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Computability Theory

The study of what 

can/cannot be done via 

purely mechanical 
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Solving problems algorithmically!
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• Set of input data items (set of input 

"instances")

• A set of rules or relationships between data 
and other values

• A question to be answered or set of values to 
be obtained
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Each instance has an 'answer.'

An instance’s answer is the solution of the 
instance - it is not the solution of the 
problem.
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A Procedure (or Program):

A finite set of operations (statements) such that

• Each statement is formed from a predetermined 

finite set of symbols and is constrained by some set 

of language syntax rules.

• The current state of the machine model is finitely 

presentable.

• The semantic rules of the language specify the 

effects of the operations on the machine‟s state and 

the order in which these operations are executed. 

• If the procedure halts when started on some input, 

it produces the correct answer to this given instance 

of the problem.
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no matter what input it receives.
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{ Example algorithm: 

Linearly search a finite list for a key;

If key is found, answer “Yes”;

If key is not found, answer “No”; }

{ Example procedure: 

Linearly search a finite list for a key;

If key is found, answer “Yes”;

If key is not found, try this strategy again; }
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Procedures versus AlgorithmsProcedures versus Algorithms

Looking back at our approaches to “find a key in a finite 

list,” we see that the algorithm always halts and always 

reports the correct answer. In contrast, the procedure does 

not halt in some cases, but never lies. 

What this illustrates is the essential distinction between 

and algorithm and a procedure – algorithms always halt in 

some finite number of steps, whereas procedures may run 

on forever for certain inputs. A particularly silly procedure 

that never lies is a program that never halts for any input.
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Notion of "Solvable"Notion of "Solvable"

A problem is solvable if there exists an algorithm that 

solves it (provides the correct answer for each instance). 

The fact that a problem is solvable or, equivalently, 

decidable does not mean it is solved. To be solved, 

someone must have actually produced a correct algorithm. 

The distinction between solvable and solved is subtle. 

Solvable is an innate property – an unsolvable problem can 

never become solved, but a solvable one may or may not be 

solved in an individual’s lifetime.
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An Old Solvable ProblemAn Old Solvable Problem

Does there exist a set of positive whole numbers, a, b, c 

and an n>2 such that an+bn = cn?

In 1637, the French mathematician, Pierre de Fermat, 

claimed that the answer to this question is “No”. This was 

called Fermat’s Last Theorem, despite the fact that he 

never produced a proof of its correctness. While this 

problem remained unsolved until Fermat’s claim was 

verified in 1995 by Andrew Wiles, the problem was always 

solvable, as it had just one question, so the solution was 

either “Yes” or “No”, and an algorithm exists for each of 

these candidate solutions.
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A CS Grand Challenge ProblemA CS Grand Challenge Problem

Does P=NP?

There are many equivalent ways to describe P and NP. For 

now, we will use the following. P is the set of decision 

problems (those whose instances have “Yes”/ “No” 

answers) that can be solved in polynomial time on a 

deterministic computer (no concurrency allowed). NP is the 

set of decision problems that can be solved in polynomial 

time on a non-deterministic computer (equivalently one 

that  can spawn parallel threads). Again, as “Does P=NP?” 

has just one question, it is solvable, we just don’t yet know 

which solution, “Yes” or “No”, is the correct one.
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Computability vs ComplexityComputability vs Complexity

Computability focuses on the distinction between solvable 

and unsolvable problems, providing tools that may be used 

to identify unsolvable problems – ones that  can never be 

solved by mechanical (computational) means. Surprisingly, 

unsolvable problems are everywhere as you will see. 

In contrast, complexity theory focuses on how hard it is to 

solve problems that are known to be solvable. We will 

address complexity theory for the first part of this course, 

returning to computability theory later in the semester.
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Throughout the complexity portion of this course, we will 

be interested in how long an algorithm takes on the 

instances of some arbitrary "size" n. Recognizing that 

different times can be recorded for two instance of size n, 

we only ask about the worst case. 

We also understand that different languages, computers, 

and even skill of the implementer can alter the "running 

time."
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Notion of "Order"Notion of "Order"

"Order" is something we use to describe an upper 
bound upon the size of something else (in our case, 
time, but it can apply to almost anything).

For example, let f(n) and g(n) be two functions. We say 
"f(n) is order g(n)" when there exists constants c and N 
such that f(n) ≤ cg(n) for all n ≥ N.

What this is saying is that when n is 'large enough,' f(n) 
is bounded above by a constant multiple of g(n).

"Order" is something we use to describe an upper 
bound upon the size of something else (in our case, 
time, but it can apply to almost anything).

For example, let f(n) and g(n) be two functions. We say 
"f(n) is order g(n)" when there exists constants c and N 
such that f(n) ≤ cg(n) for all n ≥ N.

What this is saying is that when n is 'large enough,' f(n) 
is bounded above by a constant multiple of g(n).



Notion of "Order"Notion of "Order"

This is particularly useful when f(n) is not known 
precisely, is complicated to compute, and/or difficult 
to use. We can, by this, replace f(n) by g(n) and know 
we aren't "off too far."

We say f(n) is "in the order of g(n)" or, simply, f(n) 
O(g(n)).

Usually, g(n) is a simple function, like nlog(n), n3, 2n, 
etc., that's easy to understand and use.
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Order of an Algorithm: The maximum 

number of steps required to find the answer 

to any instance of size n, for any arbitrary 

value of n. 

For example, if an algorithm requires at 

most 6n2+3n–6 steps on any instance of size 

n, we say it is "order n2" or, simply, O(n2).
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Slower/Faster/FastestSlower/Faster/Fastest

Let the order of algorithm X be in O(fx(n)).

Then, for algorithms A and B and their respective order 
functions, fA(n) and fB(n), consider the limit of fA(n)/fB(n) as n 
goes to infinity.

If this value is

0 A is faster than B

constant A and B are "equally slow/fast"

infinity  A is slower than B.
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algorithm that can ever solve this problem. 

(Also known as the "Complexity" of the 

problem.)

Often difficult to determine, since this allows for 

algorithms not yet discovered.
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A Word about 'time'A Word about 'time'

An algorithm for a problem is said to be polynomial if 
there exists integers k and N such that t(n), the 
maximum number of steps required on any instance of 
size n, is at most nk, for all n ≥ N.

Otherwise, we say the algorithm is exponential. 
Usually, this is interpreted to mean t(n) ≥ cn for an 
infinite set of size n instances, and some constant c > 1 
(often, we simply use c = 2).
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Normally, when we say a problem is "easy" we mean 
that it has a polynomial algorithm. 

But, when we say a problem is "hard" or “apparently 
hard" we usually mean no polynomial algorithm is 
known, and none seems likely. 

It is possible a polynomial algorithm exists for 
"hard" problems, but the evidence seems to indicate 
otherwise.
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been removed, others have been simplified 
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been replaced with mathematical equations 

and/or inequalities, etc.
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A Word about ProblemsA Word about Problems

This process, Mathematical Modeling, is a field of study 

in itself, but not our interest here. 

On the other hand, we sometimes conjure up artificial 

problems to put a little "reality" into our work. This 

results in what some call "toy problems."

If a toy problem is hard, then the real problem is 

probably harder.
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Some problems have no algorithm (e. g., Halting 
Problem.) 

No mechanical/logical procedure will ever solve 

all instances of any such problem!!

Some problems have only exponential algorithms 
(provably so – they must take at least order 2n steps) 
So far, only a few have been proven, but there may be 
many. We suspect so.
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Many problems have polynomial algorithms (Fortunately). 

Why fortunately? Because, most exponential algorithms are 

essentially useless for problem instances with n much larger than 

50 or 60. We have algorithms for them, but the best of these will 

take 100's of years to run, even on much faster computers than 

we now envision.
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Why Do We Care??Why Do We Care??

If an algorithm is O(nk) then increasing the size of an 

instance by one gives a running time that is O((n+1)k)

That’s really not much more.

With an increase of one in an exponential algorithm, 

O(2n) changes to O(2n+1) = O(2*2n) = 2*O(2n) – that is, it 

takes about twice as long.
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A Word about "size"A Word about "size"

Technically, the size of an instance is the minimum 
number of bits (information) needed to represent the 
instance - its "length." 

This comes from early Formal Language researchers who 
were analyzing the time needed to 'recognize' a string of 
characters as a function of its length (number of 
characters).

When dealing with more general problems there is usually a 
parameter (number of vertices, processors, variables, etc.) 
that is polynomially related to the length of the instance. 
Then, we are justified in using the parameter as a measure 
of the length (size), since anything polynomially related to 
one will be polynomially related to the other. 
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But, be careful.

For instance, if the "value" (magnitude) of n is both the 
input and the parameter, the 'length' of the input 
(number of bits) is log2(n). So, an algorithm that takes 
n time is running in n = 2log2(n) time, which is 
exponential in terms of the length, log2(n), but linear 
(hence, polynomial) in terms of the "value," or 
magnitude, of n.

It's a subtle, and usually unimportant difference, but it 
can bite you.
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When given a new problem to solve (design an 
algorithm for), if it's undecidable, or even exponential, 
you will waste a lot of time trying to write a polynomial 
solution for it!!

If the problem really is polynomial, it will be 
worthwhile spending some time and effort to find a 
polynomial solution.

You should know something about how hard a problem 
is before you try to solve it.
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Computational ComplexityComputational Complexity

Study of problems, particularly, to classifying them 
according to the amount of resources (usually, time) 

needed to solve them.

What problems can be solved in polynomial time? 

What problems require exponential time?

The difficulty: We don’t know for most problems.
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If we have a polynomial algorithm, then we KNOW the 

problem is polynomial.

But, if we don’t have a polynomial algorithm????

Does that mean it is exponential?

Or, that we are just not clever enough?
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Computational ComplexityComputational Complexity

Proving a problem is polynomial is usually 
easier than proving it is NOT polynomial.

The first only requires one algorithm and a 
proof that it (1) solves the problem and (2) 
runs in polynomial time.

That’s not trivial to do, but it is usually easier 
than proving no polynomial algorithm exists, 
and never will exist!!
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We now have three "classes":

Polynomial, 

Exponential, and 

Undecidable.

We won’t deal directly with any of these. 

Once we know a problem is in one of these -

we (Complexity Theorists) are done.
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An AsideAn Aside

NOTE: That doesn’t mean a problem is "well solved." 

The Algorithm people still may have a lot of work to do.

An O(n10) algorithm is not really much good for n very 
large, say, n around 100.

(a 1 followed by 20 zeros.)

But, it's better than 2n. 

(a 1 followed by 30 zeros.)
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• A  related classification scheme has arisen in recent years -

Fixed Parameter Tractability.

• The idea is to acknowledge that a problem is hard (and 

probably exponential), and to ask "what makes the problem 

hard?"

• In some hard problems, it has been observed that many, 

and perhaps most, instances are easily solvable. It is only a 

few (proportionally few, but still infinite) that cause 

algorithms to take exponential time.

• Can we isolate those instances, design algorithms that work 

well most of the time?
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There are a lot of problems, perhaps most, that 

we can’t seem to fit into any of these 3 classes.

We will build (define) other classes. The classes 

are intended to differentiate problems according 

to how easy/hard they are to solve depending 

upon the "computing power" (model of 

computation) used.
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Models of ComputationModels of Computation

A model of computation is essentially the set of operations 

and rules you are allowed (limited) to use to design 

algorithms.

When you write a program in C, Java, etc., you are using a 

model of computation as defined by the syntactic and 

semantic rules of that language.

Perhaps, the best well known is the Turing Machine (TM) 

described by Alan Turing in the 1930's.
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(2) an external tape divided into 'cells,' each capable of storing 
one character from . The cells are labeled with the integers 
with 0 being in the middle, 

(3) a 'read/write' tape head, initially positioned on tape cell 0, 

(4) a 'processing unit' composed of a finite set of 'states,' 
including a 'start' state and one or more 'halt' states, and 
finally 

(5) a 'transition' function that moves the TM from one state to 
another depending upon the current state and the current 
character being read from the tape.
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But, TMs are not hampered by running out of memory, 
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much easier to prove what TMs can and cannot do.
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Since we can't seem to find a model of 
computation that is more powerful than a TM, 
can we find one that is 'faster'?

In particular, we want one that takes us from 
exponential time to polynomial time.

Our candidate will be the NonDeterministic 
Turing Machine (NDTM).
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NDTM'sNDTM's

In the basic Deterministic Turing Machine (DTM) we make 
one major alteration (and take care of a few 
repercussions): 

The 'transition functon' in DTM's is allowed to become a 
'transition mapping' in NDTM's.

This means that rather than the next action being totally 
specified (deterministic) by the current state and input 
character, we now can have many next actions -
simultaneously. That is, a NDTM can be in many states at 
once. (That raises some interesting problems with writing 
on the tape, just where the tape head is, etc., but those 
little things can be explained away).
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We also require that there be only one halt 
state - the 'accept' state. That also raises an 
interesting question - what if we give it an 
instance that is not 'acceptable'? The answer -
it blows up (or goes into an infinite loop). 

The solution is that we are only allowed to 
give it 'acceptable' input. That means

NDTM's are only defined for decision problems

and, in particular, only for Yes instances.
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We want to determine how long it takes to get to the 
accept state - that's our only motive!!

So, what is a NDTM doing?

