Application-Server Matching (ASM)

William Strickland

4/8/2010 COT6410

Outline

- Abstraction
 - Key Terms
 - Assumptions
 - Informal Definition
 - Formal Definition
- Problem Difficulty
 - Proof of NP
 - Proof of NP-C

Outline cont.

- Restricted Instance Analysis
 - Aspects of Problem
 - Restricted Set 1
 - Restricted Set 2
 - Restricted Set 3
- Conclusions

Key Terms

- Servers
 - Physical machines that have some capacity for computational work.
 - Will support some operating systems but not others.
- Applications
 - Each placed and run on some server.
 - Requires some amount of regular computation (workload).
 - Requires a operating system be installed on the server that this application execute under.

Key Terms cont.

- Operating System
 - A distinct collection of base system software.
 - Can be installed on a server (given it is compatible).
 - Enables sets of applications to execute.

Assumptions

- Server performance can be quantified in such that relations hold for all applications.
- Applications require a constant amount of computation per unit of time.
- All applications run (truly) concurrently.
- No usage of dynamic virtual server usage.
- Operating Systems are licensed on a per server basis (not processor/core/user/transactions)

Informal Definition

- Given:
 - Sets of OS, servers, applications, pairs of servers and OS, pairs of applications and OS, license counts, workloads and capacities
- Question: Can the applications be placed on servers such that:
 - All applications are placed.
 - Each application is placed on exactly one server.
 - No server capacity is exceeded by the workload of applications.
 - No application is running on a server with a OS not supported.
 - No server is running a OS it cannot support.
 - No server has been run more than one OS.
 - License count for each OS has not been exceeded.

Formal Definition

- Given
 - Set of operating systems, O
 - Set of servers, S
 - Set of applications, A
 - Set of server-os pairs, U
 - Set of app-os pairs, V
 - Set of license counts, L
 - Set of server capacities, C
 - Set of application workloads, W

- Question:
 - Does there exist a set of triples, K, such that:
 - $(o, s, a) \in K$ where $o \in O$, $s \in S$, $a \in A$
 - $\forall K_i: \exists (s_i, o_i) \in U, (a_i, o_i) \in V$
 - $\forall a \in A \exists (o, s, a) \in K$
 - $\forall K_1 = (o_1, s_1, a_1), K_2 = (o_2, s_2, a_2) \in K$ if $a_1 = a_2$ then $o_1 = o_2, s_1 = s_2$
 - $\forall K_1 = (o_1, s_1, a_1), K_2 = (o_2, s_2, a_2) \in K$ if $s_1 = s_2$ then $o_1 = o_2$
 - $\forall s \in S$, $\sum (W_s) \leq C_s$ where $W_s = W_a$ iff $\exists (o, s, a) \in K$ • $\forall o \in O$, $\sum (L_s) \leq L_o$ where $L_s = 1$ iff $\exists (o, s, a) \in K$

Proof of NP class

- ASM is a decision problem
- If given set of triples, K, as witness
- Verify yes instance in polynomial time
 - Loop through K
 - Verify S-O and A-O pairs exist
 - Verify all Applications placed exactly once
 - Verify OS licenses not exceeded
 - Verify capacities not exceeded
 - Verify no server assigned two OS

Proof NP Complete

- ASM shown NP
- Use known NP-C, 3-Dimensional Matching
- Show transformation from 3-DM to ASM
- Prove correctness of transformation

3-DM defined

- Given:
 - Set X, Set Y, Set Z
 - Set of triples T, where $(x, y, z) \in T$, $x \in X$, $y \in Y$, $z \in Z$
- Question:
 - Does there exist $M \subseteq T$
 - $\forall x \in X, \exists (x, y, z) \in M$
 - $\forall y \in Y, \exists (x, y, z) \in M$
 - $-\forall z \in Z, \exists (x, y, z) \in M$
 - $\forall M_1, M_2 \in M, x_1 \neq x_2, y_1 \neq y_2, z_1 \neq z_2$

• Transformation $3DM \Rightarrow ASM$ 1) Accept 3-DM instance; (X, Y, Z, T) 2) Create new sets for ASM $O' = \emptyset$, $S' = \emptyset$, $A' = \emptyset$, $U' = \emptyset$, $V' = \emptyset, L' = \emptyset, C' = \emptyset, W' = \emptyset$ 3) $\forall x \in X : O' = O' \cup [x], L'_x = 1$ 4) $\forall y \in Y : S' = S' \cup \{y\}, C'_{y} = 1$ 5) $\forall z \in \mathbb{Z}$: $A' = A' \cup \{z\}, W'_{r} = 1$ 6) $\forall t = (x, y, z) \in T: U' = U' \cup \{(y, x)\}; V' = A' \cup \{(z, x)\}$ 7) answer ASM (O',S',A',U',V',L',C',W')

- Transformation proof key points
 - If 3-DM is yes
 - Exists $M \rightarrow K$;
 - Guarantied for K_i, x, y, and z unique
 - Guarantied all Os, Server, and App exactly once
 - Guarantied OS pairs, $T \rightarrow U$ and $T \rightarrow V$
 - ASM yes if 3-DM yes

- For constructed form ASM instance, if yes
 - Because L_i=C_i =W_i=1, must use every OS, Server and App exactly once
 - Must exist $T_i = (x,y,z)$ if $U_i = (y,x)$ and $V_i = (z,x)$
 - If ASM yes then 3-DM is yes
- ASM is yes iff 3-DM is yes
- ASM is NP-complete

Aspects of Problem

- Two sources of difficulty in this problem:
 - Matching Elements on criteria (OS-Server-App).
 - Allocating units of work to units of computation.
- Whole problem shown to be NP-C.
- Instance set will be restricted to isolate sources of difficulty.
- For different instances, one or both parts may be trivial.

