Complexity analysis of Evolution of Dual Preference Orderings in Games of International Conflict

Overview

- Introduction
- Motivation
- Modeling
- Complexity Analysis
- Implication of Complexity Analysis
- References

Introduction

- International Conflict
- General disagreement
- Conflict - an agent of change
- Models of conflict resolution
, Conflict Game, Deterrence Game
- Conflict Game
- Overarching concept of Deterrence Game
- Two-player sequential game

Deterrence Game

- Model of
- persuasion and ideology exchange
- initiation and avoidance of war in international relations
- Decision Tree
- CI, C2, ..., Cn - Challenger decision points
- DI, D2, ..., Dn-Defender decision point

Deterrence Game

- Outcomes: leaf nodes
- For example,
- Status Quo (S) - no change
- Acquiesce (A) - defender gives in
- Capitulate (C) - challenger gives in
- Payoff Matrix: payoff received for decision made

Challenger moves	Defender moves			0 - player lost the game/replaced I - player unchanged
		Defend	Do not defend	
	Challenge	--	A $(2,0)$	2 - player won the game
	Do not challenge	C (0,2)	S (1,1)	-- - we do not know as this is an game is played indefinitely

Deterrence Game

- How to play the deterrence game?
- Each player has a strategy
- Complete or incomplete information
- With complete information, decision making starts at leaf node (our research)
- Decision tree for our research

Deterrence Game

- Illustration:

- Pl's strategy: $A>C>S>W$ (Challenger)
- P2's strategy: $\mathrm{C}>\mathrm{S}>\mathrm{A}>\mathrm{W}$ (Defender)

- At C2: Capitulate
- At DI: Capitulate
- At CI: Capitulate
- Outcome: Capitulate, Payoffs: Challenger - 0, Defender - 2

Deterrence Game

- 24 possible strategies

Code Letter	Payoff Vector	Preference Ordering	Code Letter	Payoff Vector	Preference Ordering
@	(1,2,3,4)	$W A R>C A P>A C Q>S Q$	1	(3, 1, 2, 4)	$W A R>S Q>C A P>A C Q$
a	(1,2,4, 3)	$C A P>W A R>A C Q>S Q$	m	(3, 1, 4, 2)	$C A P>S Q>W A R>A C Q$
b	(1,3,2,4)	$W A R>A C Q>C A P>S Q$	n	(3, 2, 1, 4)	$W A R>S Q>A C Q>C A P$
c	(1,3,4,2)	$C A P>A C Q>W A R>S Q$	o	(3,2,4,1)	$C A P>S Q>A C Q>W A R$
d	(1,4, 2, 3)	$A C Q>W A R>C A P>S Q$	p	(3,4, 1, 2)	$A C Q>S Q>W A R>C A P$
e	(1,4,3,2)	$A C Q>C A P>W A R>S Q$	q	(3,4, 2, 1)	$A C Q>S Q>C A P>W A R$
f	(2,1,3,4)	$W A R>C A P>S Q>A C Q$	r	(4, 1, 2, 3)	$S Q>W A R>C A P>A C Q$
g	(2, 1, 4, 3)	$C A P>W A R>S Q>A C Q$	s	(4, 1, 3, 2)	$S Q>C A P>W A R>A C Q$
h	(2,3, 1, 4)	$W A R>A C Q>S Q>C A P$	t	(4,2, 1, 3)	$S Q>W A R>A C Q>C A P$
i	(2,3,4,1)	$C A P>A C Q>S Q>W A R$.	u	(4, 2, 3, 1)	$S Q>C A P>A C Q>W A R$
j	(2,4, 1, 3)	$A C Q>W A R>S Q>C A P$		(4, 3, 1, 2)	$S Q>A C Q>W A R>C A P$
k	(2,4, 3, 1)	$A C Q>C A P>S Q>W A R$	w	(4, 3, 2, 1)	$S Q>A C Q>C A P>W A R$

, Traditionally studied strategies
b Hard defender (m) CAP > SQ >WAR >ACQ

- Soft defender (o) $\quad C A P>S Q>A C Q>W A R$
- Hard challenger (p) $\quad A C Q>S Q>W A R>C A P$
- Soft challenger (q) $\quad A C Q>S Q>C A P>W A R$
- Rogue challenger (j) ACQ > WAR $>S Q>C A P$

Motivation

- Are we studying the correct 5 strategies?
- Previous work
- One player one strategy
- However, one player can be both - a challenger and a defender
- Is there a set of optimal strategy pairs?
- Strategies that ensure that the player survives in the game
- What are their characteristics?