In a normal (deterministic) algorithm, we often have a 
loop where each time through the loop we are testing a 
different option to see if that "choice" leads to a correct 
solution. If one does, fine, we go on to another part of 
the problem. If one doesn't, we return to the same place 
and make a different choice, and test it, etc.
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If this is a Yes instance, we are guaranteed that an 
acceptable choice will eventually be found and we go 
on.

In a NDTM, what we are doing is making, and testing, 
all of those choices at once by 'spawning' a different 
NDTM for each of them. Those that don't work out, 
simply die (or something).

This is kind of like the ultimate in parallel 
programming.
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To allay concerns about not being able to write 
on the tape, we can allow each spawned NDTM 
to have its own copy of the tape with a 
read/write head. 

The restriction is that nothing can be reported 
back except that the accept state was reached.
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From the basic definition, we notice that out of 
every state having a nondeterministic choice, at 
least one choice is valid and all the rest sort of die 
off. That is they really have no reason for being 
spawned (for this instance - maybe for another). So, 
we station at each such state, an 'oracle' (an all 
knowing being) who only allows the correct NDTM 
to be spawned.

An 'Oracle Machine.'
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This is not totally unreasonable. We can look 
at a non deterministic decision as a 
deterministic algorithm in which, when an 
"option" is to be tested, it is very lucky, or 
clever, to make the correct choice the first 
time.

In this sense, the two machines would work 
identically, and we are just asking "How long 
does a DTM take if it always makes the 
correct decisions?"
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talk about a 'super' oracle stationed at the start 
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whose task is to examine the given instance and 
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needs to be executed to reach the accept state. 

He/she will write them to the left of cell 0 (the 
instance is to the right).
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• Now, you simply write a DTM to run back and 

forth between the left of the tape to get the 

'next action' and then go back to the right 

half to examine the NDTM and instance to 

verify that the provided transition is a valid 

next action. As predicted by the oracle, the 

DTM will see that the NDTM would reach the 

accept state and can report the number of 

steps required.
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All of this was originally designed with Language 
Recognition problems in mind. It is not a far stretch to 
realize the Yes instances of any of our more real word-
like decision problems defines a language, and that the 
same approach can be used to "solve" them.

Rather than the oracle placing the sequence of 
transitions on the tape, we ask him/her to provide a 
'witness' to (a 'proof' of) the correctness of the 
instance. 
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For example, in the SubsetSum problem, we ask the 

oracle to write down the subset of objects whose sum 

is B (the desired sum). Then we ask "Can we write a 

deterministic polynomial algorithm to test the given 

witness." 

The answer for SubsetSum is Yes, we can, i.e., the 

witness is verifiable in deterministic polynomial time.
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The witness must be something that 

(1) we can verify to be accurate (for the given the 
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(2) we must be able to "finish off" the solution.

All in polynomial time.
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The witness can be nothing!
Then, we are on our own. We have to "solve the instance in 
polynomial time."

The witness can be "Yes."
Duh. We already knew that. We have to now verify the yes 
instance is a yes instance (same as above).

The witness has to be something other than 
nothing and Yes.
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The information provided must be something we could 
have come up with ourselves, but probably at an 
exponential cost. And, it has to be enough so that we 
can conclude the final answer Yes from it.

Consider a witness for the graph coloring problem:

Given: A graph G = (V, E) and an integer k.

Question: Can the vertices of G be assigned colors so 

that adjacent vertices have different

colors and use at most k colors?
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The witness could be nothing, or Yes.
But that's not good enough - we don't know of a 

polynomial algorithm for graph coloring.

It could be "vertex 10 is colored Red." 
That's not good enough either.  Any single vertex can 

be colored any color we want.

It could be a color assigned to each vertex. 
That would work, because we can verify its validity in 

polynomial time, and we can conclude the correct 

answer of Yes.

The witness could be nothing, or Yes.
But that's not good enough - we don't know of a 

polynomial algorithm for graph coloring.

It could be "vertex 10 is colored Red." 
That's not good enough either.  Any single vertex can 

be colored any color we want.

It could be a color assigned to each vertex. 
That would work, because we can verify its validity in 

polynomial time, and we can conclude the correct 

answer of Yes.



NDTM's - WitnessesNDTM's - Witnesses

What if it was a color for all vertices but one?
That also is enough. We can verify the correctness of 
the n-1 given to us, then we can verify that the one 
uncolored vertex can be colored with a color not on 
any neighbor, and that the total is not more than k.

What if all but 2, 3, or 20 vertices are colored
All are valid witnesses.

What if half the vertices are colored? 
Usually,  No. There's not enough information. Sure, 
we can check that what is give to us is properly 
colored, but we don't know how to "finish it off."

What if it was a color for all vertices but one?
That also is enough. We can verify the correctness of 
the n-1 given to us, then we can verify that the one 
uncolored vertex can be colored with a color not on 
any neighbor, and that the total is not more than k.

What if all but 2, 3, or 20 vertices are colored
All are valid witnesses.

What if half the vertices are colored? 
Usually,  No. There's not enough information. Sure, 
we can check that what is give to us is properly 
colored, but we don't know how to "finish it off."



NDTM's - WitnessesNDTM's - Witnesses

An interesting question: For a given problem, 

what is (are) the limits to what can be 

provided that still allows a polynomial 

verification?

An interesting question: For a given problem, 

what is (are) the limits to what can be 

provided that still allows a polynomial 

verification?



NDTM'sNDTM's

A major question remains: Do we have, in 

NDTMs, a model of computation that solves all 

deterministic exponential (DE) problems in 

polynomial time (nondeterministic polynomial 

time)??

It definitely solves some problems we think

are DE in nondeterministic polynomial time.
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But, so far, all problems that have been proven to 
require deterministic exponential time also require 
nondeterministic exponential time.

So, the jury is still out. In the meantime, NDTMs are 
still valuable, because they identify a larger class of 
problems than does a deterministic TM - the set of 
decision problems for which Yes instances can be 
verified in polynomial time.
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We now begin to discuss several different classes of 

problems. The first two will be: 

NP 'Nondeterministic' Polynomial

P   'Deterministic' Polynomial,

The 'easiest' problems in NP

Their definitions are rooted in the depths of Formal 

Languages and Automata Theory as just described, but it is 

worth repeating some of it in the next few slides.
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We assume knowledge of Deterministic and 

Nondeterministic Turing Machines. (DTM's and NDTM's)

The only use in life of a NDTM is to scan a string of 

characters X and proceed by state transitions until an 

'accept' state is entered.

X must be in the language the NDTM is designed to 

recognize. Otherwise, it blows up!!
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So, what good is it? 

We can count the number of transitions on the shortest 

path (elapsed time) to the accept state!!!

If there is a constant k for which the number of 

transitions is at most |X|k, then the language is said to 

be 'nondeterministic polynomial.'

So, what good is it? 

We can count the number of transitions on the shortest 

path (elapsed time) to the accept state!!!

If there is a constant k for which the number of 

transitions is at most |X|k, then the language is said to 

be 'nondeterministic polynomial.'



Problem ClassesProblem Classes

The subset of YES instances of the set of instances of a 

decision problem, as we have described them above, is 

a language.

When given an instance, we want to know that it is in the 

subset of Yes instances. (All answers to Yes instances look 

alike - we don't care which one we get or how it was 

obtained).

This begs the question "What about the No instances?"

The answer is that we will get to them later. (They will 

actually form another class of problems.)
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This actually defines our first Class, NP, the set of decision 
problems whose Yes instances can be solved by a 
Nondeterministic Turing Machine in polynomial time.

That knowledge is not of much use!! We still don't know how 
to tell (easily) if a problem is in NP. And, that's our goal.

Fortunately, all we are doing with a NDTM is tracing the 
correct path to the accept state. Since all we are interested 
in doing is counting it's length, if someone just gave us the 
correct path and we followed it, we could learn the same 
thing - how long it is.
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It is even simpler than that (all this has been 
proven mathematically). Consider the 
following problem:

You have a big van that can carry 10,000 lbs. You 
also have a batch of objects with weights w1, w2, …, 
wn lbs. Their total sum is more than 10,000 lbs, so 
you can't haul all of them.

Can you load the van with exactly 10,000 lbs?

(WOW. That's the SubsetSum problem.)

It is even simpler than that (all this has been 
proven mathematically). Consider the 
following problem:

You have a big van that can carry 10,000 lbs. You 
also have a batch of objects with weights w1, w2, …, 
wn lbs. Their total sum is more than 10,000 lbs, so 
you can't haul all of them.

Can you load the van with exactly 10,000 lbs?

(WOW. That's the SubsetSum problem.)



Problem ClassesProblem Classes

Now, suppose it is possible (i.e., a Yes instance) and 
someone tells you exactly what objects to select.

We can add the weights of those selected objects and 
verify the correctness of the selection.

This is the same as following the correct path in a 
NDTM. (Well, not just the same, but it can be proven to 
be equivalent.)

Therefore, all we have to do is count how long it takes 
to verify that a "correct" answer" is in fact correct.
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statements (versions) of a single problem. 

We show they are actually very different. 

Let G = (V, E) be a graph.

Definition: X  V(G) is a vertex cover if every 

edge in G has at least one endpoint in X.
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Does G contain a vertex cover 

with at most k vertices?

Version 2. Given a graph G and an integer k. 

Does the smallest vertex cover of G 

have exactly k vertices?
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In Version 2, we can also easily check that X has 
exactly k vertices and that X is a vertex cover. 

But, we don't know how to easily check that there is 
not a smaller vertex cover!!

That seems to require exponential time.

These are very similar looking "decision" problems 
(Yes/No answers), yet they are VERY different in this 
one important respect.
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Could we have asked to be given something that 
would have allowed us to easily verify that X was the 
smallest such set?

No one knows what to ask for!! 

To check all subsets of k or fewer vertices requires 
exponential time (there can be an exponential 
number of them).
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Version 1 problems make up the class called NP

Definition: The Class NP is the set of all decision 
problems for which answers to Yes instances can be 
verified in polynomial time. 

{Why not the NO instances? We'll answer that later.}

For historical reasons, NP means 

"Nondeterministic Polynomial." 

(Specifically, it does not mean "not polynomial").
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Some decision problems in NP can be solved (without 
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That is, not only can we verify a correct answer in 
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Problems in P can also have a witness – we 

just don't need one. But, this line of thought 

leads to an interesting observation. Consider 

the problem of searching a list L for a key X.

Given: A list L of n values and a key X.

Question: Is X in L?
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We know this problem is in P. But, we can 
also envision a nondeterministic solution. An 
oracle can, in fact, provide a "witness" for a 
Yes instance by simply writing down the index 
of  where X is located.

We can verify the correctness with one simple 
comparison and reporting, Yes the witness is 
correct.
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There is a popular conjecture that if any problem and 
its complement are both in NP, then both are also in P.

This has been the case for several problems that for 
many years were not known to be in P, but both the 
problem and it's complement were known to be in NP.

For example, Linear Programming (proven to be in P in 
the 1980's), and Prime Number (proven in 2006 to be 
in  P). 

A notable 'holdout' to date is Graph Isomorphism.
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Many do not (believe that).
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Does P = NP?

There is an award of one million dollars for a proof. 

– Either way, True or False.
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We now look at other classes of problems.

Hard appearing problems can turn out to be 
easy to solve. And, easy looking problems can 
actually be very hard (Graph Theory is rich 
with such examples).

We must deal with the concept of "as hard 
as," "no harder than," etc. in a more rigorous 
way.
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Problem A is said to be 'no harder than' problem B when the 
smallest class containing A is a subset of the smallest class 
containing B.

Recall that fX(n) is the order of the smallest complexity class 
containing problem X.  

If, for some constant , 

fA(n) ≤ nfB(n),

the time to solve A is no more than some polynomial multiple 
of the time required to solve B, i.e., A is 'no harder than' B.
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The requirement for determining the relative difficulty 

of two problems A and B requires that we know, at 

least, the order of the fastest algorithm for problem B 

and the order of some algorithm for Problem A.

We may not know either!!

In the following we exhibit a technique that can allow 

us to determine this relationship without knowing 

anything about an algorithm for either problem.
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Turing Reduction is an algorithm A(IA, AnswerA) 

for solving all instances of problem A and satisfies 

the following:

(1) Constructs zero or more instances of problem B and 

invokes algorithm B(IB, AnswerB), on each.

(2) Computes the result, AnswerA, for IA.

(3) Except for the time required to execute algorithm B, the 

execution time of algorithm A must be polynomial with 

respect to the size of IA.
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The previous theorem and its corollary do not 

capture the full implication of Turing reductions. 

Regardless of the complexity class problem B is in, 
a Turing reduction implies problem A is in a 
subclass.

Regardless of the class problem A might be in, 
problem B is in a super class.
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Reduction results. 

If problem B is decidable, 
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then problem B is undecidable.

Without condition (3) of the definition, a simple 
Reduction results. 

If problem B is decidable, 

then so is problem A. 

Equivalently, 

If problem A is undecidable, 

then problem B is undecidable.



Special Type of ReductionSpecial Type of Reduction

Polynomial Transformation
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(1) Problems A and B must both be decision problems.

(2) A single instance, IB, of problem B is constructed from a  
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(3) IB is true for problem B if and only if IA is true for problem A.
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Restriction allows nothing much more complex 

than renaming the objects in IA so that they are, 

in a straightforward manner, objects in IB. 

For example, objects in IA could be a collection 

of cities with distances between certain pairs of 

cities. In IB, these might correspond to vertices 

in a graph and weighted edges. 
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The term 'restriction' alludes to the fact that a proof of 

correctness often is simply describing the subset of 

instances of problem B that are essentially identical 

(isomorphic) to the instances of problem A, that is, the 

instances of B are restricted to those that are instances of 

A. To apply restriction, the relevant instances in Problem B 

must be identifiable in polynomial time. 

