Complexity analysis of Evolution of Dual Preference Orderings in Games of International Conflict

> Ramya Pradhan April 15, 2010

Overview

- Introduction
- Motivation
- Modeling
- Complexity Analysis
- Implication of Complexity Analysis
- References

Introduction

International Conflict

- General disagreement
- Conflict an agent of change
- Models of conflict resolution
 - Conflict Game, Deterrence Game

Conflict Game

- Overarching concept of Deterrence Game
- Two-player sequential game

Model of

- persuasion and ideology exchange
- initiation and avoidance of war in international relations

Decision Tree

- ► CI, C2, ..., Cn Challenger decision points
- ► DI, D2, ..., Dn– Defender decision point

Source: [1]

Outcomes: leaf nodes

For example,

D

- Status Quo (S) no change
- Acquiesce (A) defender gives in
- Capitulate (C) challenger gives in
- Payoff Matrix: payoff received for decision made

Challenger moves		Defend	Do not defend	
	Challenge		A (2,0)	
	Do not challenge	C (0,2)	S (I,I)	

Defender	moves
----------	-------

- 0 player lost the game/replaced
- I player unchanged
- 2 player won the game
- -- we do not know as this is an game is played indefinitely

How to play the deterrence game?

- Each player has a strategy
- Complete or incomplete information
- With complete information, decision making starts at leaf node (our research)
- Decision tree for our research

Illustration:

- PI's strategy: A > C > S > W (Challenger)
- P2's strategy: C > S > A > W (Defender)

- At C2: Capitulate
- At DI: Capitulate
- At CI: Capitulate

Outcome: Capitulate, Payoffs: Challenger – 0, Defender – 2

24 possible strategies

Code	Payoff	Preference Ordering	Code	Payoff	Preference Ordering
Letter	Vector		Letter	Vector	
0	(1, 2, 3, 4)	WAR > CAP > ACQ > SQ	1	(3, 1, 2, 4)	WAR > SQ > CAP > ACQ
a	(1, 2, 4, 3)	CAP > WAR > ACQ > SQ	m	(3, 1, 4, 2)	CAP > SQ > WAR > ACQ
b	(1, 3, 2, 4)	WAR > ACQ > CAP > SQ	n	(3, 2, 1, 4)	WAR > SQ > ACQ > CAP
с	(1, 3, 4, 2)	CAP > ACQ > WAR > SQ	0	(3, 2, 4, 1)	CAP > SQ > ACQ > WAR
d	(1, 4, 2, 3)	ACQ > WAR > CAP > SQ	p	(3, 4, 1, 2)	ACQ > SQ > WAR > CAP
е	(1, 4, 3, 2)	ACQ > CAP > WAR > SQ	q	(3, 4, 2, 1)	ACQ > SQ > CAP > WAR
f	(2, 1, 3, 4)	WAR > CAP > SQ > ACQ	r	(4, 1, 2, 3)	SQ > WAR > CAP > ACQ
g	(2, 1, 4, 3)	CAP > WAR > SQ > ACQ	S	(4, 1, 3, 2)	SQ > CAP > WAR > ACQ
h	(2, 3, 1, 4)	WAR > ACQ > SQ > CAP	t	(4, 2, 1, 3)	SQ > WAR > ACQ > CAP
i	(2, 3, 4, 1)	CAP > ACQ > SQ > WAR	ł u	(4, 2, 3, 1)	SQ > CAP > ACQ > WAR
j	(2, 4, 1, 3)	ACQ > WAR > SQ > CAP	v	(4, 3, 1, 2)	SQ > ACQ > WAR > CAP
k	(2, 4, 3, 1)	ACQ > CAP > SQ > WAR	ł w	(4, 3, 2, 1)	SQ > ACQ > CAP > WAR

Traditionally studied strategies

- Hard defender (m)
 CAP > SQ > WAR > ACQ
- Soft defender (o)
 CAP > SQ > ACQ > WAR
- Hard challenger (p)
 ACQ > SQ > WAR > CAP
- Soft challenger (q)
 ACQ > SQ > CAP > WAR
- Rogue challenger (j)
 ACQ > WAR > SQ > CAP

Motivation

Are we studying the correct 5 strategies?

Previous work

- One player one strategy
- ▶ However, one player can be both a challenger and a defender
- Is there a set of optimal strategy pairs?
 - Strategies that ensure that the player survives in the game
- What are their characteristics?