Modeling of Deterrence Game in our research

Population

$P(I, I)$	$P(I, 2)$	\ldots	$P(I, n)$
$P(2, I)$	$P(2,2)$	\ldots	$P(2, n)$
\ldots	\ldots	\ldots	\ldots
$P(n, I)$	$P(n, 2)$	\ldots	$P(n, n)$

Strategies : $24 \times 24=576$ strategy pairs 24 challenger strategies

24 defender strategies

Defender strategies

Randomly assign
one challenger strategy one defender strategy to a player

$P(I, I)-C_{1,1}, D_{1,1}$	$P(I, 2)-C_{1,2}, D_{1,2}$	\ldots	$P(I, n)-C_{1, n}, D_{1, n}$
$P(2, I)-C_{2,1}, D_{2,1}$	$P(2,2)-C_{2,2}, D_{2,2}$	\ldots	$P(2, n)-C_{2, n}, D_{2, n}$
\ldots	\ldots	\ldots	\ldots
$P(n, I)-C_{n, 1}, D_{n, 1}$	$P(n, 2)-C_{n, 2}, D_{n, 2}$	\ldots	$P(n, n)-C_{n, n}, D_{n, n}$

Play the deterrence game - winner replaces loser

Modeling

- Outcome table

Defender strategy

b Outcome of 24 challengers against 24 defenders
, W - war

- A-Acquiesce
- C-Capitulate
- . Status Quo

Modeling

- Previous work's acyclic dominance graph for a one player one strategy methodology

b Based on dominance of one strategy over another
- Dominance - higher payoff
> Number of incoming edges determine dominance
- Winners
- Status Quo - r, s, t, u, v, w
- Hard Challenger - p
, Soft Challenger - q

Modeling

- Acyclic dominance graph ideal tool to predict winning strategies
- Winning strategies
- highest payoff strategies: Status Quo -r, s, t, u, v, w
- second highest payoff strategies: Hard Challenger - p, Soft Challenger - q
- Present research has 576 strategies
- 576 vertices in the acyclic dominance graph
- Is there a dominating set in this dominance graph?
- This can be found in polynomial time since there are only 576 vertices