For example, if P ≠ NP and B is defined over the set of all 

graphs, we can not restrict to the instances that possess a 

Hamiltonian Circuit.
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Local Replacement is more complex because there is 

usually not an obvious map between instance IA and 

instance IB. But, by modifying objects or small groups of 

objects a transformation often results. Sometimes the 

alterations are so that some feature or property of problem 

A that is not a part of all instances of problem B can be 

enforced in problem B. As in (a), the instances of problem B 

are usually of the same type as of problem A. 
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Polynomial Transformations enforce an equivalence 

relationship on all decision problems, particularly, those 

in the Class NP. Class P is one of those classes and is the 

"easiest" class of problems in NP. 

Is there a class in NP that is the hardest class in NP?

A problem B in NP such that A P B for every A in NP.
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U = {u1, u2,…, un}, Boolean variables.

C = {c1, c2,…, cm}, "OR clauses"

For example:

ci = (u4  u35  ~u18  u3…  ~u6)
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Can we assign Boolean values to the variables 

in U so that every clause is TRUE?

There is no known polynomial algorithm!!
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Cooks Theorem:
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A P SAT

Thus, SAT is as hard as every problem in NP.

(For a proof, see Garey and Johnson, pgs. 39 – 44)

Cooks Theorem:

1) SAT is in NP

2) For every problem A in NP,

A P SAT

Thus, SAT is as hard as every problem in NP.

(For a proof, see Garey and Johnson, pgs. 39 – 44)



Since SAT is itself in NP, that means 
SAT is a hardest problem in NP (there 
can be more than one.).
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Within a year, Richard Karp added 22 problems to 
this special class.

These included such problems as: 

3-SAT

3DM

Vertex Cover, 

Independent Set, 

Knapsack, 

Multiprocessor Scheduling, and 

Partition.
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S = {s1, s2, …, sn} 

set of positive integers

and an integer B.

Question: Does S have a subset whose 
values sum to B?

No one knows of a polynomial algorithm.

{No one has proven there isn’t one, either!!}
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A Guide to the Theory of NP–Completeness, for a 

list of over 300 as of the early 1980's).
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P = NP?P = NP?
Why should P equal NP?

There seems to be a huge "gap" between the known 
problems in P and Exponential. That is, almost all known 
polynomial problems are no worse than n3 or n4. 

Where are the O(n50) problems?? O(n100)? Maybe they 
are the ones in NP–Complete? 

It's awfully hard to envision a problem that would 
require n100, but surely they exist?

Some of the problems in NP–C just look like we should 
be able to find a polynomial solution (looks can be 
deceiving, though). 
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Why should P not equal NP?

• P = NP would mean, for any problem in NP, that 
it is just as easy to solve an instance form 
"scratch," as it is to verify the answer if 
someone gives it to you. That seems a bit hard 
to believe.

• There simply are a lot of awfully hard looking 
problems in NP–Complete (and Co–NP-Complete) 
and some just don't seem to be solvable in 
polynomial time.

• An awfully lot of smart people have tried for a 
long time to find polynomial algorithms for some 
of the problems in NP-Complete - with no luck.
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We now explore problems (possibly) outside 
NP.

The first are closely related to NP problems, 
are simple looking, but some seem very 
difficult to solve.

For most of these, we must invoke Turing 
Reductions, because Polynomial 
Transformations do not seem to be powerful 
enough.
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For any decision problem A in NP, there is a 
„complement‟ problem Co–A defined on the same 
instances as A, but with a question whose answer is 
the negation of the answer in A. That is, an instance is 
a "yes" instance for A if and only if it is a "no" 
instance in Co–A. 

Notice that the complement of a complement problem 
is the original problem.
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Co–NP is the set of all decision problems whose 

complements are members of NP.

For example: consider Graph Color 

GC

Given: A graph G and an integer k.

Question: Can G be properly colored with k colors?



The complement problem of GC

Co–GC

Given: A graph G and an integer k.

Question: Do all proper colorings of G 

require more than k colors?

The complement problem of GC

Co–GC

Given: A graph G and an integer k.

Question: Do all proper colorings of G 

require more than k colors?



Notice that Co–GC is a problem that does 
not appear to be in the set NP. That is, we 
know of no way to check in polynomial 
time the answer to a "Yes" instance of Co–
GC.

What is the "answer" to  a Yes instance 
that can be verified in polynomial time?
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position to include additional problems. In 
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Basic Property

Any "attacking" force by nonmembers on a single member 
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A number of variations exist and have been studied. 

For example, we might require there be k more, or 

fewer, defenders than attackers, etc.
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Notice: If someone were to give us a set of k vertices 
and claimed it was a Secure Set: 

We do not know how to verify the claim in polynomial 
time.

It seems we must check each individual subset of the 
given set of k vertices. There are 2k possible subsets to 
check. Since k can be n/2, or n/4, etc., k can be order 
n, implying 2k is O(2n).
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"yes" if and only if it is "no" in the second. 

The problems are said to be "complements" 
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restricted, the algorithm actually behaves in 

a polynomial manner.
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For example –

Subset Sum

Given: n positive integers S = {s1, s2, …, sn} and a value 

B.

Is there a subset of S that totals exactly B?

This is an NP–Complete problem. There is a dynamic 

programming algorithm that executes in O(Bn) time.
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Why is O(Bn) not polynomial? 

Because B can be exponentially large, in fact, bigger 

than 2n. Notice that 2n can be represented with n bits. 

So, B can double when n is increased by only one.

But, if B is relatively small, this is a very reasonable 

algorithm.
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Is this "significant"?

Yes, from both a practical and theoretical point of 
view.

Practically, there are several other problems that this 
approach applies to: Knapsack, bin packing, multi-
processor scheduling, etc., and many of these have 
real world implications.
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For example, consider a freight shipping 
company that has n = 100 items to be 
transported by truck from one coast to the 
other. A truck can haul B tons. The total of 
the 100 items far exceeds B, so one wishes to 
fill the  truck to B, if possible (note: getting 
as close as possible is an equally difficult 
problem).
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For the DP algorithm to run in exponential time, 

B would need to be in the order of 2100 –

They don't make trucks that big. 

Normally, B might be 5 to 10 tons. Thus the 

algorithm runs in O(20,000n) time. A large 

coefficient, but still linear in n.
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Hard problem in such a way that 
the part of the problem that leads 
to exponential time is isolated.

So, what do we mean by FPT?

The idea is to design a solution (an 
algorithm) for solving some NP–
Hard problem in such a way that 
the part of the problem that leads 
to exponential time is isolated.



Suppose we have developed an 

algorithm to find the minimum number 

of "bandersnatches" in a graph G. It’s 

running time is order 

2–n3.

In some sense, what makes this problem 

hard is a large difference between the 

maximum and minimum degrees.
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where f is a function independent of n,
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Unless P = NP, f is exponential in k.
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GoalsGoals

• Provide characterizations (computational models) of 
the class of effective procedures / algorithms. 

• Study the boundaries between complete (or so it 
seems) and incomplete models of computation. 

• Study the properties of classes of solvable and 
unsolvable problems. 

• Solve or prove unsolvable open problems. 

• Determine reducibility and equivalence relations 
among unsolvable problems. 

• Apply results to various other areas of CS.
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• Late 1800’s to early 1900’s

• Axiomatic schemes

• Axioms plus sound rules of inference

• Much of focus on number theory

• First Order Predicate Calculus

• xy [y > x]   //quantify variables

• Second Order (Peano’s Axiom)

• P [[P(0) & x[P(x) P(x+1)]]  xP(x)]

//Quantify variables and functions/predicates 
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within a formal system that allows 

the mechanical creation and 
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GödelGödel

• In 1931 he showed that any first order theory 
that embeds elementary arithmetic is either 
incomplete or inconsistent.

• He did this by showing that such a first order 
theory cannot reason about itself. That is, 
there is a first order expressible proposition 
that cannot be either proved or disproved, or 
the theory is inconsistent (some proposition 
and its complement are both provable).

• Gödel also developed the general notion of 
recursive functions but made no claims about 
their strength.
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Turing, Post, Church, KleeneTuring, Post, Church, Kleene

• In 1936, each presented a formalism for 
computability.
• Turing and Post devised abstract machines and 

claimed these represented all mechanically 
computable functions.

• Church developed the notion of lambda-
computability  (the birth of Lisp) from recursive 
functions (as previously defined by Gödel and 
Kleene) and claimed completeness for this model.

• Kleene demonstrated the computational 
equivalence of recursively defined functions 
to Post-Turing machines. 
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More Emil PostMore Emil Post

• In the 1920’s, starting with notation developed by 
Frege and others in 1880s, Post devised the truth table 
form we all use now for Boolean expressions 
(propositional logic). This was a part of his PhD thesis 
in which he showed the axiomatic completeness of the 
propositional calculus.

• In 1936, Post independently devised a formalism 
similar to and equivalent to Turing machines.

• In the late 1930’s and the 1940’s, Post devised symbol 
manipulation systems in the form of rewriting rules 
(precursors to Chomsky’s grammars). He showed their 
equivalence to Turing machines.

• Later (1940s), Post showed the complexity 
(undecidability) of determining what is derivable from 
an arbitrary set of propositional axioms. 
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(undecidability) of determining what is derivable from 
an arbitrary set of propositional axioms. 



Sets, Predicates, ProblemsSets, Predicates, Problems

• Let S be an arbitrary subset of some universe U.  The 
predicate cS over U may be defined by:

cS(x) = true  if and only if  x  S

cS is called the characteristic function of S.

• Let K be some arbitrary predicate defined over some 
universe U.  The problem PK associated with K is the 
problem to decide of an arbitrary member x of U, 
whether or not K(x) is true.

• Let P be an arbitrary decision problem and let U denote 
the set of questions in P (usually just the set over which 
a single variable part of the questions ranges).  The set 
SP associated with P is

{ x | x  U and x has answer “yes” in P }
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Categorizing Problems/SetsCategorizing Problems/Sets

• Solvable or Decidable -- A problem P is said to be 

solvable (decidable) if there exists an algorithm F which, 

when applied to a question q in P, produces the correct 

answer (“yes” or “no”).

• Solved -- A problem P is said to solved if P is solvable and 

we have produced its solution.

• Unsolved, Unsolvable (Undecidable) -- Complements of 

above concepts
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Categorizing Problems/SetsCategorizing Problems/Sets

• Recursively enumerable -- A set S is recursively 
enumerable (re) if S is empty (S = Ø ) or there exists an 
algorithm F, over the natural numbers , whose range is 
exactly S.  A problem is said to be re if the set associated 
with it is re.

• Semi-Decidable -- A problem is said to be semi-decidable 
if there is an effective procedure F which, when applied 
to a question q in P, produces the answer “yes” if and 
only if q has answer “yes.”  F need not halt if q has 
answer “no.”

• Non-re, Not Semi-Decidable -- Complements of above 
concepts
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Immediate ImplicationsImmediate Implications

• P re iff P semi-decidable.

• P solvable iff both SP and (U — SP) are re (semi-
decidable).

• P solved implies P solvable implies P semi-decidable (re).

• P non-re implies P unsolvable implies P unsolved.

• P finite implies P solvable.

• THINK ABOUT THESE.

• P re iff P semi-decidable.

• P solvable iff both SP and (U — SP) are re (semi-
decidable).

• P solved implies P solvable implies P semi-decidable (re).

• P non-re implies P unsolvable implies P unsolved.

• P finite implies P solvable.

• THINK ABOUT THESE.



How many programs?How many programs?

• Since each procedure must be built from a finite 

alphabet and must be of finite length, then the number 

of procedures in any model of computation must be 

countable.

• Since the number of procedures is countable, then the 

set of procedures (and also algorithms which are a subset 

of the procedures) is also countable.

• In fact, the set of procedures in any programming 

languages is decidable (we just need to check syntax), 

and hence recursively enumerable.
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How many decision problems?How many decision problems?

• We will just consider decision problems about sets of 

natural numbers.

• Clearly, the number of such decision problems is the 

same as the number of subsets of the natural numbers.

• The number of subset of any set S is 2|S|, and this is 

strictly larger than |S|, even if S is infinite.

• Specifically, the number of programs in any model of 

computation is countably infinite (0), but the number 

of decision problems is uncountably infinite 

(20=1>0).
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Existence of UndecidablesExistence of Undecidables

• A counting argument
From the previous slide we see that the there are a 
countable number of algorithms, but that there are an 
uncountable number of decision problems. Thus, most 
decision problems have no associated algorithms that 
can decide their memberships.

This means that there are undecidable problems, but 
this kind of proof does nothing to identify any 
interesting ones.
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Finite versus Infinite ProblemsFinite versus Infinite Problems

Every decision problem with a finite number of instances, 

say N, is solvable. The solution is contained in one of the 

rows of the Truth Table that has N columns, one for each 

instance of the problem, and 2N rows, one for each possible 

solution.

Any problem with an infinite number of instances may 

potentially be unsolvable. We’ll give an existence proof on 

the next slide.

Every decision problem with a finite number of instances, 

say N, is solvable. The solution is contained in one of the 

rows of the Truth Table that has N columns, one for each 

instance of the problem, and 2N rows, one for each possible 

solution.

Any problem with an infinite number of instances may 

potentially be unsolvable. We’ll give an existence proof on 

the next slide.