Modeling of Deterrence Game in our research

Population

P(1,1)	P(1,2)	 P(1,n)
P(2,1)	P(2,2)	 P(2,n)
P(n,I)	P(n,2)	 P(n, n)

Randomly assign	$P(1,1) - C_{1,1}, D_{1,1}$	$P(1,2) - C_{1,2}, D_{1,2}$	 $P(I,n)-C_{I,n},D_{I,n}$
one challenger strategy one defender strategy	$P(2,1) - C_{2,1}, D_{2,1}$	$P(2,2) - C_{2,2}, D_{2,2}$	 $P(2,n) - C_{2,n}, D_{2,n}$
to a player			
	$P(n,l) - C_{n,l}, D_{n,l}$	$P(n,2) - C_{n,2}, D_{n,2}$	 $P(n, n) - C_{n,n}, D_{n, n}$

Play the deterrence game - winner replaces loser

Outcome table

Defender strategy

	÷.,	0	a	b	с	d	e	f	g	h	i	j	k	1	m	п	0	p	q	r	8	t	u	v	w
	0	W	w	W	A	A	A	W	w	w	Α	А	Α	W	W	W	А	А	A	W	W	W	A	A	A
	a	C	C	A	C	A	А	C	C	А	C	А	Α	C	C	A	C	А	A	C	C	A	\mathbf{C}	A	A
	b	W	W	W	A	A	А	W	w	W	A	А	A	W	W	W	А	А	А	W	W	W	A	A	A
	c	C	C	A	С	A	A	C	C	Α	С	A	A	C	C	A	C	А	А	C	C	A	С	A	Α
	d	W	W	W	A	A	A	W	W	W	A	A	A	W	W	W	A	A	A	W	W	W	A	A	A
	e	C	C	A	Ċ	A	A	C	C	A	C	A	A	C	C	A	C	A	Α	C	C	A	С	A	A
	f	W	W	W	4	+	4	W	w	W	+			W	W	W				W	W	W	•	÷.	4
	g	C	C		С			C	C		С		•	C	C		C			C	C		С		
.	h	W	W	W	A	A	A	W	W	W	A	A	A	W	W	W	A	A	A	W	W	W	A	A	A
Challenger	i	C	C	A	C	A	A	C	C	А	C	A	A	C	Ç	A	C	A	A	C	C	A	C	A	A
Chancinger	j	W	W	W	A	A	A	W	w	W	A	A	A	W	W	W	A	A	A	W	W	W	A	A	A
stratogy	k	C	C	A	Ċ	A	A	C	C	A	Ċ	Α	A	C	C	A	Ç	A	A	C	C	A	C	A	A
scialegy	1	W	W	w	-			W	W	w	1	•		W	W	W	:		•	W	W	W		12	
	m	C	C		Ċ	•		C	C		C	•	•	C	C		C	•	•	C	C		C		•
	n	W	W	w	-		+	W	W	W	-		•	W	W	w		•	•	W	W	W	:		1
	0	C	C	3	0	:	2	0	C	1	ç	1	:	C	C		0	:	:	C	C		C.	1	1
	P	•	•	:	A	A	A		•		A	A	A		- 22	-	A	A	A	÷.	*	1	A	A	A
	q	12	- 62	A	14	A	A		1	A	- 20	A	A		- 94	A	•	A	A	2	22	A	<u>.</u>	A	A
	r	•		1	1	35	1		1	- 53	1	•	•		- 20	*	.*		•	1	35	1		1	
	8	•	•	•				•	•	•	+		•	•	*	+	•		•				•	•	4
	t	1	•		•		۰.			÷.);	÷.,	*			•		•	•	2		•			1	•
	u	•	•	•		*		•	•	•	*	•	•				2	•	•						
	v	•	•	•		*	+		•	•	+	•	•	•	*		•	•	•			•	•	•	
	w						۰.	1		- • · ·		. • 2					•	•		•			•	12	

- Outcome of 24 challengers against 24 defenders
- ► W war

- ► A Acquiesce
- C Capitulate
- . Status Quo

Table Source: [1]

Previous work's acyclic dominance graph for a one player one strategy methodology

- Dominance higher payoff
- Number of incoming edges determine dominance
- Winners