Restricted Set 1

- Removing the task allocation difficulty
 - Setting Server capacity to 1
 - Setting Application workload to 1
 - Setting OS license limit to 1
- This has already been done through the construction from 3-DM
- With trivial allocation, problem remains NP-C

Restricted Set 2

- Remove matching components
 - All applications support a single OS
 - All Servers support a single OS
 - License count for this OS = |S|
- Trivial to match Server and Application with OS
- Remaining problem similar to Bin Packing

Bin Packing Defined

- Given:
 - Set of item sizes, A
 - Bin size, V
 - Number of bins, B
- Question:

- Can all items in A be placed in a bin such that for each bin S {1...B} $\sum A_s \leq V$ where is A_s is an item in bin S.
- Problem known to be NP-C.

Assorted Bin Packing Defined

- Given:
 - Set of item sizes, A
 - Set of bin sizes, V
 - Number of bins, B
- Question:

- Can all items in A be placed in a bin such that for each bin S {1...B} $\sum A_S \leq V_S$ where is A_s is an item in bin S.
- Problem NP-C from Bin Packing. All Bin packing instances are instances of Assorted Bin Packing.

Redefine problem

- Problem redefined to match new set of instances
- Given:
 - Set of servers, S
 - Set of applications, A
 - Set of server capacities, C
 - Set of application workloads, W
- Question: Does there exist a set pair such that $(s, a) \in K$ where $s \in S$, $a \in A$ $\forall a \in A \exists (s, a) \in K$ $\forall K_1 = (s_1, a_1), K_2 = (s_2, a_2) \in K$ if $a_1 = a_2$ then $s_1 = s_2$ $\forall s \in S$, $\sum (W_s) \leq C_s$ where $W_s = W_a$ iff $\exists (s, a) \in K$

• Transformation $ABP \Rightarrow_{P} ASM_{2}$ 1) Accept ABP instance; (A, V, B) 2) Create new sets for ASM $S'=\emptyset, A'=\emptyset, C'=\emptyset, W'=\emptyset$ 3) $\forall v \in V : S'=S' \cup \{v\}, C'_{v}=v$ 4) $\forall a \in A : A'=A' \cup \{a\}, W'_{a}=a$ 5) answer ASM₂ (S',A',C',W')

- 'Proof' by restriction:
 - Created ASM, instance constructed as follows
 - $V \rightarrow S'$
 - $V \rightarrow C'$
 - $A \rightarrow A'$
 - $A \rightarrow W'$
 - True if placed |A| applications (items) onto |V| servers (bins) and for each server s

 $\sum (W_s) \leq C_s$ (placed weight is less than capacity)

Restricted Set 3

- Removing the task allocation difficulty and some matching difficulty
 - Setting Server capacity to 1
 - Setting Application workload to 1
 - Setting OS license limit to 1
 - Set each Application to support exactly 1 OS
- Same as restriction 1 but with direct correlation between OS and Application
- Becomes Polynomial with these restrictions

- 1-to-1 relation between Application and OS.
- Now only required to match OS to compatible server.
- Same result if forced instead 1-to-1 related Server and OS.
- Server and App are modeled the same.
- Holds without loss of generality.

2-DM Defined

- Given:
 - Set X, Set Y
 - Set of pairs T, where $(x, y) \in T$, $x \in X$, $y \in Y$
- Question:
 - Does there exist $M \subseteq T$
 - $\forall x \in X, \exists (x, y) \in M$
 - $\forall y \in Y, \exists (x, y) \in M$
 - $\forall M_1, M_2 \in M, x_1 \neq x_2, y_1 \neq y_2$

• Transformation $ASM_{3 \xrightarrow{P}{P}} 2DM$ 1) Accept ASM_{3} (O,S,A,U,V,L,C,W) 2) $O \rightarrow X'$ 3) $S \rightarrow Y'$ 4) $\forall (a, o) \in V \text{ if } \exists (s, o) \in V \text{ add } (s,a) \text{ to } T'$ 5) answer 2DM (X', Y', T')

- If ASM₃ is yes
 - Exists $K \rightarrow M$;
 - Guarantied for M_i, x and y unique
 - Guarantied all x and y exactly once
 - Guarantied OS pairs, $UxV \rightarrow T$
 - 2-DM Yes if ASM₃ yes
- For constructed form 2-DM instance, if yes
 - Must use all x and y,
 - Must exist $U_i = (x,o)$ and $V_i = (y,o)$ if $T_i = (x,y)$

- 2-DM is yes iff ASM₃ is yes
- ASM₃ is no harder than 2-DM
- 2-DM is polynomial so ASM₃ is polynomial

Conclusions

- As a whole, Application-Server Matching problem is a NP-Complete
- The problem actually has two aspects that make it difficult
 - Matching OS on applications and server
 - Application Workload Allocating
- Only if both are made trivial the instance of ASM can be solved in polynomial time.

Hard Instance Reduction

References

• Garey, Michael R., and Johnson, David S. Computers and Intractability. New York: W. H. Freeman and Company, 1979