
Computability Theory

and

Complexity Theory

COT 6410

Computability Theory

and

Complexity Theory

COT 6410

Computability Theory

The study of what

can/cannot be done via

purely mechanical

means.

Computability Theory

The study of what

can/cannot be done via

purely mechanical

means.

Complexity Theory

The study of what

can/cannot be done

well via purely

mechanical means.

Complexity Theory

The study of what

can/cannot be done

well via purely

mechanical means.

What is it that we are talking about?

Solving problems algorithmically!

What is it that we are talking about?

Solving problems algorithmically!

A Problem:
• Set of input data items (set of input

"instances")

• A set of rules or relationships between data
and other values

• A question to be answered or set of values to
be obtained

A Problem:
• Set of input data items (set of input

"instances")

• A set of rules or relationships between data
and other values

• A question to be answered or set of values to
be obtained

{ Examples: Search a list for a key,

SubsetSum, Graph Coloring }

{ Examples: Search a list for a key,

SubsetSum, Graph Coloring }

Each instance has an 'answer.'

An instance’s answer is the solution of the
instance - it is not the solution of the
problem.

A solution of the problem is a computational
procedure that finds the answer of any
instance given to it - an 'algorithm.'

Each instance has an 'answer.'

An instance’s answer is the solution of the
instance - it is not the solution of the
problem.

A solution of the problem is a computational
procedure that finds the answer of any
instance given to it - an 'algorithm.'

A Procedure (or Program):

A finite set of operations (statements) such that

• Each statement is formed from a predetermined

finite set of symbols and is constrained by some set

of language syntax rules.

• The current state of the machine model is finitely

presentable.

• The semantic rules of the language specify the

effects of the operations on the machine‟s state and

the order in which these operations are executed.

• If the procedure halts when started on some input,

it produces the correct answer to this given instance

of the problem.

A Procedure (or Program):

A finite set of operations (statements) such that

• Each statement is formed from a predetermined

finite set of symbols and is constrained by some set

of language syntax rules.

• The current state of the machine model is finitely

presentable.

• The semantic rules of the language specify the

effects of the operations on the machine‟s state and

the order in which these operations are executed.

• If the procedure halts when started on some input,

it produces the correct answer to this given instance

of the problem.

An Algorithm:

A procedure that

• Correctly solves any instance of a given problem.

• Completes execution in a finite number of steps

no matter what input it receives.

An Algorithm:

A procedure that

• Correctly solves any instance of a given problem.

• Completes execution in a finite number of steps

no matter what input it receives.

{ Example algorithm:

Linearly search a finite list for a key;

If key is found, answer “Yes”;

If key is not found, answer “No”; }

{ Example procedure:

Linearly search a finite list for a key;

If key is found, answer “Yes”;

If key is not found, try this strategy again; }

{ Example algorithm:

Linearly search a finite list for a key;

If key is found, answer “Yes”;

If key is not found, answer “No”; }

{ Example procedure:

Linearly search a finite list for a key;

If key is found, answer “Yes”;

If key is not found, try this strategy again; }

Procedures versus AlgorithmsProcedures versus Algorithms

Looking back at our approaches to “find a key in a finite

list,” we see that the algorithm always halts and always

reports the correct answer. In contrast, the procedure does

not halt in some cases, but never lies.

What this illustrates is the essential distinction between

and algorithm and a procedure – algorithms always halt in

some finite number of steps, whereas procedures may run

on forever for certain inputs. A particularly silly procedure

that never lies is a program that never halts for any input.

Looking back at our approaches to “find a key in a finite

list,” we see that the algorithm always halts and always

reports the correct answer. In contrast, the procedure does

not halt in some cases, but never lies.

What this illustrates is the essential distinction between

and algorithm and a procedure – algorithms always halt in

some finite number of steps, whereas procedures may run

on forever for certain inputs. A particularly silly procedure

that never lies is a program that never halts for any input.

Notion of "Solvable"Notion of "Solvable"

A problem is solvable if there exists an algorithm that

solves it (provides the correct answer for each instance).

The fact that a problem is solvable or, equivalently,

decidable does not mean it is solved. To be solved,

someone must have actually produced a correct algorithm.

The distinction between solvable and solved is subtle.

Solvable is an innate property – an unsolvable problem can

never become solved, but a solvable one may or may not be

solved in an individual’s lifetime.

