Frame Building Problem

Stephen Fulwider Nadeem Mohsin

COT 6410 Spring 2009

Outline

(1) Basic Problem

- Description
- Examples
(2) Proof

Basic Problem

Outline

(1) Basic Problem

- Description
- Examples
(2) Proof

Informal Description

- Need frames to build a greenhouse.
- We have some boards we can use.
- Boards can be cut to make smaller frames.
- Want to minimize extra wood needed.

Formal Definition: FBP

Given

A set F of frames $\left\{f_{i}\right\}$ and a set B of boards $\left\{b_{i}\right\} \cup\{E\}$, where E is the length of the extra board.

Question

Does there exist an assignment of every frame to a board such that the sum of the lengths of frames assigned to a board is no greater than the length of the board?

Formal-er Definition: FBP

Given

A set F of frames $\left\{f_{i}\right\}$ and a set B of boards $\left\{b_{i}\right\} \cup\{E\}$, where E is the length of the extra board.

Question

Does there exist a total mapping $M: F \rightarrow B$ such that

$$
\forall b_{k} \in B: \sum_{M(j)=k} f_{j} \leq b_{k}
$$

Basic Problem
 Proof
 Summary

 Description

 Description

 Examples

 Examples}

Outline

1) Basic Problem

- Description
- Examples
(2) Proof

Examples

Example 1

$$
\begin{gathered}
B=\{20,10\} \cup\{5\} \\
F=\{10,5,4,3,3,3\}
\end{gathered}
$$

Example 2

$$
\begin{gathered}
B=\{20,10\} \cup\{5\} \\
F=\{10,5,4,4,3,3,3\}
\end{gathered}
$$

Example 3

$$
\begin{gathered}
B=\{20,10\} \cup\{5\} \\
F=\{10,8,5,4,3,3,3\}
\end{gathered}
$$

Failed Approaches

- Multidimensional Knapsack
- Similar flavor
- $\left(v_{i}, w_{i}\right)$ versus f_{i}
- Partial versus total mapping
- Zero-One Integer Programming
- Define the family of indicator variables $a_{i, j}$ that indicate whether f_{i} is cut from b_{j}.
- $\sum_{i} a_{i j} f_{i} \leq b_{j}$ subject to $\sum_{i, j} a_{i j}=|F|$.

BinPacking[1]

Given

Finite set U of items, a size $s(u) \in Z^{+}$for each $u \in U$, a positive integer bin capacity B, and a positive integer K.

Question

Is there a partition of U into disjoint sets $U_{1}, U_{2}, \ldots, U_{k}$ such that the sum of the sizes of the items in each U_{i} is B or less?

Formal Definition: $F B P_{K}$

Given

A set F of frames $\left\{f_{i}\right\}$ and a set B of boards $\left\{b_{i}\right\} \cup\{E\}$, where E is the length of the extra board, and an integer K.

Question

Does there exist an assignment of every frame to a board such that the sum of the lengths of frames assigned to a board is no greater than the length of the board, using at most K boards?

BinPacking $\propto F B P_{K}$

- Restrict $F B P_{K}$ to instances where all boards have the same length.
- $b_{1}=b_{2}=\cdots=b_{|B|}$
- Boards correspond to bins and frames correspond to items.

$F B P_{K} \propto F B P$

- Reduction from $F B P_{K}$ to $F B P$.

Input to $F B P_{K}$

- F
- B
- E
- K

Input to $F B P$

- $F^{\prime}=F$
- $B^{\prime}=\{$ Largest K elements from $B\}$
- $E^{\prime}=$ Largest element from B

$F B P_{K} \propto F B P$

- $Y e s(F B P) \rightarrow Y e s\left(F B P_{K}\right)$
- Clearly, this is true, since the created instance of FBP contains exactly K boards.
- $\operatorname{Yes}\left(F B P_{K}\right) \rightarrow Y e s(F B P)$
- If the solution to $F B P_{K}$ uses only elements of B^{\prime}, then this is clearly true.
- Else, $\exists b_{i}, b_{j} \ni b_{i}$ is used, b_{j} is not used, $b_{i} \leq b_{j}$ and $b_{j} \in B^{\prime}$.
- Then every frame assigned to b_{i} can be assigned to b_{j}.
- By induction, this transforms any solution to a Yes-instance of $F B P_{K}$ to a Yes-instance of $F B P$.

Summary

BinPacking $\propto F B P_{K} \propto F B P$

References

© Michael R. Garey, David S. Johnson.
Computers and Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman and Company, 1979.

