
Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

COT 6410: Pipeline Scheduling

Michael Gabilondo

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Overview

1 Create a Formal Problem from a Real-world Problem

2 Investigate Complexity of Defined Problem

3 Redefine the Problem

4 NP-Completeness for Revised Problem

5 References

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Real-World Problem

I chose a real-world problem: Instruction Scheduling on a
Pipeline with precedence constraints between pipeline

stages of jobs. or, Pipeline-Scheduling for short.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Real-World Problem

I chose a real-world problem: Instruction Scheduling on a
Pipeline with precedence constraints between pipeline

stages of jobs. or, Pipeline-Scheduling for short.
It’s this problem, from your Computer Architecture course:

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Real-World Problem

A dynamic-scheduling pipelined processor with m stages
tries to execute every instruction in a program without
issuing a no-op instruction due to data dependencies
between two instructions.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Real-World Problem

A dynamic-scheduling pipelined processor with m stages
tries to execute every instruction in a program without
issuing a no-op instruction due to data dependencies
between two instructions.

The IBM System/360, which implemented Tomasulo’s
algorithm, is a notable example of a dynamic scheduling
processor [Hennessy, “Computer Architecture”].

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

A different view of the pipeline chart

Here, the P1 P2 P3 P4 P5 are pipeline stages: IF ID EX
MEM WB.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

A different view of the pipeline chart

Here, the P1 P2 P3 P4 P5 are pipeline stages: IF ID EX
MEM WB.

Each instruction is a JOB.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

A different view of the pipeline chart

Here, the P1 P2 P3 P4 P5 are pipeline stages: IF ID EX
MEM WB.

Each instruction is a JOB.

Each Instruction/Job has m tasks, the number of pipeline
stages. Here, m = 5.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

A different view of the pipeline chart

The jobs come in through P1 from the left, and go to P2 in
the next cycle, then P3, P4 and P5; in general up to Pm.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

A different view of the pipeline chart

The jobs come in through P1 from the left, and go to P2 in
the next cycle, then P3, P4 and P5; in general up to Pm.

This appears to be a shop-scheduling problem.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Defining a shop-scheduling problem

Starting point is flow-shop scheduling problem, which is
NP-Complete; informal description

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Defining a shop-scheduling problem

Starting point is flow-shop scheduling problem, which is
NP-Complete; informal description
A set J of jobs, each job j ∈ J consisting of m tasks, and m
also is the number of processors.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Defining a shop-scheduling problem

Starting point is flow-shop scheduling problem, which is
NP-Complete; informal description
A set J of jobs, each job j ∈ J consisting of m tasks, and m
also is the number of processors.
The m tasks of job j are denoted t1(j), t2(j), ..., tm(j), task ti(j)
is to be executed on processor i

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Defining a shop-scheduling problem

Starting point is flow-shop scheduling problem, which is
NP-Complete; informal description
A set J of jobs, each job j ∈ J consisting of m tasks, and m
also is the number of processors.
The m tasks of job j are denoted t1(j), t2(j), ..., tm(j), task ti(j)
is to be executed on processor i
A processor cannot execute more than one task at a time

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Defining a shop-scheduling problem

Starting point is flow-shop scheduling problem, which is
NP-Complete; informal description
A set J of jobs, each job j ∈ J consisting of m tasks, and m
also is the number of processors.
The m tasks of job j are denoted t1(j), t2(j), ..., tm(j), task ti(j)
is to be executed on processor i
A processor cannot execute more than one task at a time
Two tasks of the same job cannot be executed at the same
time

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Defining a shop-scheduling problem

Starting point is flow-shop scheduling problem, which is
NP-Complete; informal description
A set J of jobs, each job j ∈ J consisting of m tasks, and m
also is the number of processors.
The m tasks of job j are denoted t1(j), t2(j), ..., tm(j), task ti(j)
is to be executed on processor i
A processor cannot execute more than one task at a time
Two tasks of the same job cannot be executed at the same
time
Task i+1 of a job j cannot start until task i has completed;
i.e., the tasks are ordered

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Defining a shop-scheduling problem

Starting point is flow-shop scheduling problem, which is
NP-Complete; informal description
A set J of jobs, each job j ∈ J consisting of m tasks, and m
also is the number of processors.
The m tasks of job j are denoted t1(j), t2(j), ..., tm(j), task ti(j)
is to be executed on processor i
A processor cannot execute more than one task at a time
Two tasks of the same job cannot be executed at the same
time
Task i+1 of a job j cannot start until task i has completed;
i.e., the tasks are ordered
Tasks have a length, l(t); if a task t on processor i is
scheduled on σi(t), then nothing else can be scheduled on
that processor until σi(t)+ l(t)

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Flow-Shop Scheduling

QUESTION: Can the tasks be scheduled on the processors
such that the above constraints are obeyed and the
finishing time of the last task is less than D?