A problem is solvable if there exists an algorithm that

solves it (provides the correct answer for each instance).

The fact that a problem is solvable or, equivalently,

decidable does not mean it is solved. To be solved,

someone must have actually produced a correct algorithm.

The distinction between solvable and solved is subtle.

Solvable is an innate property – an unsolvable problem can

never become solved, but a solvable one may or may not be

solved in an individual’s lifetime.

An Old Solvable ProblemAn Old Solvable Problem

Does there exist a set of positive whole numbers, a, b, c

and an n>2 such that an+bn = cn?

In 1637, the French mathematician, Pierre de Fermat,

claimed that the answer to this question is “No”. This was

called Fermat’s Last Theorem, despite the fact that he

never produced a proof of its correctness. While this

problem remained unsolved until Fermat’s claim was

verified in 1995 by Andrew Wiles, the problem was always

solvable, as it had just one question, so the solution was

either “Yes” or “No”, and an algorithm exists for each of

these candidate solutions.

Does there exist a set of positive whole numbers, a, b, c

and an n>2 such that an+bn = cn?

In 1637, the French mathematician, Pierre de Fermat,

claimed that the answer to this question is “No”. This was

called Fermat’s Last Theorem, despite the fact that he

never produced a proof of its correctness. While this

problem remained unsolved until Fermat’s claim was

verified in 1995 by Andrew Wiles, the problem was always

solvable, as it had just one question, so the solution was

either “Yes” or “No”, and an algorithm exists for each of

these candidate solutions.

A CS Grand Challenge ProblemA CS Grand Challenge Problem

Does P=NP?

There are many equivalent ways to describe P and NP. For

now, we will use the following. P is the set of decision

problems (those whose instances have “Yes”/ “No”

answers) that can be solved in polynomial time on a

deterministic computer (no concurrency allowed). NP is the

set of decision problems that can be solved in polynomial

time on a non-deterministic computer (equivalently one

that can spawn parallel threads). Again, as “Does P=NP?”

has just one question, it is solvable, we just don’t yet know

which solution, “Yes” or “No”, is the correct one.

Does P=NP?

There are many equivalent ways to describe P and NP. For

now, we will use the following. P is the set of decision

problems (those whose instances have “Yes”/ “No”

answers) that can be solved in polynomial time on a

deterministic computer (no concurrency allowed). NP is the

set of decision problems that can be solved in polynomial

time on a non-deterministic computer (equivalently one

that can spawn parallel threads). Again, as “Does P=NP?”

has just one question, it is solvable, we just don’t yet know

which solution, “Yes” or “No”, is the correct one.

Computability vs ComplexityComputability vs Complexity

Computability focuses on the distinction between solvable

and unsolvable problems, providing tools that may be used

to identify unsolvable problems – ones that can never be

solved by mechanical (computational) means. Surprisingly,

unsolvable problems are everywhere as you will see.

In contrast, complexity theory focuses on how hard it is to

solve problems that are known to be solvable. We will

address complexity theory for the first part of this course,

returning to computability theory later in the semester.

Computability focuses on the distinction between solvable

and unsolvable problems, providing tools that may be used

to identify unsolvable problems – ones that can never be

solved by mechanical (computational) means. Surprisingly,

unsolvable problems are everywhere as you will see.

In contrast, complexity theory focuses on how hard it is to

solve problems that are known to be solvable. We will

address complexity theory for the first part of this course,

returning to computability theory later in the semester.

Notion of "Order"Notion of "Order"

Throughout the complexity portion of this course, we will

be interested in how long an algorithm takes on the

instances of some arbitrary "size" n. Recognizing that

different times can be recorded for two instance of size n,

we only ask about the worst case.

We also understand that different languages, computers,

and even skill of the implementer can alter the "running

time."

Throughout the complexity portion of this course, we will

be interested in how long an algorithm takes on the

instances of some arbitrary "size" n. Recognizing that

different times can be recorded for two instance of size n,

we only ask about the worst case.

We also understand that different languages, computers,

and even skill of the implementer can alter the "running

time."

Notion of "Order"Notion of "Order"

As a result, we really can never know "exactly" how

long anything takes.

So, we usually settle for a substitute function, and say

the function we are trying to measure is "of the order

of" this new substitute function.