A Classic Unsolvable ProblemA Classic Unsolvable Problem

Given an arbitrary program P, in some language L, and an 

input x to P, will P eventually stop when run with input x?

The above problem is called the “Halting Problem.” It is 

clearly an important and practical one – wouldn't it be nice 

to not be embarrassed by having your program run 

“forever” when you try to do a demo for the boss or 

professor? Unfortunately, there’s a fly in the ointment as 

one can prove that no algorithm can be written in L that 

solves the halting problem for L.
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Some terminologySome terminology

We will say that a procedure, f, converges on input x if it 

eventually halts when it receives x as input. We denote this 

as f(x). 

We will say that a procedure, f, diverges on input x if it 

never halts when it receives x as input. We denote this as 

f(x). 

Of course, if f(x) then f defines a value for x. In fact we 

also say that f(x) is defined if f(x) and undefined if f(x).

Finally, we define the domain of f as {x | f(x)}. The range 

of f is {y | f(x) and f(x) = y }.
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Halting ProblemHalting Problem

Assume we can decide the Halting Problem.  Then there 
exists some total function Halt such that

1 if [x](y)

Halt(x,y) =

0 if [x](y)

Here, we have numbered all programs and [x] refers to 
the x-th program in this ordering.  Now we can view Halt 
as a mapping from  into {0,1} by treating its input as a 
single number representing the pairing of two numbers 
via the one-one onto function

pair(x,y) = <x,y> = 2x (2y + 1) – 1

with inverses

<z>1 = exp(z+1,1)
<z>2 = ((( z + 1 ) // 2 <z>1 ) – 1 ) // 2
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Halting ProblemHalting Problem

Now if Halt exist, then so does Disagree, where

0 if Halt(x,x)=0, i.e., if [x](x)

Disagree(x) =

my (y=y+1) if Halt(x,x)=1, i.e., if [x](x)

Since Disagree is a program from  into , Disagree can 
be reasoned about by Halt.  Let d be such that Disagree 
= [d], then

Disagree(d)  Halt(d,d)=0  [d](d)  Disagree(d)

But this means that Disagree contradicts its own 
existence.  Since every step we took was constructive, 
except for the original assumption, we must presume 
that the original assumption was in error.  Thus, the 
Halting Problem is not solvable.
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Halting ProblemHalting Problem

While the Halting Problem is not solvable, it is re, or 
semi-decidable. 

To see this, consider the following semi-decision 
procedure. Let P be an arbitrary procedure and let x be 
an arbitrary natural number.  Run the procedure P on 
input x until it stops. If it stops, say “yes.” If P does not 
stop, we will provide no answer. This semi-decides the 
Halting Problem. Here is a procedural description.

Semi_Decide_Halting() {

Read P, x;

P(x);

Print “yes”;

}
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Why not just algorithms?Why not just algorithms?

A question that might come to mind is why we could not 
just have a model of computation that involves only 
programs that halt for all input. Assume you have such a 
model – our claim is that this model must be incomplete!

Here’s the logic. Any programming language needs to 
have an associated grammar that can be used to 
generate all legitimate programs. By ordering the rules of 
the grammar in a way that generates programs in some 
lexical or syntactic order, we have a means to 
recursively enumerate the set of all programs. Thus, the 
set of procedures (programs) is re. using this fact, we 
will employ the notation that x is the x-th procedure 
and x(y) is the x-th procedure with input y. We also 
refer to x as the procedure’s index.
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The universal machineThe universal machine

First, we can all agree that any complete model of 
computation must be able to simulate programs in its 
own language. We refer to such a simulator (interpreter) 
as the Universal machine, denote Univ. This program 
gets two inputs. The first is a description of the program 
to be simulated and the second of the input to that 
program. Since the set of programs in a model is re, we 
will assume both arguments are natural numbers; the 
first being the index of the program. Thus,

Univ(x,y) = x(y)

First, we can all agree that any complete model of 
computation must be able to simulate programs in its 
own language. We refer to such a simulator (interpreter) 
as the Universal machine, denote Univ. This program 
gets two inputs. The first is a description of the program 
to be simulated and the second of the input to that 
program. Since the set of programs in a model is re, we 
will assume both arguments are natural numbers; the 
first being the index of the program. Thus,

Univ(x,y) = x(y)



Assume algorithms are reAssume algorithms are re

• Assume that the set of algorithms, TOTAL, can be 
enumerated, and that F accomplishes this.  Then

F(x) = Fx

where F0, F1, F2, … is a list of the indices of all the 
algorithms (a subset of the indices of the procedures)

• Assuming the existence of F, we can use our universal 
procedure to simulate the x-th algorithm on input y by 
Univ(F(x),y) = Fx(y) 

• Since each procedure enumerated by F is an algorithm, 
then the universal procedure will always halt when its 
first argument is an element of the range of F.
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Algorithms are not reAlgorithms are not re

• Define G(x) = Univ(F(x),x) + 1 = F(x)(x) + 1= Fx(x) + 1

• But then G is itself an algorithm.  Assume it is the g-th

F(g) = Fg = G

Then, G(g) = Fg(g) + 1 = G(g) + 1

• But then G contradicts its own existence since an algorithm 
must produce a unique value for each input.

• This cannot be used to show that the effective procedures 
are non-enumerable, since the above is not a contradiction 
if G(g) is undefined.  In fact, we already have shown how to 
enumerate the procedures.
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ConsequencesConsequences

• To capture all the algorithms, any model of computation 
must include some procedures that are not algorithms.

• Since the potential for non-termination is required, 
every complete model must have some for form of 
iteration that is potentially unbounded.

• This means that simple, well-behaved for-loops (the kind 
where you can predict the number of iterations on entry 
to the loop) are not sufficient. While type loops are 
needed, even if implicit rather than explicit.
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Models of computationModels of computation

We have already looked at one model of computation, 
the Turing Machine, and discussed variations, such as 
multiple tapes, noting that these do not change the 
power of these devices.

We will now look at three very different models

Register Machines

Factor Replacement Systems

Recursive Functions

We will then show each of these models of computation 
is equivalent. This is evidence (not proof) that these are 
complete models of computation.
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Register MachinesRegister Machines

• A register machine consists of a finite length program, each of 
whose instructions is chosen from a small repertoire of simple 
commands (increment/decrement).

• The instructions are labeled from 1 to m, where there are m
instructions. Computation starts with instruction 1. 
Termination occurs as a result of an attempt to execute the 
m+1-st instruction.

• The storage medium is a finite set of registers, each capable of 
storing an arbitrary natural number.

• Any given register machine has a finite, predetermined number 
of registers, independent of its input.

• The arguments x1,x2,…,xn are placed in r2, .. rn+1, all other 
registers zero. The result is stored in r1, with other register 
contents irrelevant (although we often preserve them).
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Addition ExampleAddition Example

Addition (r1  r2 + r3) // Assume all but r2, r3 are zeroed

1. DEC2[2,4] : Add r2to r1, saving original r2 in r4

2. INC1[3]

3. INC4[1]

4. DEC4[5,6] : Restore r2

5. INC2[4]

6. DEC3[7,9] : Add r3 to r1, saving original r3 in r4

7. INC1[8]

8. INC4[6]

9. DEC4[10,11] : Restore r3

10. INC3[9]

11. : Halt by branching here
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Limited SubtractionLimited Subtraction

Subtraction (r1  r2 – r3, if r2≥r3; 0, otherwise)

1. DEC2[2,4] : Add r2 to 1 saving original r2 in r4

2. INC1[3]

3. INC4[1]

4. DEC4[5,6] : Restore r2

5. INC2[4]

6. DEC3[7,9] : Subtract r3 from r1, saving r3 in r4

7. DEC1[8,8]   : Note that decrementing 0 does nothing

8. INC4[6]

9. DEC4[10,11] : Restore r3

10. INC3[9]

11. : Halt by branching here
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Factor Replacement SystemsFactor Replacement Systems

• A factor replacement system (FRS) consists of a finite 
(ordered) sequence of fractions, and some starting 
natural number x.  

• A fraction a/b is applicable to some natural number x, 
just in case x is divisible by b.  We always chose the first 
applicable fraction (a/b), multiplying it times x to 
produce a new natural number x*a/b.  The process is 
then applied to this new number.  

• Termination occurs when no fraction is applicable.  

• A factor replacement system partially computing n-ary
function F typically starts with its argument encoded as 
powers of the first n odd primes.  Thus, arguments 
x1,x2,…,xn are encoded as 3x15x2…pn

xn.  The result then 
appears as the power of the prime 2.
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Addition ExampleAddition Example

Addition is 3x15x2 becomes 2x1+x2 

or, in more details, 203x15x2 becomes 2x1+x2 3050

2 / 3

2 / 5

Note that these systems are sometimes presented as 
rewriting rules of the form

bx  ax

meaning that a number that has a factored as bx can 
have the factor b replaced by an a.  
The previous rules would then be written

3x   2x

5x   2x

Addition is 3x15x2 becomes 2x1+x2 

or, in more details, 203x15x2 becomes 2x1+x2 3050
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Subtraction ExampleSubtraction Example

Subtraction is 3x15x2 becomes 2x1-x2 

or, in more details, 203x15x2 becomes 2x1-x2 3050

35x   x

3x      2x

5x      x

Note: We have not saved the original input here. That can be 
done by using extra primes for “state” information. For 
instance, we could start with 3x15x213, where the 13 means we 
are in the first state; 17 is the second state; 7 and 11 are used 
to save and restore the exponents of 3 and 5.

3513x   71113x

3x13  2713x

13x         17x

713x      3x

1113x    5x

13x         x

Subtraction is 3x15x2 becomes 2x1-x2 

or, in more details, 203x15x2 becomes 2x1-x2 3050
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3x      2x

5x      x
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done by using extra primes for “state” information. For 
instance, we could start with 3x15x213, where the 13 means we 
are in the first state; 17 is the second state; 7 and 11 are used 
to save and restore the exponents of 3 and 5.

3513x   71113x

3x13  2713x

13x         17x

713x      3x

1113x    5x

13x         x



Importance of orderImportance of order

To see why determinism makes a difference, consider

35x   x

3x      2x

5x      x

Starting with 135 = 3351, deterministically we get

135  9  6  4 = 22

Non-deterministically we get a larger, less selective set.

135  9  6  4 = 22

135  90  60  40  8 = 23

135  45  3  2 = 21

135  45  15  1 = 20

135  45  15  5  1 = 20

135  45  15  3  2 = 21

135  45  9  6  4 = 22

135  90  60  40  8 = 23

… 

This computes 2z where 0 ≤ z ≤x1. Think about it.
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Primitive recursive 

functions

Primitive recursive 

functions
• The primitive recursive functions are defined by starting 

with some base set of functions and then expanding this 
set via rules that create new primitive recursive 
functions from old ones.

• The base functions are:

Ca(x1,…,xn) = a : constant functions

Ini(x1,…,xn) = xi : identity functions

: aka projection 

S(x) = x+1 : an increment function

• The primitive recursive functions are defined by starting 
with some base set of functions and then expanding this 
set via rules that create new primitive recursive 
functions from old ones.

• The base functions are:

Ca(x1,…,xn) = a : constant functions

Ini(x1,…,xn) = xi : identity functions

: aka projection 

S(x) = x+1 : an increment function



Building new functionsBuilding new functions

• Composition: 

If G, H1, … , Hk are already known to be primitive 
recursive, then so is F, where

F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn))

• Iteration (aka primitive recursion): 

If G, H are already known to be primitive recursive, then 
so is F, where

F(0, x1,…,xn) = G(x1,…,xn)

F(y+1, x1,…,xn) = H(y, x1,…,xn, F(y, x1,…,xn))

We also allow definitions like the above, except iterating 
on y as the last, rather than first argument.

• Composition: 

If G, H1, … , Hk are already known to be primitive 
recursive, then so is F, where

F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn))

• Iteration (aka primitive recursion): 

If G, H are already known to be primitive recursive, then 
so is F, where

F(0, x1,…,xn) = G(x1,…,xn)

F(y+1, x1,…,xn) = H(y, x1,…,xn, F(y, x1,…,xn))

We also allow definitions like the above, except iterating 
on y as the last, rather than first argument.



Addition and MultiplicationAddition and Multiplication

Example: Addition

+(0,y) = I11(y)

+(x+1,y) = H(x,y,+(x,y))

where H(a,b,c) = S(I33(a,b,c))

= S(c) = +(x,y) + 1 = (x+y) + 1

Example: Multiplication

*(0,y) = C0(y)

*(x+1,y) = H(x,y,*(x,y)) 

where H(a,b,c) = +(I32(a,b,c), I33(a,b,c)) 

= b+c = y + *(x,y) = (x+1)*y

Example: Addition

+(0,y) = I11(y)

+(x+1,y) = H(x,y,+(x,y))

where H(a,b,c) = S(I33(a,b,c))

= S(c) = +(x,y) + 1 = (x+y) + 1

Example: Multiplication

*(0,y) = C0(y)

*(x+1,y) = H(x,y,*(x,y)) 

where H(a,b,c) = +(I32(a,b,c), I33(a,b,c)) 

= b+c = y + *(x,y) = (x+1)*y



Basic arithmeticBasic arithmetic

x + 1:

x + 1 = S(x)

x – 1:

0 - 1 = 0

(x+1) - 1 = x

x + y:

x + 0 = x

x+ (y+1) = (x+y) + 1

x – y: // limited subtraction

x – 0 = x

x – (y+1) = (x–y) – 1

x + 1:

x + 1 = S(x)

x – 1:

0 - 1 = 0

(x+1) - 1 = x

x + y:

x + 0 = x

x+ (y+1) = (x+y) + 1

x – y: // limited subtraction

x – 0 = x

x – (y+1) = (x–y) – 1



2nd grade arithmetic2nd grade arithmetic

x * y:

x * 0 = 0

x * (y+1) = x*y + x

x!:

0! = 1

(x+1)! = (x+1) * x!

x * y:

x * 0 = 0

x * (y+1) = x*y + x

x!:

0! = 1

(x+1)! = (x+1) * x!



