

Cache Partition Problem for Multi-core System

Presenter: Lin Cao

Introduction to the Multi-core System

Memory System

Introduction to the Multi-core System

- Application Category:
 - -- Cache-sensitive application
 - -- Cache-insensitive application

Introduction to the Multi-core System

- Property of the task:
 - -- Task 1 and Task 3 are cache-sensitive
 - -- Task 2 and Task 4 are cache-insensitive

Introduction to the Problem

- WCET: Worst Cache Execution Time
- Given the L2 Cache and tasks on each core, is there any partition which makes *WCET*<*m* ? (Good partition strategy) How?
- Assume there are 2 tasks

WCET1 + WCET2 < m?

Introduction to the Problem

.

WCET1

WCET1 + WCET2 < m? 7 Combinations

WCET2

Introduction to the Problem

- 4 Tasks on a 32-way L2 Cache?
 - -- 6556 Ways
- 8 Tasks on a 32-way L2 Cache?
 - -- 15,380,937 Ways
- Greedy Algorithm

Problem Definition

- In a Multi-core System, given:
 m-way L2 Cache,
 n tasks on n cores and the number of each task is executed for C_i times
- Finally there will be n partitions inside the L2 Cache and the corresponding WCET for each partition is WCET₁, ..., WCET_n
- $C_1^* WCET_1 + C_2^* WCET_2 + ... + C_n^* WCET_n < = T$?

Subset Sum Multi-core Cache Partition

- $sj \in \{s1, ..., sn\}.$
- Xi,m denote whether a tasked i has been assigned to partition m

$$Xi, 1 + Xi, 2 + ... + Xi, n = 1$$

- $x1,1 * s1 + x1,2 * s1 + ... + x2,1 * s2 + x2,2 * s2 + ... \le m$
- WCETi = xi,1 * WCETi,1 + xi,2 * WCETi,2 + ... + xi,n * WCETi,n
- The objective function of the ILP models the WCET of the entire task set for one hyper-period. This overall WCET is defined as:
- WCET = c1 * WCET1 + c2 * WCET2 + ... + cn * WCETn
- The problem finally is:
 Does WCET <= T exist? If so, list all the cases.

- $Xi_1 + Xi_2 + ... + Xi_n = 1$
- $x_{1,1} * s_1 + x_{1,2} * s_1 + ... + x_{2,1} * s_2 + x_{2,2} * s_2 + ... \le m$
- WCETi = xi,1 * WCETi,1 + xi,2 * WCETi,2 + ... + xi,n * WCETi,n
- WCET = c1 * WCET1 + c2 * WCET2 + ... + cn * WCETn
- Does WCET <= T exist? If so, list all the cases.

```
WCET = c1*WCET1 + c2*WCET2 + ... + cm*WCETm
= c1*(x1,1*WCET1,1+...+x1,n*WCET1,n)+....
+cn*(xn,1*WCETn,1+...+xn,n*WCETn,n)
                                                                                    x1,1
                                                                                    x1.n
= \begin{bmatrix} c1*WCET1, 1+...+c1*WCET1, n+..+cn*WCETn, 1+...+cn*WCETn, n \end{bmatrix}*
                                                                                    xn.1
                                                                                    xn,n
```


$$\begin{array}{c} \mathbf{P} \\ \\ \mathbf{P} \\ \\ [s\,1\,\,,\,\,\ldots,\,\,s\,1\,\,,\,\,s\,2\,\,,\,\,\ldots,\,\,s\,2\,\,,\,\,\ldots,\,\,s\,n\,\,,\,\,\ldots,\,\,s\,n\,\,]^* \end{array} \left[\begin{array}{c} x\,1\,\,,\,1 \\ \ldots \\ 1\,-\,\sum\limits_{i=1}^{n-1}\,x\,1\,\,,\,i \\ x\,2\,\,,\,1 \\ \ldots \\ 1\,-\,\sum\limits_{i=1}^{n-1}\,x\,2\,\,,\,i \\ \ldots \\ x\,n\,\,,\,1 \\ \ldots \\ 1\,-\,\sum\limits_{i=1}^{n-1}\,x\,n\,\,,\,i \end{array} \right] \le m \end{array}$$

• Therefore, based on the previous page, Multi-core Cache Partition problem can be reformulated to: $W^T * X \leq T$ subject to $P * X \leq m$ (Xi can only be 0 or 1)

• The format of this problem looks similar to 0-1 Integer Programming, therefore, we can borrow some idea of the transformation from Subset Sum to 0-1 Integer Programming

Subset Sum to Multi-core Cache Partition

Multi-core Cache Partition is in the set NP

• Change the Cache Partition problem into slack form:

$$2 x1 - 3 x 2 + 3 x 3 \ge m$$
? $z = 2 x1 - 3 x 2 + 3 x 3$
 $Constrains:$ $Constraints:$ $x4 = 7 - x1 - x 2 + x 3;$ $x5 = -7 + x1 + x 2 - x 3;$ $x6 = 4 - x1 + 2 x 2 - 2 x 3;$ $x1, x2, x3 \ge 0$ $x1, x2, x3, x4, x5, x6 \ge 0$

Subset Sum to Multi-core Cache Partition

• Subset Sum:

INSTANCE: Finite set A, size s(a) for each a, positive integer B.

QUESTION: Is there a subset A' such that the sum of the sizes of the elements in A' is exactly B?

• Multi-core Cache Partition

-- Is there any X that satisfies $W^T * X = T$ subject to P * X = m (Xi can only be 0 or 1)

Subset Sum to Multi-core Cache Partition

• Construction:

Input: F(S,T):

Output: let
$$S = \{S1, S2, ..., Sn\}$$
, (Constraint: $S1+...+Sn = S$)

$$T = X_1*S1 + X_2*S2 + ... + X_n*Sn$$

- Suppose that F<S, T> is a yes-instance of subset sum.
 - -- A subset of S whose elements can sum to T.
 - -- Set corresponding Xi
- Suppose that $\langle s1*X_1 + s2*X_2 + \cdots + sn*X_n = T \rangle$ is a yes instance of Multi-core Cache Partitioning problem
 - -- how to set Xi
 - -- select a subset of S whose elements sum to T

References

1. Michael R. Garey, David S.Johnson.

Computers and Intractability: A Guide to the Theory of NP-

Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H.Freeman and Company, 1979

2. Utility-Based Cache Partitioning: A Low-Overhead, High-Performance, Runtime Mechanism to Partition Shared Caches, Moinuddin K.Qureshi and Yale Patt, the 39th International Symposium on Microarchitecture, 2006

Thank you and Questions?