As a result, we really can never know "exactly" how

long anything takes.

So, we usually settle for a substitute function, and say

the function we are trying to measure is "of the order

of" this new substitute function.

Notion of "Order"Notion of "Order"

"Order" is something we use to describe an upper
bound upon the size of something else (in our case,
time, but it can apply to almost anything).

For example, let f(n) and g(n) be two functions. We say
"f(n) is order g(n)" when there exists constants c and N
such that f(n) ≤ cg(n) for all n ≥ N.

What this is saying is that when n is 'large enough,' f(n)
is bounded above by a constant multiple of g(n).

"Order" is something we use to describe an upper
bound upon the size of something else (in our case,
time, but it can apply to almost anything).

For example, let f(n) and g(n) be two functions. We say
"f(n) is order g(n)" when there exists constants c and N
such that f(n) ≤ cg(n) for all n ≥ N.

What this is saying is that when n is 'large enough,' f(n)
is bounded above by a constant multiple of g(n).

Notion of "Order"Notion of "Order"

This is particularly useful when f(n) is not known
precisely, is complicated to compute, and/or difficult
to use. We can, by this, replace f(n) by g(n) and know
we aren't "off too far."

We say f(n) is "in the order of g(n)" or, simply, f(n) 
O(g(n)).

Usually, g(n) is a simple function, like nlog(n), n3, 2n,
etc., that's easy to understand and use.

This is particularly useful when f(n) is not known
precisely, is complicated to compute, and/or difficult
to use. We can, by this, replace f(n) by g(n) and know
we aren't "off too far."

We say f(n) is "in the order of g(n)" or, simply, f(n) 
O(g(n)).

Usually, g(n) is a simple function, like nlog(n), n3, 2n,
etc., that's easy to understand and use.

Order of an Algorithm: The maximum

number of steps required to find the answer

to any instance of size n, for any arbitrary

value of n.

For example, if an algorithm requires at

most 6n2+3n–6 steps on any instance of size

n, we say it is "order n2" or, simply, O(n2).

Order of an Algorithm: The maximum

number of steps required to find the answer

to any instance of size n, for any arbitrary

value of n.

For example, if an algorithm requires at

most 6n2+3n–6 steps on any instance of size

n, we say it is "order n2" or, simply, O(n2).

Slower/Faster/FastestSlower/Faster/Fastest

Let the order of algorithm X be in O(fx(n)).

Then, for algorithms A and B and their respective order
functions, fA(n) and fB(n), consider the limit of fA(n)/fB(n) as n
goes to infinity.

If this value is

0 A is faster than B

constant A and B are "equally slow/fast"

infinity A is slower than B.

Let the order of algorithm X be in O(fx(n)).

Then, for algorithms A and B and their respective order
functions, fA(n) and fB(n), consider the limit of fA(n)/fB(n) as n
goes to infinity.

If this value is

0 A is faster than B

constant A and B are "equally slow/fast"

infinity A is slower than B.

Order of a Problem: The order of the fastest

algorithm that can ever solve this problem.

(Also known as the "Complexity" of the

problem.)

Often difficult to determine, since this allows for

algorithms not yet discovered.

Order of a Problem: The order of the fastest

algorithm that can ever solve this problem.

(Also known as the "Complexity" of the

problem.)

Often difficult to determine, since this allows for

algorithms not yet discovered.

Two types of problems are of particular interest:

Decision Problems ("Yes/No" answers)

Optimization problems ("best" answers)

(there are other types)

Two types of problems are of particular interest:

Decision Problems ("Yes/No" answers)

Optimization problems ("best" answers)

(there are other types)

{Examples: Vertex Cover, Multiprocessor

Scheduling, Graph Coloring}

{Examples: Vertex Cover, Multiprocessor

Scheduling, Graph Coloring}

Interestingly, these usually come in pairs

a decision problem, and

an optimization problem.

Equally easy, or equally difficult, to solve.

Both can be solved in polynomial time, or both
require exponential time.

Interestingly, these usually come in pairs

a decision problem, and

an optimization problem.

Equally easy, or equally difficult, to solve.

Both can be solved in polynomial time, or both
require exponential time.