Basic relationsBasic relations

x == 0:

0 == 0 = 1

(y+1) == 0 = 0

x == y:

x==y = ((x – y) + (y – x )) == 0

x ≤y :

x≤y = (x – y) == 0

x ≥ y:

x≥y = y≤x

x > y :

x>y = ~(x≤y)  /* See ~ on next page */

x < y :

x<y = ~(x≥y)

x == 0:

0 == 0 = 1

(y+1) == 0 = 0

x == y:

x==y = ((x – y) + (y – x )) == 0

x ≤y :

x≤y = (x – y) == 0

x ≥ y:

x≥y = y≤x

x > y :

x>y = ~(x≤y)  /* See ~ on next page */

x < y :

x<y = ~(x≥y)



Basic Boolean operationsBasic Boolean operations

~x:

~x = 1 – x or  (x==0)

signum(x): // 1 if x>0; 0 if x==0

~(x==0)

x && y:

x&&y = signum(x*y)

x || y:

x||y = ~((x==0) && (y==0))

~x:

~x = 1 – x or  (x==0)

signum(x): // 1 if x>0; 0 if x==0

~(x==0)

x && y:

x&&y = signum(x*y)

x || y:

x||y = ~((x==0) && (y==0))



Definition by casesDefinition by cases

One case

g(x) if P(x) 

f(x) = 

h(x) otherwise

f(x) = P(x) * g(x) + (1-P(x)) * h(x)

Can use induction to prove this is true for all k>0, where

g1(x) if P1(x) 

g2(x) if P2(x) && ~P1(x)

f(x) = …

gk(x) if Pk(x) && ~(P1(x) || … || 
~Pk-1(x))

h(x) otherwise

One case

g(x) if P(x) 

f(x) = 

h(x) otherwise

f(x) = P(x) * g(x) + (1-P(x)) * h(x)

Can use induction to prove this is true for all k>0, where

g1(x) if P1(x) 

g2(x) if P2(x) && ~P1(x)

f(x) = …

gk(x) if Pk(x) && ~(P1(x) || … || 
~Pk-1(x))

h(x) otherwise



Bounded minimizationBounded minimization

f(x) = m z (z ≤ x) [ P(z) ] if  such a z,

= x+1, otherwise

where P(z) is primitive recursive. 

Can show f is primitive recursive by 
f(0)     = 1-P(0)

f(x+1) = f(x) if f(x) ≤ x

= x+2-P(x+1) otherwise

f(x) = m z (z ≤ x) [ P(z) ] if  such a z,

= x+1, otherwise

where P(z) is primitive recursive. 

Can show f is primitive recursive by 
f(0)     = 1-P(0)

f(x+1) = f(x) if f(x) ≤ x

= x+2-P(x+1) otherwise



Bounded minimizationBounded minimization

f(x) = m z (z < x) [ P(z) ] if  such a z,

= x, otherwise

where P(z) is primitive recursive. 

Can show f is primitive recursive by 
f(0)     = 0

f(x+1) = m z (z ≤ x) [ P(z) ]  

f(x) = m z (z < x) [ P(z) ] if  such a z,

= x, otherwise

where P(z) is primitive recursive. 

Can show f is primitive recursive by 
f(0)     = 0

f(x+1) = m z (z ≤ x) [ P(z) ]  



Intermediate arithmeticIntermediate arithmetic

x // y:

x//0 = 0 : silly, but want a value

x//(y+1) = m z (z<x) [ (z+1)*(y+1) > x ]

x | y: x is a divisor of y

x|y = ((y//x) * x) == y

x // y:

x//0 = 0 : silly, but want a value

x//(y+1) = m z (z<x) [ (z+1)*(y+1) > x ]

x | y: x is a divisor of y

x|y = ((y//x) * x) == y



PrimalityPrimality

firstFactor(x): first non-zero, non-one factor of x.

firstfactor(x) = m z (2 ≤ z ≤ x) [ z|x ] , 

0 if none

isPrime(x):

isPrime(x) = firstFactor(x) == x && (x>1)

prime(i) = i-th prime:

prime(0) = 2

prime(x+1) = m z(prime(x)< z ≤prime(x)!+1)[isPrime(z)]

We will abbreviate this as pi for prime(i)

firstFactor(x): first non-zero, non-one factor of x.

firstfactor(x) = m z (2 ≤ z ≤ x) [ z|x ] , 

0 if none

isPrime(x):

isPrime(x) = firstFactor(x) == x && (x>1)

prime(i) = i-th prime:

prime(0) = 2

prime(x+1) = m z(prime(x)< z ≤prime(x)!+1)[isPrime(z)]

We will abbreviate this as pi for prime(i)



ExponentiationExponentiation

x^y:

x^0 = 1

x^(y+1) = x * x^y

exp(x,i): the exponent of pi in number x.

exp(x,i) = m z (z<x) [ ~(pi^(z+1) | x) ]

x^y:

x^0 = 1

x^(y+1) = x * x^y

exp(x,i): the exponent of pi in number x.

exp(x,i) = m z (z<x) [ ~(pi^(z+1) | x) ]



Pairing functionPairing function

• pair(x,y) = <x,y> = 2x (2y + 1) – 1

• with inverses

<z>1 = exp(z+1,0)

<z>2 = ((( z + 1 ) // 2 <z>1 ) – 1 ) // 2

• These are very useful and can be extended to encode n-

tuples

<x,y,z> = <x, <y,z> > (note: stack analogy)

• pair(x,y) = <x,y> = 2x (2y + 1) – 1

• with inverses

<z>1 = exp(z+1,0)

<z>2 = ((( z + 1 ) // 2 <z>1 ) – 1 ) // 2

• These are very useful and can be extended to encode n-

tuples

<x,y,z> = <x, <y,z> > (note: stack analogy)



IncompletenessIncompleteness

The primitive recursive functions are all algorithms (they 
halt on all input). For this reason, we know that the 
primitive recursive functions are incomplete.

To create a complete model, we need some form of 
potentially unbounded iteration. That will be provided 
by an operation called minimization, in which we do not 
set a bound. This extends the primitive recursive 
functions to the (partial) recursive functions. Partial just 
means that these functions might diverge on some 
inputs. We contrast that with total recursive, the subset 
of recursive functions that converge everywhere (are 
algorithms).

The primitive recursive functions are all algorithms (they 
halt on all input). For this reason, we know that the 
primitive recursive functions are incomplete.

To create a complete model, we need some form of 
potentially unbounded iteration. That will be provided 
by an operation called minimization, in which we do not 
set a bound. This extends the primitive recursive 
functions to the (partial) recursive functions. Partial just 
means that these functions might diverge on some 
inputs. We contrast that with total recursive, the subset 
of recursive functions that converge everywhere (are 
algorithms).



Unbounded minimizationUnbounded minimization

• Minimization: 

If G is already known to be recursive, then so is F, where

F(x1,…,xn) = my (G(y,x1,…,xn) == 1)

• We also allow other predicates besides testing for one.  

In fact any predicate that is recursive can be used as the 

stopping condition.

• Minimization: 

If G is already known to be recursive, then so is F, where

F(x1,…,xn) = my (G(y,x1,…,xn) == 1)

• We also allow other predicates besides testing for one.  

In fact any predicate that is recursive can be used as the 

stopping condition.



Equivalence of modelsEquivalence of models

• We will now show 

TURING ≤ REGISTER ≤ FACTOR ≤ RECURSIVE ≤ TURING 

where by A ≤ B, we mean that every instance of A can be 

replaced by an equivalent instance of B. 

• The transitive closure will then get us the desired result.

• We will actually omit much of the details, focusing on 

the encodings, and just sketching the needed 

constructions. If you wish to see the detailed 

constructions, they can be found in …
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TURING ≤ REGISTER TURING ≤ REGISTER 



Standard Turing Computable Standard Turing Computable 

• We will assume from here on out, wlog, that the tape alphabet 

is {0,1}, with 0 denoting a blank square.

• We will assume that computation starts with the Turing 

machine in state 0, the argument(s) to the left of the scanned 

square and the scanned square and all to its right being blank.

• Further, we will assume that the argument values are in unary 

notation, e.g., …0110111q00… would represent input 

arguments of (2,3).

• Finally, we assume that the machine halts with the arguments 

unchanged and the answer to the right of the scanned square, 

e.g., …0110111qh011111 would be the result of adding the 

input and terminating in state h.
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e.g., …0110111qh011111 would be the result of adding the 

input and terminating in state h.



Finite marking of TM tapeFinite marking of TM tape

• Recall that a Turing tape, while unbounded, is finitely 
marked. The key reason is that the tape starts with just 
a finite number of non-blank squares and can only 
expand the number of marked squares by one at each 
steps, so at any finite future time, the tape is still 
finitely marked. 

• Recall that a Turing tape, while unbounded, is finitely 
marked. The key reason is that the tape starts with just 
a finite number of non-blank squares and can only 
expand the number of marked squares by one at each 
steps, so at any finite future time, the tape is still 
finitely marked. 



Encoding a Turing MachineEncoding a Turing Machine

• For any model of computation, we require a finite 
representation of the machine’s current status, called an 
instantaneous description (id). For a Turing Machine, we 
need to represent the squares to the left of the scanned 
square; the scanned square and all those to its right; and 
the current state.

• To see how this can be done, consider a machine that is 
in state 7, with its tape containing
… 0 0 1 0 1 0 0 1 1 q7 0 1 0 …

• The underscore indicates the square being read.  We 
denote this by the finite id
1 0 1 0 0 1 1 q7 0 1

• In this notation, we always write down the scanned 
square, even if it and all symbols to its right are blank. 

• For any model of computation, we require a finite 
representation of the machine’s current status, called an 
instantaneous description (id). For a Turing Machine, we 
need to represent the squares to the left of the scanned 
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in state 7, with its tape containing
… 0 0 1 0 1 0 0 1 1 q7 0 1 0 …

• The underscore indicates the square being read.  We 
denote this by the finite id
1 0 1 0 0 1 1 q7 0 1

• In this notation, we always write down the scanned 
square, even if it and all symbols to its right are blank. 



Encoding a Turing MachineEncoding a Turing Machine

• An id can be represented by a triple of natural numbers, 
(L,R,i), where L is the number denoted by the binary 
sequence to the left, R is the number denoted by the 
reversal of the binary sequence to the right of the qi, 
and i is the state index (assume n states, 0..n-1).  

• So, 
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 … 
is just (83, 0, 7).
… 0 0 1 0 q5 1 0 1 1 0 0 …
is represented as (2, 13, 5).

• We can store the R part in register 1, the L part in 
register 2, and the state index in register 3 of a Register 
Machine. 
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sequence to the left, R is the number denoted by the 
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• So, 
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 … 
is just (83, 0, 7).
… 0 0 1 0 q5 1 0 1 1 0 0 …
is represented as (2, 13, 5).

• We can store the R part in register 1, the L part in 
register 2, and the state index in register 3 of a Register 
Machine. 



Useful RM routinesUseful RM routines

• Assume w,x are available work registers, initialized to 0.

• JUMP(label)
• 1. DECw[label,label]

• ZEROr
• 1. DECr[1,2]

• COPY(r,s) : copy r to s, using w as a  work register
• 1. ZEROs

• 2. DECr[3,5]

• 3. INCs[4]

• 4. INCw[2]

• 5. DECw[6,7]

• 6. INCr[5]

• Assume w,x are available work registers, initialized to 0.