Modeling

- Payoff look-up table for 576 strategy pairs

	(0)	a	b	C	d	e	f	9	h	1	j	k	1	m	17	0	p	9	r	5	t	-	V	W
(Q)	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0.0	0.0	2,0	2,0	2,0	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0.0	0,0	2,0	2,0	2,0
a	0.2	0,2	2,0	0.2	2,0	2,0	0.2	0.2	2,0	0,2	2,0	2,0	0.2	0.2	2,0	0,2	2,0	2,0	0,2	0.2	2,0	0,2	2,0	2,0
b	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0.0	0,0	2,0	2,0	2,0
c	0,2	0,2	2,0	0.2	2,0	2,0	0.2	0.2	2,0	0.2	2,0	2,0	0.2	0.2	2,0	0,2	2,0	2,0	0,2	0.2	2.0	0.2	2,0	2,0
d	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0.0	0,0	2,0	2.0	2,0	0,0	0.0	0,0	2,0	2,0	2.0	0.0	0.0	0,0	2,0	2.0	2,0
e	0,2	0,2	2,0	0,2	2,0	2,0	0,2	0.2	2,0	0,2	2,0	2,0	0,2	0,2	2,0	0,2	2,0	2,0	0,2	0.2	2,0	0,2	2,0	2,0
f	0,0	0,0	0.0	1,1	1.1	1.1	0,0	0.0	0.0	1.1	1.1	1.1	0.0	0,0	0,0	1.1	1.1	1.1	0.0	0.0	0.0	1,1	1.1	1,1
9	0,2	0,2	1,1	0.2	1.1	1.1	0.2	0.2	1.1	0.2	1.1	1,1	0.2	0.2	1,1	0,2	1,1	1.1	0,2	0.2	1.1	0.2	1.1	1,1
h	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0.0	0,0	2,0	2,0	2,0	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0.0	0.0	2,0	2.0	2,0
I	0,2	0,2	2,0	0.2	2,0	2,0	0.2	0.2	2,0	0,2	2,0	2,0	0,2	0,2	2,0	0,2	2,0	2,0	0,2	0.2	2,0	0,2	2,0	2,0
,	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0.0	0,0	2,0	2,0	2,0
k	0,2	0,2	2,0	0,2	2,0	2,0	0,2	0.2	2,0	0.2	2,0	2,0	0,2	0.2	2,0	0,2	2,0	2,0	0.2	0.2	2,0	0.2	2,0	2,0
I	0,0	0,0	0,0	1.1	1,1	1.1	0,0	0.0	0,0	1,1	1.1	1.1	0,0	0,0	0,0	1,1	1.1	1,1	0,0	0.0	0,0	1,1	1,1	1,1
m	0.2	0,2	1.1	0.2	1.1	1.1	0.2	0.2	1.1	0.2	1.1	1.1	0.2	0.2	1.1	0.2	1.1	1.1	0.2	0.2	1.1	0.2	1.1	1,1
n	0,0	0,0	0,0	1,1	1,1	1,1	0,0	0.0	0,0	1,1	1,1	1,1	0,0	0,0	0,0	1,1	1,1	1,1	0,0	0.0	0,0	1,1	1,1	1,1
0	0,2	0,2	1,1	0,2	1,1	1,1	0,2	0.2	1,1	0,2	1,1	1,1	0,2	0,2	1,1	0,2	1,1	1,1	0,2	0.2	1,1	0,2	1,1	1,1
p	1.1	1.1	1.1	2,0	2,0	2,0	1.1	1.1	1.1	2,0	2.0	2,0	1.1	1.1	1.1	2,0	2,0	2.0	1,1	1.1	1.1	2,0	2.0	2,0
q	1,1	1,1	2,0	1,1	2,0	2,0	1,1	1.1	2,0	1,1	2,0	2,0	1,1	1,1	2,0	1,1	2,0	2,0	1,1	1,1	2,0	1,1	2,0	2,0
r	1,1	1,1	1,1	1,1	1.1	1.1	1,1	1,1	1.1	1,1	1.1	1,1	1,1	1,1	1,1	1,1	1.1	1.1	1,1	1.1	1,1	1,1	1.1	1,1
5	1,1	1,1	1,1	1,1	1.1	1.1	1,1	1.1	1.1	1,1	1.1	1.1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1.1	1,1	1.1	1,1
t	1.1	1.1	1,1	1,1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1,1	1,1	1.1	1,1	1.1	1.1	1,1	1.1	1.1	1.1	1.1	1,1
U	1,1	1,1	1,1	1,1	1.1	1.1	1,1	1.1	1.1	1,1	1.1	1,1	1,1	1,1	1,1	1,1	1.1	1.1	1,1	1.1	1.1	1,1	1,1	1,1
V	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1.1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1
w	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1.1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1.1	1,1	1,1	1,1	1,1

- Example: $(\mathrm{q}, \mathrm{I})=(\mathrm{I}, \mathrm{I}) \Rightarrow$ challenger payoff $=\mathrm{I}$, defender payoff $=$ I

The Bigger Problem

- In the actual deterrence game, the decision horizon is bounded by an arbitrary number n
- There could be many attacks and counter-attack
- This implies
- n decision points
- n strategies
- n possibilities
- n X n payoff look-up table entries
- This changes our dominance graph
b n vertices
- m edges

Formal Problem Statement

Theorem: Evolution of dual preference orderings in games of International Conflict is NP-Complete.
, Given:

- Dominance graph DG(V,E) of evolution of dual preference orderings
p an integer $\mathrm{k}, \mathrm{k} \leq|\mathrm{V}|$
- a look-up table L
- Question: Is there a dominating set of ordered pairs in DG of size k or less?