Similarities to Pipeline SchedulingMichael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

How is the pipeline problem different from the
m-Machine flow-shop problem?

All tasks are unit length, i.e., l(ti(j)) = 1, for all 1 ≤ i ≤m,
1 ≤ j ≤ n.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

How is the pipeline problem different from the
m-Machine flow-shop problem?

All tasks are unit length, i.e., l(ti(j)) = 1, for all 1 ≤ i ≤m,
1 ≤ j ≤ n.

σi+1(j) = σi(j)+1, i.e., task i+1 of job j must begin
immediately on processor i+1 after task i finishes on
processor i.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

How is the pipeline problem different from the
m-Machine flow-shop problem?

All tasks are unit length, i.e., l(ti(j)) = 1, for all 1 ≤ i ≤m,
1 ≤ j ≤ n.

σi+1(j) = σi(j)+1, i.e., task i+1 of job j must begin
immediately on processor i+1 after task i finishes on
processor i.

This makes our problem a type of no-wait flow-shop, i.e.,
m-machine no-wait flow-shop.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

How is the pipeline problem different from the
m-Machine flow-shop problem?

All tasks are unit length, i.e., l(ti(j)) = 1, for all 1 ≤ i ≤m,
1 ≤ j ≤ n.

σi+1(j) = σi(j)+1, i.e., task i+1 of job j must begin
immediately on processor i+1 after task i finishes on
processor i.

This makes our problem a type of no-wait flow-shop, i.e.,
m-machine no-wait flow-shop.

A partial order ≺ is defined over the tasks. t ≺ t′ means that
task t′ cannot begin until task t finishes because, for
example, t produces data that is required by t′.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Define our problem formally

Pipeline Scheduling

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Define our problem formally

Pipeline Scheduling

INSTANCE:

A set J of jobs, a number m of processors, each job j has
tasks t1(j), t2(j), ..., tm(j), each task having a length l(ti(j)) = 1.
A partial order ≺ over the tasks, indicating precedence
constraints between tasks.
An integer D, the deadline for the last task.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Define our problem formally

Pipeline Scheduling

INSTANCE:

A set J of jobs, a number m of processors, each job j has
tasks t1(j), t2(j), ..., tm(j), each task having a length l(ti(j)) = 1.
A partial order ≺ over the tasks, indicating precedence
constraints between tasks.
An integer D, the deadline for the last task.

QUESTION:

Is there a schedule with the finishing time of the last task
less than D, and the schedule is a no-wait flow-shop
schedule and if ti′(j

′) ≺ ti(j), then σi′(ti′(j
′)) < σi(ti(j))?

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Investigate the Complexity of Created Problem

Is pipeline scheduling NP-Complete?

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Investigate the Complexity of Created Problem

Is pipeline scheduling NP-Complete?

This is formulated as a scheduling (rather than
one-processor sequencing) problem, so I attempted to use
3-Machine No-Wait Flow-Shop, but no luck.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Investigate the Complexity of Created Problem

Is pipeline scheduling NP-Complete?

This is formulated as a scheduling (rather than
one-processor sequencing) problem, so I attempted to use
3-Machine No-Wait Flow-Shop, but no luck.

I found another problem which represents the pipeline
problem more closely.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

MINIMUM PRECEDENCE CONSTRAINED
SEQUENCING WITH DELAYS

An NP-Complete problem

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

MINIMUM PRECEDENCE CONSTRAINED
SEQUENCING WITH DELAYS

An NP-Complete problem

INSTANCE: Set T of tasks, a directed acyclic graph
G = (T,E) defining precedence constraints for the tasks, a
positive integer D, and for each task an integer delay
0 ≤ d(t) ≤D.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

MINIMUM PRECEDENCE CONSTRAINED
SEQUENCING WITH DELAYS

QUESTION: Is there a one-processor schedule S for T that
obeys the precedence constraints and the delays, and the
maximum S(t) ≤D? The schedule S is an injective function
S : T→ Z+ such that, for each edge
〈

ti, tj

〉

∈ E,S(tj)−S(ti) > d(ti)⇔ S(tj) ≥ S(ti)+d(ti)+1

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Proving NP-Completeness

I tried to find a polynomial transformation from
sequencing problem to the pipeline problem