• JUMP(label)
• 1. DECw[label,label]

• ZEROr
• 1. DECr[1,2]

• COPY(r,s) : copy r to s, using w as a  work register
• 1. ZEROs

• 2. DECr[3,5]

• 3. INCs[4]

• 4. INCw[2]

• 5. DECw[6,7]

• 6. INCr[5]



Useful RM routinesUseful RM routines

• Move(r,s) : move r to s; set r to zero
• 1. ZEROs

• 2. DECr[3,5]

• 3. INCs[4]

• IF_r_Odd(label)
• 1. COPY(r,x)

• 2. DECx(3,5)

• 3. DECx(2,4)

• 4. JUMP(label)

• Move(r,s) : move r to s; set r to zero
• 1. ZEROs

• 2. DECr[3,5]

• 3. INCs[4]

• IF_r_Odd(label)
• 1. COPY(r,x)

• 2. DECx(3,5)

• 3. DECx(2,4)

• 4. JUMP(label)



Useful RM routinesUseful RM routines

• MULTIPLY_r_BY_2
• 1. COPY(r,x)

• 2. ZEROr

• 3. DECx[4,6]

• 4. INCr[5]

• 5. INCr[3]

• DIVIDE_r_BY_2
• 1. COPY(r,x)

• 2. ZEROr

• 3. DECx[4,6]

• 4. DECx[5,6]

• 5. INCr[3]

• MULTIPLY_r_BY_2
• 1. COPY(r,x)

• 2. ZEROr

• 3. DECx[4,6]

• 4. INCr[5]

• 5. INCr[3]

• DIVIDE_r_BY_2
• 1. COPY(r,x)

• 2. ZEROr

• 3. DECx[4,6]

• 4. DECx[5,6]

• 5. INCr[3]



Simulating TM by RMSimulating TM by RM

1. DEC3[2,q0] : Go to simulate actions in state 0

2. DEC3[3,q1] : Go to simulate actions in state 1

…

n. DEC3[ERR,qn-1] : Go to simulate actions in state n-1

…

qj. IF_r2_ODD[qj+2] : Jump if scanning a 1

qj+1.   JUMP[set_k] : If (qj 0 0 qk) is rule in TM

qj+1.   INC2[set_k] : If (qj 0 1 qk) is rule in TM

qj+1.   DIV_r2_BY_2 : If (qj 0 R qk) is rule in TM

MUL_r1_BY_2

JUMP[set_k]

qj+1.    MUL_r2_BY_2 : If (qj 0 L qk) is rule in TM

IF_r1_ODD then INC2

DIV_r1_BY_2[set_k]

…

set_n-1. INC3[set_n-2] : Set r3 to index n-1 for simulating state n-1

set_n-2. INC3[set_n-3] : Set r3 to index n-2 for simulating state n-2

…

set_0.    JUMP[1] : Set r3 to index 0 for simulating state 0

1. DEC3[2,q0] : Go to simulate actions in state 0

2. DEC3[3,q1] : Go to simulate actions in state 1

…

n. DEC3[ERR,qn-1] : Go to simulate actions in state n-1

…

qj. IF_r2_ODD[qj+2] : Jump if scanning a 1

qj+1.   JUMP[set_k] : If (qj 0 0 qk) is rule in TM

qj+1.   INC2[set_k] : If (qj 0 1 qk) is rule in TM

qj+1.   DIV_r2_BY_2 : If (qj 0 R qk) is rule in TM

MUL_r1_BY_2

JUMP[set_k]

qj+1.    MUL_r2_BY_2 : If (qj 0 L qk) is rule in TM

IF_r1_ODD then INC2

DIV_r1_BY_2[set_k]

…

set_n-1. INC3[set_n-2] : Set r3 to index n-1 for simulating state n-1

set_n-2. INC3[set_n-3] : Set r3 to index n-2 for simulating state n-2

…

set_0.    JUMP[1] : Set r3 to index 0 for simulating state 0



Simulating TM by RMSimulating TM by RM

• Need epilog so action for missing quad (halting) jumps 
beyond end of simulation to clean things up, placing 
result in r1.  

• Can also have a prolog that starts with arguments in n
registers r2 to rn+1 and stores values in r1, r2 and r3 to 
represent Turing machines starting configuration.

• Need epilog so action for missing quad (halting) jumps 
beyond end of simulation to clean things up, placing 
result in r1.  

• Can also have a prolog that starts with arguments in n
registers r2 to rn+1 and stores values in r1, r2 and r3 to 
represent Turing machines starting configuration.



PROLOGPROLOG

Example assuming n arguments (fix as needed)

1. MUL_r1_BY_2[2] : Set r1 = 11…102, where, #1's = r2

2. DEC2[3,4] : r2 will be set to 0

3. INC1[1] : 

4. MUL_r1_BY_2[5] : Set r1 = 11…1011…102; #1's = r2, then r3

5. DEC3[6,7] : r3 will be set to 0

6. INC1[4] : 

…

3n-2. DECn+1[3n-1,3n+1]  : Set r1 = 11…1011…1011…12; #1's = r1, r2,…

3n-1. MUL_r1_BY_2[3n]   : rn+1 will be set to 0

3n.    INC1[3n-2] : 

3n+1. : r1 = left tape, r2 = 0 (right), r3 = 0 (initial state)

Example assuming n arguments (fix as needed)

1. MUL_r1_BY_2[2] : Set r1 = 11…102, where, #1's = r2

2. DEC2[3,4] : r2 will be set to 0

3. INC1[1] : 

4. MUL_r1_BY_2[5] : Set r1 = 11…1011…102; #1's = r2, then r3

5. DEC3[6,7] : r3 will be set to 0

6. INC1[4] : 

…

3n-2. DECn+1[3n-1,3n+1]  : Set r1 = 11…1011…1011…12; #1's = r1, r2,…

3n-1. MUL_r1_BY_2[3n]   : rn+1 will be set to 0

3n.    INC1[3n-2] : 

3n+1. : r1 = left tape, r2 = 0 (right), r3 = 0 (initial state)



REGISTER ≤ FACTOR REGISTER ≤ FACTOR 



Encoding an RM’s idEncoding an RM’s id

• This is a really easy one based on the fact that every member of Z+ (the 
positive integers) has a unique prime factorization.  Thus all such 
numbers can be uniquely written in the form

where the pi's are distinct primes and the ki's are non-zero values, 
except that the number 1 would be represented by 20. 

• Let R be an arbitrary n-register machine, having m instructions.

Encode the contents of registers r1,…,rn by the powers of p1,…pn . 

Encode rule number's 1…m by primes pn+1 ,…, pn+m

Use pn+m+1 as prime factor that indicates simulation is done.

• This is in essence the Gödel number of the RM’s state.
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Use pn+m+1 as prime factor that indicates simulation is done.

• This is in essence the Gödel number of the RM’s state.



Simulation by FRSSimulation by FRS

• Now, the j-th instruction (1≤j≤m) of R has associated 
factor replacement rules as follows:

j. INCr[i]
pn+jx  pn+iprx

j. DECr[s, f]
pn+jprx  pn+sx

pn+jx  pn+fx

• We also add the halting rule associated with m+1 of

pn+m+1x  x

• Now, the j-th instruction (1≤j≤m) of R has associated 
factor replacement rules as follows:

j. INCr[i]
pn+jx  pn+iprx

j. DECr[s, f]
pn+jprx  pn+sx

pn+jx  pn+fx

• We also add the halting rule associated with m+1 of

pn+m+1x  x



Importance of orderImportance of order

• The relative order of the two rules to simulate a DEC are 
critical.  

• To test if register r has a zero in it, we, in effect, make 
sure that we cannot execute the rule that is enabled 
when the r-th prime is a factor.  

• If the rules were placed in the wrong order, or if they 
weren't prioritized, we would be non-deterministic

• The relative order of the two rules to simulate a DEC are 
critical.  

• To test if register r has a zero in it, we, in effect, make 
sure that we cannot execute the rule that is enabled 
when the r-th prime is a factor.  

• If the rules were placed in the wrong order, or if they 
weren't prioritized, we would be non-deterministic



Example of orderExample of order

Consider the simple machine to compute r1:=r2 – r3 

(limited)

1. DEC3[2,3]

2. DEC2[1,1]

3. DEC2[4,5]

4. INC1[3]

5.

Consider the simple machine to compute r1:=r2 – r3 

(limited)

1. DEC3[2,3]

2. DEC2[1,1]

3. DEC2[4,5]

4. INC1[3]

5.



Subtraction encodingSubtraction encoding

Start with 3x5y7
7 • 5 x  11 x

7 x  13 x

11 • 3 x  7 x

11 x  7 x

13 • 3 x  17 x

13 x  19 x

17 x  13 • 2 x

19 x  x

Start with 3x5y7
7 • 5 x  11 x

7 x  13 x

11 • 3 x  7 x

11 x  7 x

13 • 3 x  17 x

13 x  19 x

17 x  13 • 2 x

19 x  x



Analysis of problemAnalysis of problem

• If we don't obey the ordering here, we could 
take an input like 35527 and immediately apply 
the second rule (the one that mimics a failed 
decrement).  

• We then have 355213, signifying that we will 
mimic instruction number 3, never having 
subtracted the 2 from 5.  

• Now, we mimic copying r2 to r1 and get 255219 
. 

• We then remove the 19 and have the wrong 
answer.
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• We then remove the 19 and have the wrong 
answer.



FACTOR ≤ RECURSIVEFACTOR ≤ RECURSIVE



Universal machineUniversal machine

• In the process of doing this reduction, we will 

build a Universal Machine.  

• This is a single recursive function with two 

arguments.  The first specifies the factor 

system (encoded) and the second the argument 

to this factor system.  

• The Universal Machine will then simulate the 

given machine on the selected input.

• In the process of doing this reduction, we will 

build a Universal Machine.  

• This is a single recursive function with two 

arguments.  The first specifies the factor 

system (encoded) and the second the argument 

to this factor system.  

• The Universal Machine will then simulate the 

given machine on the selected input.



Encoding FRSEncoding FRS

• Let (n, ((a1,b1), (a2,b2), … ,(an,bn)) be some 

factor replacement system, where (ai,bi) means 

that the i-th rule is

aix  bix

• Encode this machine by the number F,

• Let (n, ((a1,b1), (a2,b2), … ,(an,bn)) be some 

factor replacement system, where (ai,bi) means 

that the i-th rule is

aix  bix

• Encode this machine by the number F,
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SimulationSimulation

• We can determine the rule of F that applies to x by

RULE(F, x) = m z (1 ≤ z ≤ exp(F, 0)+1) [ exp(F, 2*z-1) | x ]

• Note: if x is divisible by ai, and i is the least integer for which 
this is true, then exp(F,2*i-1) = ai where ai is the number of 
prime factors of F involving p2i-1.  Thus, RULE(F,x) = i. 

If x is not divisible by any ai, 1≤i≤n, then x is divisible by 1, and 
RULE(F,x) returns n+1.  That’s why we added p2n+1 p2n+2.

• Given the function RULE(F,x), we can determine NEXT(F,x), 
the number that follows x, when using F, by

NEXT(F, x) = (x // exp(F,2*RULE(F,x)-1)) * exp(F,2*RULE(F,x))

• We can determine the rule of F that applies to x by
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this is true, then exp(F,2*i-1) = ai where ai is the number of 
prime factors of F involving p2i-1.  Thus, RULE(F,x) = i. 

If x is not divisible by any ai, 1≤i≤n, then x is divisible by 1, and 
RULE(F,x) returns n+1.  That’s why we added p2n+1 p2n+2.

• Given the function RULE(F,x), we can determine NEXT(F,x), 
the number that follows x, when using F, by

NEXT(F, x) = (x // exp(F,2*RULE(F,x)-1)) * exp(F,2*RULE(F,x))



SimulationSimulation

• The configurations listed by F, when started on 

x, are
CONFIG(F, x, 0) = x

CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))

• The number of the configuration on which F 

halts is
HALT(F, x) = m y [CONFIG(F, x, y) == CONFIG(F, x, y+1)]

This assumes we converge to a fixed point only if we stop.

• The configurations listed by F, when started on 
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CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))

• The number of the configuration on which F 
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This assumes we converge to a fixed point only if we stop.



SimulationSimulation

• A Universal Machine that simulates an arbitrary 
Factor System, Turing Machine, Register 
Machine, Recursive Function can then be 
defined by 

Univ(F, x) =  exp ( CONFIG ( F, x, HALT ( F, x ) ), 0)

• This assumes that the answer will be returned 
as the exponent of the only even prime, 2.  We 
can fix F for any given Factor System that we 
wish to simulate.  

• A Universal Machine that simulates an arbitrary 
Factor System, Turing Machine, Register 
Machine, Recursive Function can then be 
defined by 

Univ(F, x) =  exp ( CONFIG ( F, x, HALT ( F, x ) ), 0)

• This assumes that the answer will be returned 
as the exponent of the only even prime, 2.  We 
can fix F for any given Factor System that we 
wish to simulate.  



Simplicity of UniversalSimplicity of Universal

• A side result is that every computable 

(recursive) function can be expressed in the 

form

F(x) = G(m y H(x, y))

where G and H are primitive recursive. 

• A side result is that every computable 

(recursive) function can be expressed in the 

form

F(x) = G(m y H(x, y))

where G and H are primitive recursive. 



Universal Machine NotationUniversal Machine Notation

• (n)(x1,…,xn, f) = Univ (f,          )

• We will sometimes adopt the above and also its 

common shorthand

f 
(n)(x1,…,xn) = (n)(x1,…,xn, f) 

and the even shorter version

f(x1,…,xn) = (n)(x1,…,xn, f) 

• We even omit the (n) when n=1, as in

f(x) = (x, f)

• (n)(x1,…,xn, f) = Univ (f,          )

• We will sometimes adopt the above and also its 

common shorthand

f 
(n)(x1,…,xn) = (n)(x1,…,xn, f) 

and the even shorter version

f(x1,…,xn) = (n)(x1,…,xn, f) 

• We even omit the (n) when n=1, as in

f(x) = (x, f)
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SNAP and TERMSNAP and TERM

• Our CONFIG is essentially a SNAP (snapshot)

SNAP(x, f, t) = CONFIG(f, x, t)

• Termination in our notation occurs when we 
reach a fixed point, so

TERM(x, f) = (NEXT(f, x) == x)

• Here, we used a single argument but that can be 
extended as we have already shown using a 
pairing function.

• Our CONFIG is essentially a SNAP (snapshot)

SNAP(x, f, t) = CONFIG(f, x, t)

• Termination in our notation occurs when we 
reach a fixed point, so

TERM(x, f) = (NEXT(f, x) == x)

• Here, we used a single argument but that can be 
extended as we have already shown using a 
pairing function.



STEP PredicateSTEP Predicate

• STP( x1,…,xn, f, t ) is a predicate defined to be 

true iff [f](x1,…,xn) converges in at most t steps.

