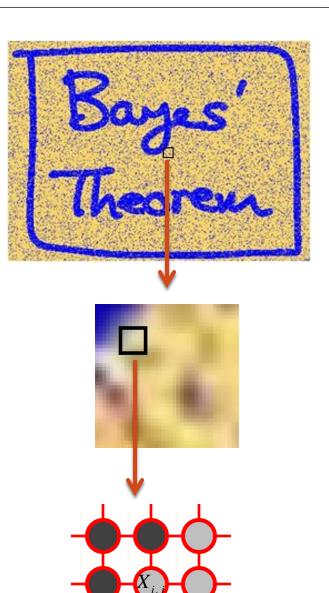
Image De-noising Problem

Liyue Zhao

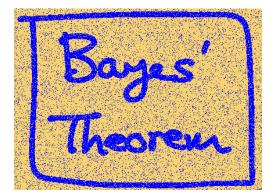
Outline

- Problem
 - Description
 - Definition
- Proof

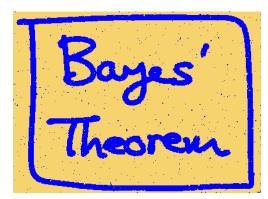
- Description
 - Each image I consists of m by n binary pixels
 - Each pixel I(i,j) corresponding to a boolean variable $X_{i,j} = \{1,0\}$
 - Each two adjacent pixels are connected with an edge



- Goal
 - Given a binary noise image I'
 - Generate a new binary image I that eliminates the noise in I'

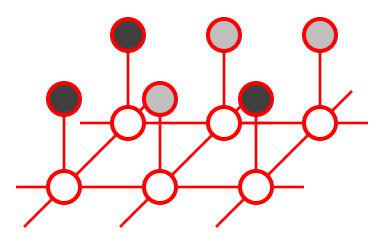


Noise image I'

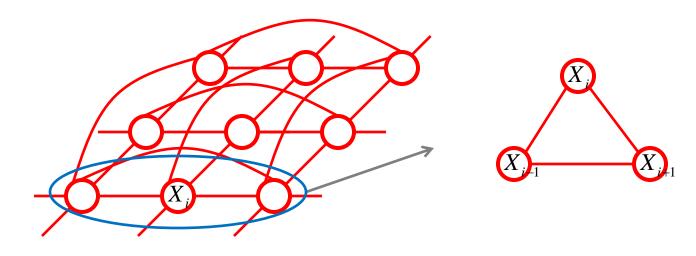


New image I

- Definition 1
 - The observation is the value of node of known noise image, and a **instant** is a function which assigns a value to each variable in the new image



- Definition 2
 - A clique $Q_k(X_k)$ is a complete sub-graph with a set of variables in clique



- Definition 3
 - A clique table(CT) T for a variable X with a set of variables in clique Q is a function that maps each instant of Q to a binary value

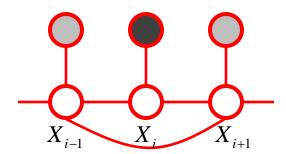
${X}_{i-1}$	X_{i}	X_{i+1}
	\frown	\frown

Clique k

1	V	V	V
ϕ_{Q_k}	X_{i-1}	X_{i}	X_{i+1}
1	X_{i-1}	X _i	X_{i+1}
1	\overline{x}_{i-1}	X _i	x_{i+1}
1	X_{i-1}	$\overline{X_i}$	X_{i+1}
1	X_{i-1}	X _i	\overline{X}_{i+1}
1	X_{i-1}	\overline{X}_i	\overline{x}_{i+1}
1	\overline{x}_{i-1}	X _i	\overline{x}_{i+1}
1	\overline{x}_{i-1}	\overline{X}_i	X_{i+1}
1	\overline{X}_{i-1}	\overline{X}_i	\overline{x}_{i+1}

- Simple rules
 - If the observations of a clique have same value, the variables in the clique can't against all of them
 - If the observation of a clique have different value, the variables in the clique can't follow all of them

- Example
 - Assume dark node is 0 and light node is 1, since variables can't follow the value of observations, $(x_{i-1} \wedge \overline{x}_i \wedge x_{i+1}) = 0$



Clique k

ϕ_{C_k}	X_{i-1}	X_{i}	X_{i+1}
1	X_{i-1}	X _i	X_{i+1}
1	\overline{x}_{i-1}	X _i	X_{i+1}
0	X_{i-1}	\overline{X}_i	X_{i+1}
1	X_{i-1}	X _i	\overline{X}_{i+1}
1	X_{i-1}	\overline{X}_i	\overline{x}_{i+1}
1	\overline{x}_{i-1}	X _i	\overline{x}_{i+1}
1	\overline{x}_{i-1}	$\overline{X_i}$	X_{i+1}
1	\overline{X}_{i-1}	\overline{X}_i	\overline{x}_{i+1}

