LOWER BOUND THEORY

Searching ordered lists with Comparison–Based Algorithms

Comparison-Based Algorithms: Information can be gained only by comparing key–to–element, or element–to–element (in some problems).

Given: An integer n, a key, and an ordered list of n values.

Question:  Is the key in the list and, if so, at what index?

We have an algorithm. We don't know what it is, or how it works. It accepts n, a key and a list on n values. That's it.

It MUST, though, work pretty much as follows: 

1) It must calculate an index for the first compare based solely upon n since it has not yet compared the key against anything, i.e., it has not yet obtained any additional information. Notice, this means for a fixed value of n, the position of the first compare is fixed for all data sets (of size n).

2) The following is repeated until the key is found, or until it is determined that no location contains the key:

The key is compared against the item at the specified index.

a) If they are equal, the algorithm halts.

b) If the key is less, then it incorporates this information and computes a new index.

c) If the key is greater, then it incorporates this information and computes a new index

There are no rules about how this must be done. In fact we want to leave it wide open so that we are not eliminating any possible algorithm. 

After the first compare, there are two possible second compare locations (indexes). Neither depends upon the key or any item in the list: Just upon the result of the first compare. Every second compare on every set of n items will be one of these two locations. 

Every third compare will be one of four locations. Every fourth compare will be one of eight locations. And, so on. In fact, we may look at an algorithm (for a given n) as being described by (or, possibly, describing) a binary tree in which the root corresponds to the first comparison, it's children to the possible second comparisons, their four children represent the possible third comparison, etc. This binary tree, called in this context a "decision tree," then depicts for this algorithm every possible path of comparisons that could be forced by any particular key and set of n values.

Observation 0: Every comparison–based search algorithm has it's own set of decision tree's (one for each value of n) – even if we don't know what or how it does its task, we know it has one for each n and are pretty much like the one described above.

Observation 1: For any decision tree and any root–leaf path, there is a set of date which will force the algorithm to take that path. The number of compares with a given data set (key and n values) is the number of nodes in the "forced" root–leaf path.

Observation 2: The longest root–leaf path is the "worst case" running time of the algorithm.

Observation 3. For any position i of {1, 2, . . . , n}, some data set contains the key in that position. So every algorithm must have a compare for every index, that is, the decision tree must have at least one node for each position.
Therefore, all decision trees–for the search problem–must have at least n nodes in them.

All binary trees with n nodes have a root–leaf path with at least (log2(n+1)( nodes (you can verify this by induction).

Thus, all decision trees defined by search algorithms on n items, have a path requiring (log2(n+1)( compares.

Therefore, the best any comparison–based search algorithm can hope to do is log2n ( (log2(n+1)(. 

This is the comparison–based lower bound for the problem of searching an ordered list of n items for a given key.

Comparison Based Sorting

Here, there is no "key." Typically, in comparison–based sorting, we will compare values in two locations and, depending upon which is greater, we might


1) do nothing,


2) exchange the two values,


3) move one of the values to a third position,


4) leave a reference (pointer) at one of the positions,


5) etc.

As with searching, above, each sorting algorithm has its own decision tree. Some differences occur: Leaf nodes are the locations which indicate "the list is now sorted." Internal nodes simply represent comparisons on the path to a leaf node. 

As with searching, we will determine the minimum number of nodes any sorting algorithm (comparison–based) must have. Then, from that, the minimum height of all decision trees (for sorting) can be determined providing the proof that all comparison–based sorting algorithms must use at least this many comparisons.

Actually, it is quite simple now. Every decision tree starts with an unordered list and ends up at a leaf node with a sorted list. Suppose you have two lists, one is a rearrangement of the other. Then, in sorting them, something must be done differently to one of the lists ( done at a different time). Otherwise, if the same actions are performed to both lists in exactly the same sequence, then one of them can not end up sorted. Therefore, they must go through different paths from the root of the decision tree. By the same reasoning, all n! different permutations of the integers 1, 2, . . ., n (these are valid things to sort, too, you know) must go through distinct paths. Notice that distinct paths end in distinct leaf nodes. Thus, there must be n! leaf nodes in every decision tree for sorting. That is, their height is at least log2(n!). By a common result (one of Sterlings formula's) log2(n!) ( nlog2(n). 

Therefore, all comparison–based sorting algorithms require nlog2(n) time.