• STP is primitive recursive since it can be defined 

by

STP( x, f, s ) = TERM(CONFIG(f, x, s), f )

Extending to many arguments is easily done as 

before.

• STP( x1,…,xn, f, t ) is a predicate defined to be 

true iff [f](x1,…,xn) converges in at most t steps.

• STP is primitive recursive since it can be defined 

by

STP( x, f, s ) = TERM(CONFIG(f, x, s), f )

Extending to many arguments is easily done as 

before.



RECURSIVE ≤ TURINGRECURSIVE ≤ TURING



Recall standard TuringRecall standard Turing

• Our notion of standard Turing computability of 
some n-ary function F assumes that the 
machine starts with a tape containing the n 
inputs, x1, … , xn in the form (underscore is 
scanned symbol)

…01x101x20…01xn0…

and ends with

…01x101x20…01xn01y0…

where y = F(x1, … , xn).

• Our notion of standard Turing computability of 
some n-ary function F assumes that the 
machine starts with a tape containing the n 
inputs, x1, … , xn in the form (underscore is 
scanned symbol)

…01x101x20…01xn0…

and ends with

…01x101x20…01xn01y0…

where y = F(x1, … , xn).



The Key IdeasThe Key Ideas

• Every base function is Standard Turing 
Computable (STC)

• The STC functions are closed under

• Composition

• Iteration

• Minimization

• The above then implies that every recursive 
function is STC, thereby completing the 
equivalence proof.

• Every base function is Standard Turing 
Computable (STC)

• The STC functions are closed under

• Composition

• Iteration

• Minimization

• The above then implies that every recursive 
function is STC, thereby completing the 
equivalence proof.



Detailed ProofDetailed Proof

• We actually do not intend to provide the 
details.

• The key is developing a useful set of Turing 
machine components that do such tasks as scan 
left or right over ones looking for the first zero 
(blank) on the tape, make copies of values 
(sequences of ones), circular shift and erase 
values.

• These details can be found as part of the notes 
for the COT5310 course.

• We actually do not intend to provide the 
details.

• The key is developing a useful set of Turing 
machine components that do such tasks as scan 
left or right over ones looking for the first zero 
(blank) on the tape, make copies of values 
(sequences of ones), circular shift and erase 
values.

• These details can be found as part of the notes 
for the COT5310 course.



ConsequencesConsequences

• Theorem: The computational power of S-
Programs, Recursive Functions, Turing Machines, 
Register Machine, and Factor Replacement 
Systems are all equivalent.

• Theorem: Every Recursive Function (Turing 
Computable Function, etc.) can be performed 
with just one unbounded type of iteration.

• Theorem: Universal machines can be constructed 
for each of our formal models of computation.

• Theorem: The computational power of S-
Programs, Recursive Functions, Turing Machines, 
Register Machine, and Factor Replacement 
Systems are all equivalent.

• Theorem: Every Recursive Function (Turing 
Computable Function, etc.) can be performed 
with just one unbounded type of iteration.

• Theorem: Universal machines can be constructed 
for each of our formal models of computation.



UNDECIDABILITYUNDECIDABILITY



Halting Problem (again)Halting Problem (again)

Assume we can decide the Halting Problem.  Then there exists 
some total function Halt such that

1 if [x] (y) 

Halt(x,y) =

0 if [x] (y) 

Here, we have numbered all programs and [x] refers to the x-
th program in this ordering.  Now we can view Halt as a 
mapping from  into  by treating its input as a single 
number representing the pairing of two numbers via the one-
one onto function

pair(x,y) = <x,y> = 2x (2y + 1) – 1, with inverses

x = <z>1 = exp(z+1,1)
y = <z>2 = ((( z + 1 ) // 2 <z>1 ) – 1 ) // 2

Assume we can decide the Halting Problem.  Then there exists 
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Halt(x,y) =

0 if [x] (y) 

Here, we have numbered all programs and [x] refers to the x-
th program in this ordering.  Now we can view Halt as a 
mapping from  into  by treating its input as a single 
number representing the pairing of two numbers via the one-
one onto function

pair(x,y) = <x,y> = 2x (2y + 1) – 1, with inverses

x = <z>1 = exp(z+1,1)
y = <z>2 = ((( z + 1 ) // 2 <z>1 ) – 1 ) // 2



The ContradictionThe Contradiction

Now if Halt exist, then so does Disagree, where

0 if Halt(x,x) = 0, i.e, if [x] (x) 

Disagree(x) =

my (y == y+1) if Halt(x,x) = 1, i.e, if [x] (x) 

Since Disagree is a program from into , Disagree can be reasoned 
about by Halt.  Let d be such that Disagree = [d], then

Disagree(d) is defined  Halt(d,d) = 0 
 [d](d) is undefined 

 Disagree(d) is undefined

But this means that Disagree contradicts its own existence.  Since 
every step we took was constructive, except for the original 
assumption, we must presume that the original assumption was in 
error.  Thus, the Halting Problem is not solvable.
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error.  Thus, the Halting Problem is not solvable.



RECURSIVELY ENUMERABLE

AND SEMI-DECIDABLE SETS

RECURSIVELY ENUMERABLE

AND SEMI-DECIDABLE SETS



Definition of reDefinition of re

• S   is re iff S =  or there exists a totally 
computable function f where 

S = { y | x f(x) == y }

• S   is semi-decidable iff there exists a 
partially computable function g where

S = { x   | g(x) }

• We will prove these equivalent. Actually, f can 
be a primitive recursive function.

• S   is re iff S =  or there exists a totally 
computable function f where 

S = { y | x f(x) == y }
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partially computable function g where

S = { x   | g(x) }

• We will prove these equivalent. Actually, f can 
be a primitive recursive function.



semi-decidable implies resemi-decidable implies re

Theorem: 
Let S be semi-decided by GS. Assume GS is the gS

function in our enumeration of effective 
procedures.  If S = Ø  then S is re by definition, so 
we will assume wlog that there is some a  S. 
Define the enumerating algorithm FS by

FS(<x,t>) = x * STP(x, gs, t ) 

+ a * (1-STP(x, gs, t ))

Note: FS is primitive recursive and it enumerates 
every value in S infinitely often. 

Theorem: 
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Note: FS is primitive recursive and it enumerates 
every value in S infinitely often. 



re implies semi-decidablere implies semi-decidable

Theorem: 
By definition, S is re iff S == Ø  or there exists an 
algorithm FS, over the natural numbers , whose 
range is exactly S. Define

my [y == y+1] if S == Ø  

S(x) =

signum((my[FS(y)==x])+1), otherwise

This achieves our result as the domain of S is 
the range of FS, or empty if S == Ø .

Theorem: 
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the range of FS, or empty if S == Ø .



Domain of a procedureDomain of a procedure

Corollary: S is re/semi-decidable iff S is the domain 
/ range of a partial recursive predicate FS.

Proof: The predicate S we defined earlier to semi-
decide S, given its enumerating function, can be 
easily adapted to have this property.

my [y == y+1] if S == Ø  

S(x) =

x*signum((my[FS(y)==x])+1), otherwise

Corollary: S is re/semi-decidable iff S is the domain 
/ range of a partial recursive predicate FS.

Proof: The predicate S we defined earlier to semi-
decide S, given its enumerating function, can be 
easily adapted to have this property.

my [y == y+1] if S == Ø  

S(x) =

x*signum((my[FS(y)==x])+1), otherwise



Recursive implies reRecursive implies re

Theorem: Recursive implies re.

Proof: S is recursive implies there is a total 

recursive function fS such that

S = { x   | fs(x) == 1 }

Define gs(x) = my (fs(x) == 1)

Clearly 

dom(gs) = {x   | gs(x)} 

= { x   | fs(x) == 1 } 

= S
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= { x   | fs(x) == 1 } 

= S



Related resultsRelated results

Theorem: S is re iff S is semi-decidable.

Proof: That’s what we just proved.

Theorem: S and ~S are both re (semi-decidable)
iff S (equivalently ~S) is recursive (decidable).

Proof: Let fS semi-decide S and fS’ semi-decide ~S. We 
can decide S by gS

gS(x) = STP(x, fS, mt (STP(x,fS,t) || STP(x,fS’ t)) 

~S is decided by gS’(x) = ~gS(x) = 1- gS(x).

The other direction is immediate since, if S is 
decidable then ~S is decidable (just complement gS) 
and hence they are both re (semi-decidable).
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and hence they are both re (semi-decidable).



Enumeration theoremEnumeration theorem

• Define
Wn = { x   | (x,n) }

• Theorem: A set B is re iff there exists an n such 
that 
B = Wn.
Proof: Follows from definition of (x,n).

• This gives us a way to enumerate the recursively 
enumerable sets.

• Note: We showed earlier (pages 216-218) that we 
cannot enumerate set of the recursive sets 
(TOTAL).
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cannot enumerate set of the recursive sets 
(TOTAL).



The Set KThe Set K

• K = { n   | n  Wn }

• Note that 

n  Wn  (n,n)  HALT(n,n)

• Thus, K is the set consisting of the indices of 

each program that halts when given its own index

• K can be semi-decided by the HALT predicate 

above, so it is re.
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above, so it is re.



K is not recursiveK is not recursive

Theorem: We can prove this by showing ~K is not 

re.

Proof: If ~K is re then ~K = Wi, for some i.

However, this is a contradiction since

i  K  i  Wi  i  ~K  i  K
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The set K0The set K0

• K0 = { <n,i>   | n  Wi }

• Note that 

n  Wi  (n,i)  HALT(n,i)

• Thus, membership in K0 is just the Halting 

Problem.

• As we noted earlier, K0 is undecidable, but can 

be semi-decided by the HALT predicate.
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re characterizationsre characterizations

Theorem: Suppose S  then the following are 

equivalent:

1. S is re

2. S is the range of a primitive rec. function

3. S is the range of a recursive function

4. S is the range of a partial rec. function

5. S is the domain of a partial rec. function
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INSIGHTSINSIGHTS



Non-re nature of algorithmsNon-re nature of algorithms

• No generative system (e.g., grammar) can 

produce descriptions of all and only algorithms

• No parsing system (even one that rejects by 

divergence) can accept all and only algorithms

• Of course, if you buy Church’s Theorem, the 

set of all procedures can be generated. In fact, 

we can build an algorithmic acceptor of such 

programs. 
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Many unbounded waysMany unbounded ways

• How do you achieve divergence, i.e., what are 

the various means of unbounded computation 

in each of our models?

• GOTO: Turing Machines and Register Machines

• Minimization: Recursive Functions

• Why not primitive recursion/iteration?

• Recursive evaluation: Factor Replacement

• Fixed Point: Ordered Petri Nets,  

(Ordered) Factor Replacement Systems
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Non-determinismNon-determinism

• It sometimes doesn’t matter

• Turing Machines, Finite State Automata, 

Linear Bounded Automata

• It sometimes helps

• Push Down Automata

• It sometimes hinders

• Factor Replacement Systems, Petri Nets
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Testing for absenceTesting for absence

• (Unordered) Petri Nets and Unordered Factor 

Replacement Systems are incomplete because 

they cannot differentiate absence (zero 

markers, zero value) from presence, although 

they can test for presence.

• Ordered versions are complete and can 

differentiate some from none.

• However, not everything about unordered 

systems is decidable – e.g., equivalence of 

such systems is not decidable.
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USING QUANTIFICATION TO SET 

AN UPPER BOUND ON 

COMPLEXITY OF SETS

USING QUANTIFICATION TO SET 

AN UPPER BOUND ON 
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Quantification #1Quantification #1

• S is decidable iff there exists an algorithm cS
(called S’s characteristic function) such that
x  S  cS(x)
This is just the definition of decidable.

• S is re iff there exists an algorithm AS where 
x  S  t AS(x,t)
This is clear since, if gS is the index of procedure 
S defined earlier that semi-decides S then
x  S  t STP(x, gS, t)
So, AS(x,t) = STPgS( x, t ), where STPgS is the STP
function with its second argument fixed.
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Quantification #2Quantification #2

• S is re iff there exists an algorithm AS such that
x  S  t AS(x,t)
This is clear since, if gS is the index of procedure S
that semi-decides S, then
x  S  ~t STP(x, gS, t)  t ~STP(x, gS, t)
So, AS(x,t) = ~STPgS( x, t ), where STPgS is the STP
function with its second argument fixed. 

• Note that this works even if S is recursive (decidable). 
The important thing there is that if S is recursive then 
it may be viewed in two normal forms, one with 
existential quantification and the other with universal 
quantification.

• The complement of an re set is co-re. A set is 
recursive (decidable) iff it is both re and co-re.
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Quantification #3Quantification #3

• The Uniform Halting Problem (set TOTAL) was 

already shown to be non-re. It turns out its 

complement is also not re. We can get a clue of 

this by seeing that TOTAL requires an alternation 

of quantifiers. Specifically,

f  TOTAL xt ( STP( x, f, t ) )

and this is the minimum quantification we can 

use, given that the quantified predicate is 

recursive.
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REDUCIBILITYREDUCIBILITY



Diagonalization is a bummerDiagonalization is a bummer

• The issues with diagonalization are that it is tedious and 
is applicable as a proof of undecidability or non-re-ness
for only a small subset of the problems that interest us.

• Thus, we will now seek to use reduction wherever 
possible.

• To show a set, S, is undecidable, we can show it is as 
least as hard as the set K0. That is, K0 ≤ S. Here the 
mapping used in the reduction does not need to run in 
polynomial time, it just needs to be an algorithm. 