• Therefore, as the example with the function of clique k could be represented as the

$$\begin{split} \phi_{Q_k} &= \left(x_{i-1} \wedge x_i \wedge x_{i+1} \right) \lor \left(x_{i-1} \wedge x_i \wedge \overline{x}_{i+1} \right) \lor \left(\overline{x}_{i-1} \wedge x_i \wedge x_{i+1} \right) \lor \\ & \left(x_{i-1} \wedge \overline{x}_i \wedge \overline{x}_{i+1} \right) \lor \left(\overline{x}_{i-1} \wedge x_i \wedge \overline{x}_{i+1} \right) \lor \left(\overline{x}_{i-1} \wedge \overline{x}_i \wedge x_{i+1} \right) \lor \\ & \left(\overline{x}_{i-1} \wedge \overline{x}_i \wedge \overline{x}_{i+1} \right) \end{split}$$

- Definition 4
 - A Markov network is a pair (G,Q) where G is a undirected graph whose nodes are variables and Q is a set which consists of the clique of each variable

$$score(G,Q) = \prod_{k=1}^{K} \phi_{Q_k}(Q_k)$$

Formal definition: IDP

- Given: A Markov network (G,Q) and an instant of variables X
- Question Does there exist an assignment to X so that

$$\prod_{k=1}^{K} \phi_{Q_k} \left(Q_k \right) = 1$$

Formal definition: 3-SAT

- Given: A set U of boolean variables and a collection $C_i \subseteq U \cup \overline{U}$, and $|C_i| = 3$
- Question: Does there exist an assignment to U so that all clauses are true?

• $IDP \in NP$

for i=1 to K

for j=1 to 7(the formula number of clique table)
check if the variables in clique i is satisfying one of the
formulas

end

end

- Trick
 - Just check the inverse value of the zero formula in the clique table
- Example
 - As shown in previous table, the zero formula is $(x_{i-1} \wedge \overline{x}_i \wedge x_{i+1})$
 - Check the variables value of inverse formula $(\overline{x}_{i-1} \land x_i \land \overline{x}_{i+1})$
 - If one(or more) of the element of inverse formula is true, then

$$\phi_{Q_{k}} = (x_{i-1} \wedge x_{i} \wedge x_{i+1}) \vee (x_{i-1} \wedge x_{i} \wedge \overline{x}_{i+1}) \vee (\overline{x}_{i-1} \wedge x_{i} \wedge x_{i+1}) \vee (x_{i-1} \wedge \overline{x}_{i} \wedge \overline{x}_{i+1}) \vee (\overline{x}_{i-1} \wedge \overline{x}_{i+1} \wedge \overline{x}_{i+1} \wedge \overline{x}_{i+1}) \vee (\overline{x}_{i-1} \wedge \overline{x}_{i+1} \wedge \overline{x}_{i+1} \wedge \overline{x}_{i+1}) \vee (\overline{x}_{i-1} \wedge \overline{x}_{i+1} \wedge \overline{x}_{i+1} \wedge \overline{x}_{i+1} \wedge \overline{x}_{i+1} \wedge \overline{x}_{i+1} \wedge \overline{x}_{i+1}) \vee (\overline{x}_{i-1} \wedge \overline{x}_{i+1} \wedge \overline{x}_{i+1}$$

=1

- Input of IDP
 - X = boolean variables
 - Q = cliques
 - T = table of each clique

- Input of 3SAT
 - $\mathbf{U} = \mathbf{X} \cup \overline{\mathbf{X}}$
 - $C = \{C_1, ..., C_K\}$, where C_k is the inverse of zero

formula

- $\operatorname{Yes}(\operatorname{IDP}) \rightarrow \operatorname{Yes}(\operatorname{3SAT})$
 - If IDP is true, which means each clique function $\phi_{Q_k} = 1$, the corresponding clause C_k is true.
 - Clearly 3SAT is true
- $\operatorname{Yes}(3SAT) \rightarrow \operatorname{Yes}(IDP)$
 - If 3SAT is true, for each clause, one of the formulas in corresponding table T except zero formula must be true
 - IDP is true

Conclusion

$IDP \propto 3SAT$

References

• James D. Park, Using Weighted MAX-SAT Engines to Solve MPE, in *AAAI*, 2002