- ▶ Status Quo r, s, t, u, v, w
- Hard Challenger p
- Soft Challenger q

Graph Source: [1]

- Acyclic dominance graph ideal tool to predict winning strategies
 - Winning strategies
 - highest payoff strategies: Status Quo r, s, t, u, v, w
 - second highest payoff strategies: Hard Challenger p, Soft Challenger q
- Present research has 576 strategies
 - > 576 vertices in the acyclic dominance graph
 - Is there a dominating set in this dominance graph?
 - This can be found in polynomial time since there are only 576 vertices

Payoff look-up table for 576 strategy pairs

	@	а	b	С	d	е	f	g	h		j	k		m	n	0	р	q	r	S	t	u	V	W
@	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0,0	0,0	2,0	2,0	2,0
а	0,2	0,2	2,0	0,2	2,0	2,0	0,2	0,2	2,0	0,2	2,0	2,0	0,2	0,2	2,0	0,2	2,0	2,0	0,2	0,2	2,0	0,2	2,0	2,0
b	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0,0	0,0	2,0	2,0	2,0
С	0,2	0,2	2,0	0,2	2,0	2,0	0,2	0,2	2,0	0,2	2,0	2,0	0,2	0,2	2,0	0,2	2,0	2,0	0,2	0,2	2,0	0,2	2,0	2,0
d	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0,0	0,0	2,0	2,0	2,0
е	0,2	0,2	2,0	0,2	2,0	2,0	0,2	0,2	2,0	0,2	2,0	2,0	0,2	0,2	2,0	0,2	2,0	2,0	0,2	0,2	2,0	0,2	2,0	2,0
f	0,0	0,0	0,0	1,1	1,1	1,1	0,0	0,0	0,0	1,1	1,1	1,1	0,0	0,0	0,0	1,1	1,1	1,1	0,0	0,0	0,0	1,1	1,1	1,1
g	0,2	0,2	1,1	0,2	1,1	1,1	0,2	0,2	1,1	0,2	1,1	1,1	0,2	0,2	1,1	0,2	1,1	1,1	0,2	0,2	1,1	0,2	1,1	1,1
h	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0,0	0,0	2,0	2,0	2,0
i	0,2	0,2	2,0	0,2	2,0	2,0	0,2	0,2	2,0	0,2	2,0	2,0	0,2	0,2	2,0	0,2	2,0	2,0	0,2	0,2	2,0	0,2	2,0	2,0
j	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0,0	0,0	2,0	2,0	2,0	0,0	0,0	0,0	2,0	2,0	2,0
k	0,2	0,2	2,0	0,2	2,0	2,0	0,2	0,2	2,0	0,2	2,0	2,0	0,2	0,2	2,0	0,2	2,0	2,0	0,2	0,2	2,0	0,2	2,0	2,0
	0,0	0,0	0,0	1,1	1,1	1,1	0,0	0,0	0,0	1,1	1,1	1,1	0,0	0,0	0,0	1,1	1,1	1,1	0,0	0,0	0,0	1,1	1,1	1,1
m	0,2	0,2	1,1	0,2	1,1	1,1	0,2	0,2	1,1	0,2	1,1	1,1	0,2	0,2	1,1	0,2	1,1	1,1	0,2	0,2	1,1	0,2	1,1	1,1
n	0,0	0,0	0,0	1,1	1,1	1,1	0,0	0,0	0,0	1,1	1,1	1,1	0,0	0,0	0,0	1,1	1,1	1,1	0,0	0,0	0,0	1,1	1,1	1,1
0	0,2	0,2	1,1	0,2	1,1	1,1	0,2	0,2	1,1	0,2	1,1	1,1	0,2	0,2	1,1	0,2	1,1	1,1	0,2	0,2	1,1	0,2	1,1	1,1
р	1,1	1,1	1,1	2,0	2,0	2,0	1,1	1,1	1,1	2,0	2,0	2,0	1,1	1,1	1,1	2,0	2,0	2,0	1,1	1,1	1,1	2,0	2,0	2,0
q	1,1	1,1	2,0	1,1	2,0	2,0	1,1	1,1	2,0	1,1	2,0	2,0	1,1	1,1	2,0	1,1	2,0	2,0	1,1	1,1	2,0	1,1	2,0	2,0
r	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1
S	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1
t	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1
u	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1
V	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1
W	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1
	Г.				1		<u>۱</u> –	- /								_		r _		4.	f			
		xar	np	ie:	((7,1) -	- (I, I) =	\Rightarrow	CUS	alle	ng	er	pay	yOT	Τ -	' I,	ae	rer	JD	3r	
			Ċ.	_ 1	Ì	-	,	``		,						- 1								
	P	ayc) TT	-																				

