c(1)>~b(1) = c~b.
So we may choose b = 1 and ¢ = 2, concluding that

f(n) < 2n’-n.
Notice that a standard induction argument would now show this to be a valid conclusion, but, as
mentioned before, this is unnecessary.

s eyt
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LOWER BOUND THEORY
Searching ordered lists with Comparison-Based Algorithms

Comparison-Based Algorithms: Information can be gained only by comparing key—
to—element, or element—to—element (in some problems).

Given: An integer n, a key, and an ordered list of n values.
Question: Is the key in the list and, if so, at what index?

We have an algorithm. We don't know what it is, or how it works. It accepts n, a key and
a list on n values. That's it.

It MUST, though, work pretty much as follows:

1) It must calculate an index for the first compare based solely upon n since it has not yet
compared the key against anything, i.e., it has not yet obtained any additional
information. Notice, this means for a fixed value of n, the position of the first compare
is fixed for all data sets (of size n).

2) The following is repeated until the key is found, or until it is determined that no location
contains the key: U500 G
The key is compared against the item at the specified index. R or N
a) If they are equal, the algorithm halts. T
b) If the key is less, then it incorporates this information and computes a new
index.
c) If the key is greater, then it incorporates this information and computes a new
index

There are no rules about how this must be done. In fact we want to leave it
wide open so that we are not eliminating any possible algorithm.

After the first compare, there are two possible second compare locations (indexes). Neither
depends upon the key or any item in the list: Just upon the result of the first compare.
Every second compare on every set of n items will be one of these two locations.

Every third compare will be one of four locations. Every fourth compare will be one of
eight locations. And, so on. In fact, we may look at an algorithm (for a given n) as being
described by (or, possibly, describing) a binary tree in which the root corresponds to the
first comparison, it's children to the possible second comparisons, their four children
represent the possible third comparison, etc. This binary tree, called in this context a
"decision tree," then depicts for this algorithm every possible path of comparisons that
could be forced by any particular key and set of n values.

Observation 0: Every comparison—based search algorithm has it's own set of decision
tree's (one for each value of n) — even if we don't know what or how it does its task, we
know it has one for each n and are pretty much like the one described above.
Observation 1: For any decision tree and any root-leaf path, there is a set of date which
will force the algorithm to take that path. The number of compares with a given data set
(key and n values) is the number of nodes in the "forced" root-leaf path.

Observation 2: The longest root—leaf path is the "worst case" running time of the
algorithm.

Observation 3. For any position i of {1, 2, ..., n}, some data set contains the key in
that position. So every algorithm must have a compare for every index, that is, the decision
tree must have at least one node for each position.



toee

Therefore, all decision trees—for the search problem—must have at least n nodes in them.

All binary trees with n nodes have a root-leaf path with at least |—log2 (n+1) ] nodes (you can
verify this by induction).

Thus, all decision trees defined by search algorithms on n items, have a path requiring
[log,(n+1 )| compares.

Therefore, the best any comparison-based search algorithm can hope to do is
log,n =[log,(n+1)1.

This is the comparison—based lower bound for the problem of searching an ordered list of n
items for a given key.

Comparison Based Sorting

Here, there is no "key." Typically, in comparison-based sorting, we will compare values
in two locations and, depending upon which is greater, we might

1) do nothing,

2) exchange the two values, R

3) move one of the values to a third position, : T o
. ‘e PP

4) leave a reference (pointer) at one of the positions, {

5) etc. ' '

As with searching, above, each sorting algorithm has its own decision tree. Some
differences occur: Leaf nodes are the locations which indicate "the list is now sorted."
Internal nodes simply represent comparisons on the path to a leaf node.

As with searching, we will determine the minimum number of nodes any sorting algorithm
(comparison-based) must have. Then, from that, the minimum height of all decision trees
(for sorting) can be determined providing the proof that all comparison-based sorting
algorithms must use at least this many comparisons.

Actually, it is quite simple now. Every decision tree starts with an unordered list and ends
up at a leaf node with a sorted list. Suppose you have two lists, one is a rearrangement of
the other. Then, in sorting them, something must be done differently to one of the lists (
done at a different time). Otherwise, if the same actions are performed to both lists in
exactly the same sequence, then one of them can not end up sorted. Therefore, they must
go through different paths from the root of the decision tree. By the same reasoning, all n!
different permutations of the integers 1, 2, . . ., n (these are valid things to sort, too, you
know) must go through distinct paths. Notice that distinct paths end in distinct leaf nodes.
Thus, there must be n! leaf nodes in every decision tree for sorting. That is, their height is

at least log,(n!). By a common result (one of Sterlings formula's) log,(n!) = nlog,(n).

Therefore, all comparison-based sorting algorithms require nlog,(n) time.