Step 1: Proof of NP

Witness: Dominating set S of ordered pairs

- Use the look-up table
* First element of ordered pair - Row, Second element - Column
- Check if the values of the ordered pair in the look-up table are both greater than 0
- Repeat this for all ordered pairs in the dominating set
- If all ordered pairs in the dominating set map to non-zero values, then that set is the set of dual preferences.
- Time complexity
b Look-up: O(I)
, Check for greater than 0, twice: $\mathrm{O}(2)$
- Repeat: $\mathrm{O}(|\mathrm{S}|)$, size of the dominating set
- Polynomial

Step 2: Proof of NP-Complete

- Dominating Set \longrightarrow_{p} Evolution of Dual Preference Orderings
- Dominating Set
- Given: Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, positive integer $\mathrm{K} \leq|\mathrm{V}|$.
- Question: Is there a dominating set of size K or less in G, i.e., a subset $\mathrm{V}^{`} \subseteq \mathrm{~V}$ with $\left|\mathrm{V}^{`}\right| \leq \mathrm{K}$ such that for all $u \in \mathrm{~V}^{-} \mathrm{V}^{`}$ there is a v $\in \mathrm{V}^{`}$ for which $\{u, v\} \in \mathrm{E}$?
- Dominating Set is known to be in NP-Complete

Proof of Polynomial Transformation

- Step I: Create an instance of Dominating Set
- Graph G = (V`, E')
- $\mathrm{K} \leq|\mathrm{V}|$
- Step 2:Transform this instance to instance of Evolution of dual preference orderings problem
- Assign G to G" ${ }^{\prime \prime}\left(V^{\prime \prime}, E^{\prime \prime}\right), G^{\prime \prime} \longleftarrow G$
- Add a vertex from V ' to $V^{\text {' }}$, if that vertex is in $D G(V, E)$
\square If a vertex in V is missing in V , add also that vertex to $\mathrm{V}^{\prime \prime}$
- Add an edge from E^{\prime} to $E^{\prime \prime}$ if that edge is in E of $D G(V, E)$
\square If an edge in E is missing in E^{\prime}, add also that edge to $E^{\prime \prime}$
- Assign K to $\mathrm{k}, \mathrm{k} \longleftarrow \mathrm{K}$
- Time complexity: $\mathrm{O}(\mathrm{V}+\mathrm{E})+\mathrm{O}(\mathrm{I}) \in \mathrm{O}(\mathrm{V}+\mathrm{E})$, polynomial

Validation

- Step 3:
- 'Yes' instance of evolution of dual preference orderings implies 'Yes' instance of Dominating Set

Evolution of Dual Preference Orderings

Dominating Set

- Step 4: Create an instance of evolution of dual preference orderings problem, i.e., $\mathrm{DG}(\mathrm{V}, \mathrm{E})$ and k

Validation

- Step 5:Transform it to an instance of Dominating Set G(V`, $\left.\mathrm{E}^{\prime}\right)$ and K
- Assign DG to G, G(V', $\left.{ }^{\prime}\right) \longleftarrow \mathrm{DG}(\mathrm{V}, \mathrm{E})$ and $\mathrm{K} \longleftarrow \mathrm{k}$
- 'Yes' of Dominating Set implies 'Yes' of evolution of dual preference orderings

Validation

DG(V,E) consists of a dominating set iff $G(V, E)$ consists of a dominating set.

Thus, Evolution of Dual Preference Orderings in Games of International Conflict is NP-Complete.

Implications

- Survivors in current results
- Strong challengers paired with strong defenders
- A few uncommon survivors

Implications

-Will dominance analysis help us understand

- the approximate 50:25:20 ratio among survivor groups?
- the presence of uncommon survivors?
- If there is no efficient algorithm to find the solution to this problem, what other methods do we have to use, or how differently should we model this problem?

References

[I] Heckendorn, R. B, Dacey, R., Carlson, L. J,Wu, A. S (2008).'The Evolution of Preference Orderings in Games of International Conflict', presented at the International Studies Association meeting, San Francisco.
[2] Garey, M. R and Johnson, D.S. (1979). Computers and Intractability - A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, NY.
[3] Dutton, R. (20I0). Class Notes: COT64 I 0 Computational Complexity. University of Central Florida, FL.
[4] Pradhan, R. and Wu, A.S. The Evolution of Dual-preference orderings in Games of International Conflict, Manuscript in preparation

Questions?

Thank you!