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Proving NP-Completeness

I tried to find a polynomial transformation from
sequencing problem to the pipeline problem
In precedence constrained sequencing, the integers d(t)
and D can be exponential in magnitude, and the instance
will still be polynomial.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Proving NP-Completeness

I tried to find a polynomial transformation from
sequencing problem to the pipeline problem
In precedence constrained sequencing, the integers d(t)
and D can be exponential in magnitude, and the instance
will still be polynomial.
In pipeling scheduling, if m is exponential, then that
instance will contain sets with exponential number of
elements

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Proving NP-Completeness

I tried to find a polynomial transformation from
sequencing problem to the pipeline problem
In precedence constrained sequencing, the integers d(t)
and D can be exponential in magnitude, and the instance
will still be polynomial.
In pipeling scheduling, if m is exponential, then that
instance will contain sets with exponential number of
elements
My transformation created sets of elements with D or d(t)
elements, so it is not a polynomial transformation

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Proving NP-Completeness

I tried to find a polynomial transformation from
sequencing problem to the pipeline problem
In precedence constrained sequencing, the integers d(t)
and D can be exponential in magnitude, and the instance
will still be polynomial.
In pipeling scheduling, if m is exponential, then that
instance will contain sets with exponential number of
elements
My transformation created sets of elements with D or d(t)
elements, so it is not a polynomial transformation
I modified pipeline scheduling so that sets of tasks were
not part of the problem, and modified the precedence
constraints; I will show how this new formulation is very
similar to the old problem

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Redefining Pipeline Scheduling

What is the effect of the precedence constraints between
tasks on the starting times of the first task of each job?

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Redefining Pipeline Scheduling

Observation. If tk(j′) ≺ ti(j) and k ≥ i, then the starting time
of the first task of job j, σ1(j) ≥ σ1(j′)+ k− i+1, if k ≥ i.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Redefining Pipeline Scheduling

Observation. If tk(j′) ≺ ti(j) and k ≥ i, then the starting time
of the first task of job j, σ1(j) ≥ σ1(j′)+ k− i+1, if k ≥ i.

If tk(j′) ≺ ti(j) and k < i, then the first task task of job j must
scheduled at least one time unit after job t1(j′) is scheduled.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Redefining Pipeline Scheduling

Observation. If tk(j′) ≺ ti(j) and k ≥ i, then the starting time
of the first task of job j, σ1(j) ≥ σ1(j′)+ k− i+1, if k ≥ i.

If tk(j′) ≺ ti(j) and k < i, then the first task task of job j must
scheduled at least one time unit after job t1(j′) is scheduled.

Also, the maximum “delay” a precedence constraint can
have is k− i+1 ≤m.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Redefining Pipeline Scheduling

We don’t have to worry about tasks and can just represent
jobs. We can create a DAG to represent ≺, and put weights
on the edges using a weight function W:

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Redefining Pipeline Scheduling

We don’t have to worry about tasks and can just represent
jobs. We can create a DAG to represent ≺, and put weights
on the edges using a weight function W:
〈

ti, tj

〉

∈ E⇔ S(tj) ≥ S(ti)+W(
〈

ti, tj

〉

)+1
In this case, we put an edge between Job 4 and Job 2 with
weight 2.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Definition of Pipeline Scheduling Revised

Pipeline Sequencing problem

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Definition of Pipeline Scheduling Revised

Pipeline Sequencing problem

INSTANCE: A set I of instructions: {I1, I2, ..., In}, m pipeline
stages, G = (I,E), a weighted directed acyclic graph (DAG),
a weight function W : E→ {1,2,3, ...,m−1}.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Definition of Pipeline Scheduling Revised

Pipeline Sequencing problem

INSTANCE: A set I of instructions: {I1, I2, ..., In}, m pipeline
stages, G = (I,E), a weighted directed acyclic graph (DAG),
a weight function W : E→ {1,2,3, ...,m−1}.

QUESTION: Is there a one-processor schedule σ : I→Z+
0

,
such that σ is one-to-one,

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Definition of Pipeline Scheduling Revised

Pipeline Sequencing problem

INSTANCE: A set I of instructions: {I1, I2, ..., In}, m pipeline
stages, G = (I,E), a weighted directed acyclic graph (DAG),
a weight function W : E→ {1,2,3, ...,m−1}.

QUESTION: Is there a one-processor schedule σ : I→Z+
0

,
such that σ is one-to-one,
〈

Ij, Ik

〉

∈ E⇔ σ(Ik) ≥ σ(Ij)+W(
〈

Ij, Ik

〉

)+1

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Definition of Pipeline Scheduling Revised

Pipeline Sequencing problem

INSTANCE: A set I of instructions: {I1, I2, ..., In}, m pipeline
stages, G = (I,E), a weighted directed acyclic graph (DAG),
a weight function W : E→ {1,2,3, ...,m−1}.