The Bigger Problem

- In the actual deterrence game, the decision horizon is bounded by an arbitrary number n
 - There could be many attacks and counter-attack

This implies

- n decision points
- n strategies
- n possibilities
 - ▶ n X n payoff look-up table entries

This changes our dominance graph

- n vertices
- m edges

Formal Problem Statement

Theorem: Evolution of dual preference orderings in games of International Conflict is NP-Complete.

• Given:

- Dominance graph DG(V,E) of evolution of dual preference orderings
- an integer k, $k \leq |V|$
- a look-up table L
- Question: Is there a dominating set of ordered pairs in DG of size k or less?

Step 1: Proof of NP

Witness: Dominating set S of ordered pairs

- Use the look-up table
 - First element of ordered pair Row, Second element Column
 - Check if the values of the ordered pair in the look-up table are both greater than 0
 - Repeat this for all ordered pairs in the dominating set
 - If all ordered pairs in the dominating set map to non-zero values, then that set is the set of dual preferences.
- Time complexity
 - Look-up: O(I)
 - Check for greater than 0, twice: O(2)
 - Repeat: O(|S|), size of the dominating set
 - Polynomial

Step 2: Proof of NP-Complete

- Dominating Set P Evolution of Dual Preference
 Orderings
- Dominating Set
 - Given: Graph G = (V,E), positive integer K \leq |V|.
 - Question: Is there a dominating set of size K or less in G, i.e., a subset $V \subseteq V$ with $|V'| \leq K$ such that for all $u \in V-V$ there is a $v \in V$ for which $\{u, v\} \in E$?
- Dominating Set is known to be in NP-Complete

Proof of Polynomial Transformation

Step I: Create an instance of Dominating Set

- Graph $G = (V^{,E^{}})$
- K ≤ |V`|
- Step 2:Transform this instance to instance of Evolution of dual preference orderings problem
 - Assign G to $G``(V``,E``), G`` \leftarrow G$
 - Add a vertex from V` to V ``, if that vertex is in DG(V,E)
 If a vertex in V is missing in V`, add also that vertex to V``
 - Add an edge from E` to E`` if that edge is in E of DG(V,E)
 If an edge in E is missing in E`, add also that edge to E``
 - Assign K to k, k \leftarrow K

▶ Time complexity: $O(V+E) + O(I) \in O(V+E)$, polynomial

Validation

• Step 3:

'Yes' instance of evolution of dual preference orderings implies
 'Yes' instance of Dominating Set

 Step 4: Create an instance of evolution of dual preference orderings problem, i.e., DG(V,E) and k

Validation

- Step 5:Transform it to an instance of Dominating Set G(V`,E`) and K
 - Assign DG to G, $G(V^{,E^{}}) \leftarrow DG(V,E)$ and $K \leftarrow k$
 - 'Yes' of Dominating Set implies 'Yes' of evolution of dual preference orderings

Validation

DG(V,E) consists of a dominating set iff G(V,E) consists of a dominating set.

Thus, Evolution of Dual Preference Orderings in Games of International Conflict is NP-Complete.

Implications

Survivors in current results

- Strong challengers paired with strong defenders
- A few uncommon survivors

- Will dominance analysis help us understand
 - the approximate 50:25:20 ratio among survivor groups?
 - the presence of uncommon survivors?
- If there is no efficient algorithm to find the solution to this problem, what other methods do we have to use, or how differently should we model this problem?

References

[1] Heckendorn, R. B, Dacey, R., Carlson, L. J, Wu, A. S (2008). 'The Evolution of Preference Orderings in Games of International Conflict', presented at the International Studies Association meeting, San Francisco.

[2] Garey, M. R and Johnson, D.S. (1979). Computers and Intractability – A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, NY.

[3] Dutton, R. (2010). *Class Notes: COT6410 Computational Complexity*. University of Central Florida, FL.

[4] Pradhan, R. and Wu, A.S. The Evolution of Dual-preference orderings in Games of International Conflict, *Manuscript in preparation*

Questions?

Thank you!