• To show a set, S, is not re, we can show it is as least as 
hard as the set TOTAL (the set of algorithms). That is, 
TOTAL ≤ S. 
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Reduction example #1Reduction example #1

• We can show that the set K0 is no harder than the 
set TOTAL.  Since we already know that K0 is 
unsolvable, we would now know that TOTAL is 
also unsolvable.  We cannot reduce in the other 
direction since TOTAL is in fact harder than K0.

• Let F be some arbitrary effective procedure and 
let x be some arbitrary natural number.

• Define Fx(y) = F(x), for all  y  

• Then Fx is an algorithm if and only if F halts on x. 

• Thus, K0 ≤ TOTAL, and so a solution to 
membership in TOTAL would provide a solution 
to K0, which we know is not possible.
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to K0, which we know is not possible.



Reduction example #2Reduction example #2

• We can show that the set TOTAL is no harder 
than the set ZERO = { f | x f(x) = 0 }.  Since 
we already know that TOTAL is non-re, we would 
now know that ZERO is also non-re. 

• Let F be some arbitrary effective procedure.

• Define fF(y) = F(y) – F(y), for all  y  

• Then fF is an algorithm that produces 0 for all 
input (is in the set ZERO) if and only if F halts on 
all input y. Thus, TOTAL ≤ ZERO.

• Thus a semi-decision procedure for ZERO would 
provide one for TOTAL, a set already known to 
be non-re.
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RICE’S THEOREM:

ALL NON-TRIVIAL PROBLEMS 

ABOUT THE I/O BEHAVIORS OF 

FUNCTIONS ARE UNDECIDABLE
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Trivial problemsTrivial problems

• Let P be some set of re languages, e.g. P = { L | 
L is infinite re }.  We call P a property of re 
languages since it divides the class of all re 
languages into two subsets, those having property 
P and those not having property P.  

• P is said to be trivial if it is empty (this is not the 
same as saying P contains the empty set) or 
contains all re languages.  Trivial properties are 
not very discriminating in the way they divide up 
the re languages (all or nothing).
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Rice’s TheoremRice’s Theorem

Rice’s Theorem: Let P be some non-trivial property 
of the re languages. Then

LP = { x | dom [x] is in P (has property P) }

is undecidable.  Note that membership in LP is 
based purely on the domain of a function, not on 
any aspect of its implementation.
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based purely on the domain of a function, not on 
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Rice’s Proof -1Rice’s Proof -1

Proof:  We will assume, wlog, that P does not 
contain Ø .  If it does we switch our attention to 
the complement of P.  Now, since P is non-
trivial, there exists some language L with 
property P.  Let [r] be a recursive function whose 
domain is L (r is the index of a semi-decision 
procedure for L).  Suppose P were decidable.  We 
will use this decision procedure and the existence 
of r to decide K0.  
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Rice’s Proof -2Rice’s Proof -2

First we define a function Fr,x,y for r and each 
function [x] and input y as follows.

Fr,x,y( z ) = HALT( x , y ) + HALT( r , z )

The domain of this function is L if [x](y) 
converges, otherwise it’s Ø .  Now if we can 
determine membership in LP , we can use this 
algorithm to decide K0 merely by applying it to 
Fr,x,y.  An answer as to whether or not Fr,x,y has 
property P is also the correct answer as to 
whether or not [x](y) converges.  
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Rice’s Proof -3Rice’s Proof -3

Thus, there can be no decision procedure for P.  
And consequently, there can be no decision 
procedure for any non-trivial property of re 
languages.

Note: This does not apply if P is trivial, nor does 
it apply if P can differentiate indices that 
converge for precisely the same values.
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I/O propertyI/O property

• An I/O property, P, of indices of recursive function is 
one that cannot differentiate indices of functions that 
produce precisely the same value for each input. 

• This means that if two indices, f and g, are such that 
f and  g converge on the same inputs and, when 
they converge, produce precisely the same result, 
then both f and g must have property P, or neither 
one has this property.

• Note that any I/O property of recursive function 
indices also defines a property of re languages, since 
the domains of functions with the same I/O behavior 
are equal. However, not all properties of re languages 
are I/O properties. 
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Strong Rice’s TheoremStrong Rice’s Theorem

Rice’s Theorem: Let P be some non-trivial I/O 
property of the indices of recursive functions. 
Then

SP = { x | x has property P) }

is undecidable.  Note that membership in SP is 
based purely on the input/output behavior of a 
function, not on any aspect of its 
implementation.
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Strong Rice’s ProofStrong Rice’s Proof

• Given x, y, r, where r is in the set SP.= {f | f

has property P}, define the function 

fx,y,r(z) = x(y) - x(y) + r(z). 

• fx,y,r(z) = r(z) if x(y) ; =  if x(y) . 

Thus, x(y) iff fx,y,r has property P, and so 

K0  SP.
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Picture ProofsPicture Proofs
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ProblemsProblems

1. Let INF = { f | domain(f) is infinite } and NE = { f | there is a 
y such that f(y) converges}. Show that NE ≤ INF. Present the 
mapping and then explain why it works as desired. To do this, 
define a total recursive function g, such that index f is in NE iff
g(f) is in INF. Be sure to address both cases (f in & f not in)

2. Is INF ≤ NE? If you say yes, show it. If you say no, give a 
convincing argument that INF is more complex than NE.

3. What, if anything, does Rice’s Theorem have to say about the 
following? In each case explain by either showing that all of 
Rice’s conditions are met or convincingly that at least one is 
not met.

a.) RANGE = { f | there is a g [ range( g ) = domain( f ) ] }

b.) PRIMITIVE = { f | f’s description uses no unbounded mu 
operations }

c.) FINITE = { f | domain(f) is finite }
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GRAMMARSGRAMMARS



Post CorrespondencePost Correspondence

• Many problems related to grammars can be shown to be no 
more complex than the Post Correspondence Problem 
(PCP).  

• Each instance of PCP is denoted: Given n>0,  a finite 
alphabet, and two n-tuples of words  
( x1, … , xn ), ( y1, … , yn ) over , 
does there exist a sequence i1, … , ik , k>0, 1 ≤ ij ≤ n, such 
that  xi1

… xik
= yi1

… yik
?  

• Example of PCP: 
n = 3,  = { a , b }, 
x = ( a b a , b b , a ), y = ( b a b , b , b a a ).
Solution 2 , 3, 1 , 2    
b b a   a b a   b b =   b   b a a b a b   b
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PCP is undecidablePCP is undecidable

• We will not prove this here, but the essential ideas is that 
we can embed computational traces in instances of PCP, 
such that a solution exists if and only if the computation 
terminates.

• Such a construction shows that the Halting Problem is 
reducible to PCP and so PCP must also be undecidable.

• As we will see PCP can often be reduced to problems about 
grammars, showing those problems to also be undecidable.
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Ambiguity of CFGAmbiguity of CFG

• Problem to determine if an arbitrary CFG is 
ambiguous 

S  A  |  B

A  xi A [i]  |   xi [i] 1 ≤ i ≤ n

B  yi B [i]  |   yi [i] 1 ≤ i ≤ n

A * xi1
… xik

[ik] … [i1] k > 0

B * yi1
… yik

[ik] … [i1] k > 0

• Ambiguous if and only if there is a solution to this 
PCP instance. 
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Intersection of CFGsIntersection of CFGs

• Problem to determine if arbitrary CFG’s define 
overlapping languages

• Just take the grammar consisting of all the A-
rules from previous, and a second grammar 
consisting of all the B-rules.  Call the languages 
generated by these grammars, LA and LB. 
LA  LB ≠  Ø, if and only there is a solution to this 
PCP instance.
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Non-emptiness of CSLNon-emptiness of CSL

S  xi S yi
R | xi T yi

R 1 ≤ i ≤ n

a T a  * T *

* a  a *

a *  * a

T  *

• Our only terminal is *.  We get strings of form 

*
2j+1, for some j’s if and only if there is a solution 

to this PCP instance.
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to this PCP instance.
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• A trace of a machine, M, is a word of the form

# X0 # X1 # X2 # X3 # … # Xk-1 # Xk #

where Xi  Xi+1 0 ≤ i < k, X0 is a starting 
configuration and Xk is a terminating 
configuration.  

• We allow some laxness, where the configurations 
might be encoded in a convenient manner. For 
example we might use reversals on the odd 
strings so the relation between each pair is 
context free.   
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• The set of on step traces of a machine, M, is 

{ X0 # X1 }

where X0  X1

• If we are considering Turing Machines, we use
{ X0 # X1

R }

where X0  X1 and X1
R is the reversal of X1

• By using the reversal we make the language no 
harder than W # WR, which is a CFL.
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L1 =  L( G1 ) = { #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }

where Y2i  Y2i+1 , 0 ≤ i ≤ j.  

This checks the even/odd steps of an even length 
computation.

But, L2 =  L( G2 ) = {#X0#X1#X2#X3#X4 #…# X2k-1#X2k#Z0#}

where X2i-1  X2i , 1 ≤ i ≤ k.  

This checks the odd/steps of an even length computation.

L = L1  L2 describes correct traces (checked even/odd and 
odd/even). If Z0 is chosen to be a terminal configuration, then 
these are terminating traces. If we pick a fixed X0, then X0 is a 
halting configuration iff L is non-empty. This is an 
independent proof of the undecidability of the non-empty 
intersection problem for CFGs and the non-emptiness problem 
for CSGs.
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where X2i-1  X2i , 1 ≤ i ≤ k and Z is a unique halting configuration.

This checks the odd/steps of an even length computation, and includes 
an extra copy of the starting number prior to its $.

Now, consider the quotient of L2 / L1 .  The only ways a member of L1 
can match a final substring in L2 is to line up the $ signs.  But then 
they serve to check out the validity and termination of the 
computation.  Moreover, the quotient leaves only the starting point 
(the one on which the machine halts.)  Thus,

L2 / L1  = { X0 | the system halts}. 

Since deciding the members of an re set is in general undecidable, we 
have shown that membership in the quotient of two CFLs is also 
undecidable.
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L = *?L = *?

• If L is regular, then L = *? is decidable

• Easy – Reduce to minimal deterministic FSA, AL

accepting L. L = * iff AL is a one-state machine, 

whose only state is accepting

• If L is context free, then L = *? is undecidable

• Just produce the complement of a Turing Machine’s 

valid terminating traces
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Let G be a context free grammar.

Consider L(G)n

Question1: Is L(G) = L(G)2?

Question2: Is L(G)n = L(G)n+1, for some finite n>0?

These questions are both undecidable.

Think about why question1 is as hard as whether 
or not L(G) is *. 

Question2 requires much more thought.
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• The problem to determine if L = * is Turing 

reducible to the problem to decide if 

L  L  L, so long as L is selected from a class of 

languages C over the alphabet  for which we 

can decide if   {}  L. 

• Corollary 1: 

The problem “is L  L = L, for L context free or 

context sensitive?” is undecidable
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• Question: Does L  L get us anything new?

• i.e., Is L  L = L?

• Membership in a CSL is decidable.

• Claim is that L = * iff

(1)   {}  L ; and

(2) L  L = L 

• Clearly, if L = * then (1) and (2) trivially hold.

• Conversely, we have *  L*=  n0 Ln  L

• first inclusion follows from (1); second from (2)
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• The problem to determine, for an arbitrary context free 
language L, if there exist a finite n such that Ln = Ln+1 is 
undecidable.

• L1 = { C1# C2
R $ | 

C1, C2 are configurations },

• L2 = { C1#C2
R$C3#C4

R … $C2k-1#C2k
R$ | where k  1 and, 

for some i, 1  i < 2k, Ci M Ci+1 is false },

• L = L1  L2  {}.
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2 …   L1

n  L2. 

• Analyzing L1 and L2 we see that L1
n  L2  Ø  just in case 

there is a word C1 # C2
R $ C3 # C4

R … $ C2n-1 # C2n
R $ in 

L1
n that is not also in L2. 

• But then there is some valid trace of length 2n. 

• L has the finite power property iff M executes in 
constant time.
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Constant TimeConstant Time

• CTime = { M | K [ M halts in at most K steps 

independent of its starting configuration ] }

• RT cannot be shown undecidable by Rice’s 

Theorem as it breaks property 2

• Choose M1 and M2 to each Standard Turing Compute 

(STC) ZERO

• M1 is R (move right to end on a zero)

• M2 is L R R (time is dependent on argument)

• M1 is in CTime; M2 is not , but they have same I/O 

behavior, so CTime does not adhere to property 2

• CTime = { M | K [ M halts in at most K steps 

independent of its starting configuration ] }

• RT cannot be shown undecidable by Rice’s 

Theorem as it breaks property 2

• Choose M1 and M2 to each Standard Turing Compute 

(STC) ZERO

• M1 is R (move right to end on a zero)

• M2 is L R R (time is dependent on argument)

• M1 is in CTime; M2 is not , but they have same I/O 

behavior, so CTime does not adhere to property 2



Quantifier analysisQuantifier analysis

• CTime = { M | K C [ STP(C, M, K) ] }

• This would appear to imply that CTime is not 

even re. However, a TM that only runs for K 

steps can only scan at most K distinct tape 

symbols. Thus, if we use unary notation, CTime

can be expressed

• CTime = { M | K C|C|≤K [ STP(C, M, K) ] }

• We can dovetail over the set of all TMs, M, and 

all K, listing those M that halt in constant time.
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