QUESTION: Is there a one-processor schedule σ : I→Z+
0

,
such that σ is one-to-one,
〈

Ij, Ik

〉

∈ E⇔ σ(Ik) ≥ σ(Ij)+W(
〈

Ij, Ik

〉

)+1

For the maximum σ(I), does σ(I)+ (m−1) ≤D?

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Proof that Pipeline Sequencing is NP-Complete

Accept an instance of minimum precedence constrained
sequencing with delays.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Proof that Pipeline Sequencing is NP-Complete

Accept an instance of minimum precedence constrained
sequencing with delays.

INSTANCE: Set T of tasks, a directed acyclic graph
G = (T,E) defining precedence constraints for the tasks, a
positive integer D, and for each task an integer delay
0 ≤ d(t) ≤D.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Proof that Pipeline Sequencing is NP-Complete

Accept an instance of minimum precedence constrained
sequencing with delays.

INSTANCE: Set T of tasks, a directed acyclic graph
G = (T,E) defining precedence constraints for the tasks, a
positive integer D, and for each task an integer delay
0 ≤ d(t) ≤D.

QUESTION: Is there a one-processor schedule S for T that
obeys the precedence constraints and the delays, and the
maximum S(t) ≤D? The schedule S is an injective function
S : T→ Z+ such that, for each edge
〈

ti, tj

〉

∈ E,S(tj)−S(ti) > d(ti)⇔ S(tj) ≥ S(ti)+d(ti)+1

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Proof that Pipeline Sequencing is NP-Complete

Create an instance of pipeline sequencing, using the
existing instance of minimum precedence constrained
sequencing with delays

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Proof that Pipeline Sequencing is NP-Complete

Create an instance of pipeline sequencing, using the
existing instance of minimum precedence constrained
sequencing with delays

I← T,

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Proof that Pipeline Sequencing is NP-Complete

Create an instance of pipeline sequencing, using the
existing instance of minimum precedence constrained
sequencing with delays

I← T,
E′← E

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Proof that Pipeline Sequencing is NP-Complete

Create an instance of pipeline sequencing, using the
existing instance of minimum precedence constrained
sequencing with delays

I← T,
E′← E
For each edge

〈

ti, tj

〉

∈ E

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Proof that Pipeline Sequencing is NP-Complete

Create an instance of pipeline sequencing, using the
existing instance of minimum precedence constrained
sequencing with delays

I← T,
E′← E
For each edge

〈

ti, tj

〉

∈ E

W(
〈

ti, tj

〉

)← d(ti)

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Proof that Pipeline Sequencing is NP-Complete

Create an instance of pipeline sequencing, using the
existing instance of minimum precedence constrained
sequencing with delays

I← T,
E′← E
For each edge

〈

ti, tj

〉

∈ E

W(
〈

ti, tj

〉

)← d(ti)

m←max
t∈T
{d(t)}+ 1

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Proof that Pipeline Sequencing is NP-Complete

Create an instance of pipeline sequencing, using the
existing instance of minimum precedence constrained
sequencing with delays

I← T,
E′← E
For each edge

〈

ti, tj

〉

∈ E

W(
〈

ti, tj

〉

)← d(ti)

m←max
t∈T
{d(t)}+ 1

D′←D+ (m− 1)

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Proof that Pipeline Sequencing is NP-Complete

Create an instance of pipeline sequencing, using the
existing instance of minimum precedence constrained
sequencing with delays

I← T,
E′← E
For each edge

〈

ti, tj

〉

∈ E

W(
〈

ti, tj

〉

)← d(ti)

m←max
t∈T
{d(t)}+ 1

D′←D+ (m− 1)

Solve pipeline sequencing and return the answer

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Proof that Pipeline Sequencing is NP-Complete

Create an instance of pipeline sequencing, using the
existing instance of minimum precedence constrained
sequencing with delays

I← T,
E′← E
For each edge

〈

ti, tj

〉

∈ E

W(
〈

ti, tj

〉

)← d(ti)

m←max
t∈T
{d(t)}+ 1

D′←D+ (m− 1)

Solve pipeline sequencing and return the answer

The time complexity is O(T+E); this is a polynomial
transformation.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Proof that Pipeline Sequencing is NP-Complete

Notice that if
〈

ti, tj

〉

∈ E, then S(tj) ≥ S(ti)+d(ti)+1. The
equivalent condition can hold in pipeline sequencing by
adding that edge to E′ and and setting the weight on that
edge to d(ti).

