Frame Building Problem

Stephen Fulwider Nadeem Mohsin

COT 6410 Spring 2009

Stephen Fulwider, Nadeem Mohsin NP-Completeness Proof of FBP

물 시 문 시 문 님

Outline

- Description
- Examples

三日 のへの

< ∃ →

Description Examples

Outline

Examples

Stephen Fulwider, Nadeem Mohsin NP-Completeness Proof of FBP

三日 のへの

▲ 문 ▶ . ▲ 문 ▶ .

Informal Description

- Need frames to build a greenhouse.
- We have some boards we can use.
- Boards can be cut to make smaller frames.
- Want to minimize extra wood needed.

Description Examples

Formal Definition: FBP

Given

A set F of frames $\{f_i\}$ and a set B of boards $\{b_i\} \cup \{E\}$, where E is the length of the extra board.

Question

Does there exist an assignment of every frame to a board such that the sum of the lengths of frames assigned to a board is no greater than the length of the board?

Description Examples

Formal-er Definition: FBP

Given

A set F of frames $\{f_i\}$ and a set B of boards $\{b_i\} \cup \{E\}$, where E is the length of the extra board.

Question

Does there exist a total mapping $M: F \rightarrow B$ such that

$$\forall b_k \in B : \sum_{M(j)=k} f_j \leq b_k$$

Stephen Fulwider, Nadeem Mohsin NP-Completeness Proof of FBP

물 / 문 / 모님

Description Examples

Outline

Stephen Fulwider, Nadeem Mohsin NP-Completeness Proof of FBP

三日 のへの

Description Examples

Examples

Example 1

$$B = \{20, 10\} \cup \{5\}$$

F = \{10, 5, 4, 3, 3, 3\}

Example 2

$$B = \{20, 10\} \cup \{5\}$$

F = $\{10, 5, 4, 4, 3, 3, 3\}$

Example 3

 $B = \{20, 10\} \cup \{5\}$ $F = \{10, 8, 5, 4, 3, 3, 3\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Failed Approaches

• Multidimensional Knapsack

- Similar flavor
- (v_i, w_i) versus f_i
- Partial versus total mapping
- Zero-One Integer Programming
 - Define the family of indicator variables $a_{i,j}$ that indicate whether f_i is cut from b_j .

•
$$\sum_{i} a_{ij} f_i \leq b_j$$
 subject to $\sum_{i,j} a_{ij} = |F|$.

BinPacking[1]

Given

Finite set U of items, a size $s(u) \in Z^+$ for each $u \in U$, a positive integer bin capacity B, and a positive integer K.

Question

Is there a partition of U into disjoint sets U_1, U_2, \ldots, U_k such that the sum of the sizes of the items in each U_i is B or less?

A B A A B A

Formal Definition: FBP_K

Given

A set F of frames $\{f_i\}$ and a set B of boards $\{b_i\} \cup \{E\}$, where E is the length of the extra board, and an integer K.

Question

Does there exist an assignment of every frame to a board such that the sum of the lengths of frames assigned to a board is no greater than the length of the board, using at most K boards?

 $BinPacking \propto FBP_K$

- Restrict *FBP_K* to instances where all boards have the same length.
- $b_1 = b_2 = \cdots = b_{|B|}$
- Boards correspond to bins and frames correspond to items.

물 이 이 문 이 물 말 물 것 같아.

• Reduction from FBP_K to FBP.

Input to FBP _K	
• F	
• B	
• E	
• K	

Input to FBP

- *F*′ = *F*
- $B' = \{ Largest \ K \text{ elements from } B \}$

▶ ★ Ξ ▶ ★ Ξ ▶ Ξ Ξ

• E' =Largest element from B

$FBP_K \propto FBP$

- $Yes(FBP) \rightarrow Yes(FBP_K)$
 - Clearly, this is true, since the created instance of FBP contains exactly K boards.
- $Yes(FBP_K) \rightarrow Yes(FBP)$
 - If the solution to FBP_K uses only elements of B', then this is clearly true.
 - Else, $\exists b_i, b_j \ni b_i$ is used, b_j is not used, $b_i \leq b_j$ and $b_j \in B'$.
 - Then every frame assigned to b_i can be assigned to b_j .
 - By induction, this transforms any solution to a Yes-instance of FBP_K to a Yes-instance of FBP.

▶ ★ Ξ ▶ ★ Ξ ▶ Ξ Ξ

$BinPacking \propto FBP_K \propto FBP$

Stephen Fulwider, Nadeem Mohsin NP-Completeness Proof of FBP

Nichael R. Garey, David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.