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Proof that Pipeline Sequencing is NP-Complete

Notice that if
〈

ti, tj

〉

∈ E, then S(tj) ≥ S(ti)+d(ti)+1. The
equivalent condition can hold in pipeline sequencing by
adding that edge to E′ and and setting the weight on that
edge to d(ti).

The respective instances and constraints of the two
problems have been constructed to be equivalent:

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Proof that Pipeline Sequencing is NP-Complete

Notice that if
〈

ti, tj

〉

∈ E, then S(tj) ≥ S(ti)+d(ti)+1. The
equivalent condition can hold in pipeline sequencing by
adding that edge to E′ and and setting the weight on that
edge to d(ti).

The respective instances and constraints of the two
problems have been constructed to be equivalent:

If the sequencing with delays instance is true and the last
job is scheduled at time t, then the last job of pipeline
sequencing will also be scheduled at time t. The pipeline
sequencing instance adds m−1 time units to the finishing
time t, so we set D′ to D+ (m−1).

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Proof that Pipeline Sequencing is NP-Complete

If the pipeline sequencing instance is true, then it has a
schedule that meets its constraints; if the last job of the
pipeline sequencing instance is scheduled at time t, then so
will the corresponding job in sequencing with delays also
be scheduled at time t. In pipeline sequencing, the
problem ends m+1 time units after the last job; this is why
m+1 time units were added to the deadline D when
constructing the pipeline sequencing instance.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Proof that Pipeline Sequencing is NP-Complete

If the pipeline sequencing instance is true, then it has a
schedule that meets its constraints; if the last job of the
pipeline sequencing instance is scheduled at time t, then so
will the corresponding job in sequencing with delays also
be scheduled at time t. In pipeline sequencing, the
problem ends m+1 time units after the last job; this is why
m+1 time units were added to the deadline D when
constructing the pipeline sequencing instance.

Thus, the constructed instance is true if and only if the base
instance is true.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Proof that Pipeline Sequencing is NP-Complete

If the pipeline sequencing instance is true, then it has a
schedule that meets its constraints; if the last job of the
pipeline sequencing instance is scheduled at time t, then so
will the corresponding job in sequencing with delays also
be scheduled at time t. In pipeline sequencing, the
problem ends m+1 time units after the last job; this is why
m+1 time units were added to the deadline D when
constructing the pipeline sequencing instance.

Thus, the constructed instance is true if and only if the base
instance is true.

Now, once I show Pipeline Sequencing is in NP, then that
proves it is NP-Complete.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Pipeline Sequencing is in NP

Is pipeline sequencing in NP? An oracle can provide the
starting time for each of the instructions, and an algorithm
simply needs to check the DAG to see if the schedule is
valid. For each edge in the DAG, the algorithm simply
needs to check if the starting time of the dependant task is
large enough and comes after the the first task; it also
needs to check the deadline is met by simply checking the
starting time of the last instruction. So the problem is NP.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Conclusion

This has show that the real-life problem of Instruction

Scheduling on a Pipeline with precedence constraints

between pipeline stages of jobs is NP-Hard for an
unbounded number of processors. In practice, this result
does not apply because most machines have a small
number of pipeline stages.

We were unable to show that the pipeline scheduling

problem with sets of m tasks was NP-Complete because
our polynomial transormation was creating instances
where m was exponential. We have not shown it is not
NP-complete, however; we don’t know.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

Conclusion

But, I do not think it is NP-Complete, because the paper by
Hennesy showed that the sequencing with delays problem
was NP-Complete for unbounded m. They had to
introduce extra constraints into the problem to get a bound
on m.

Michael Gabilondo COT 6410: Pipeline Scheduling



Create a Formal Problem from a Real-world Problem
Investigate Complexity of Defined Problem

Redefine the Problem
NP-Completeness for Revised Problem

References

References

“A compendium of NP optimization problems”, Pierluigi
Crescenzi and Viggo Kann. 1998.

“Computers and Intractability: A Guide to the Theory of
NP-Completeness”, Garey and Johnson. 1979.

“Postpass Code Optimization of Pipeline Constraints”,
Hennessy, John L. and Gross, Thomas. 1983.

“The Three-Machine No-Wait Flow Shop is NP-Complete”,
Hans Röck. 1984.

Michael Gabilondo COT 6410: Pipeline Scheduling


	Create a Formal Problem from a Real-world Problem
	Investigate Complexity of Defined Problem
	Redefine the Problem
	NP-Completeness for Revised Problem
	References