{Example: Vertex Cover,

Multiprocessor Scheduling}

{Example: Vertex Cover,

Multiprocessor Scheduling}

A Word about 'time'A Word about 'time'

An algorithm for a problem is said to be polynomial if
there exists integers k and N such that t(n), the
maximum number of steps required on any instance of
size n, is at most nk, for all n ≥ N.

Otherwise, we say the algorithm is exponential.
Usually, this is interpreted to mean t(n) ≥ cn for an
infinite set of size n instances, and some constant c > 1
(often, we simply use c = 2).

An algorithm for a problem is said to be polynomial if
there exists integers k and N such that t(n), the
maximum number of steps required on any instance of
size n, is at most nk, for all n ≥ N.

Otherwise, we say the algorithm is exponential.
Usually, this is interpreted to mean t(n) ≥ cn for an
infinite set of size n instances, and some constant c > 1
(often, we simply use c = 2).

A word about "Words"A word about "Words"

Normally, when we say a problem is "easy" we mean
that it has a polynomial algorithm.

But, when we say a problem is "hard" or “apparently
hard" we usually mean no polynomial algorithm is
known, and none seems likely.

It is possible a polynomial algorithm exists for
"hard" problems, but the evidence seems to indicate
otherwise.

Normally, when we say a problem is "easy" we mean
that it has a polynomial algorithm.

But, when we say a problem is "hard" or “apparently
hard" we usually mean no polynomial algorithm is
known, and none seems likely.

It is possible a polynomial algorithm exists for
"hard" problems, but the evidence seems to indicate
otherwise.

A Word about ProblemsA Word about Problems

Problems we will discuss are usually

"abstractions" of real problems. That is, to the

extent possible, non essential features have

been removed, others have been simplified

and given variable names, relationships have

been replaced with mathematical equations

and/or inequalities, etc.

Problems we will discuss are usually

"abstractions" of real problems. That is, to the

extent possible, non essential features have

been removed, others have been simplified

and given variable names, relationships have

been replaced with mathematical equations

and/or inequalities, etc.

A Word about ProblemsA Word about Problems

This process, Mathematical Modeling, is a field of study

in itself, but not our interest here.

On the other hand, we sometimes conjure up artificial

problems to put a little "reality" into our work. This

results in what some call "toy problems."

If a toy problem is hard, then the real problem is

probably harder.

This process, Mathematical Modeling, is a field of study

in itself, but not our interest here.

On the other hand, we sometimes conjure up artificial

problems to put a little "reality" into our work. This

results in what some call "toy problems."

If a toy problem is hard, then the real problem is

probably harder.

Some problems have no algorithm (e. g., Halting
Problem.)

No mechanical/logical procedure will ever solve

all instances of any such problem!!

Some problems have only exponential algorithms
(provably so – they must take at least order 2n steps)
So far, only a few have been proven, but there may be
many. We suspect so.

Some problems have no algorithm (e. g., Halting
Problem.)

No mechanical/logical procedure will ever solve

all instances of any such problem!!

Some problems have only exponential algorithms
(provably so – they must take at least order 2n steps)
So far, only a few have been proven, but there may be
many. We suspect so.

About Problems

Many problems have polynomial algorithms (Fortunately).

Why fortunately? Because, most exponential algorithms are

essentially useless for problem instances with n much larger than

50 or 60. We have algorithms for them, but the best of these will

take 100's of years to run, even on much faster computers than

we now envision.

Many problems have polynomial algorithms (Fortunately).

Why fortunately? Because, most exponential algorithms are

essentially useless for problem instances with n much larger than

50 or 60. We have algorithms for them, but the best of these will

take 100's of years to run, even on much faster computers than

we now envision.

About Problems

{ Example: Charts from G and J }{ Example: Charts from G and J }

About Problems

Problems proven to be in these three groups (classes)

are, respectively,

Undecidable, Exponential, and Polynomial.

Theoretically, all problems belong to exactly one of

these three classes.

Problems proven to be in these three groups (classes)

are, respectively,

Undecidable, Exponential, and Polynomial.

Theoretically, all problems belong to exactly one of

these three classes.

About Problems

Practically, there are a lot of problems (maybe, most) that have
not been proven to be in any of the classes.

Most "lie between" polynomial and exponential – we know of
exponential algorithms, but have been unable to prove that
exponential algorithms are necessary.

Some may have polynomial algorithms, but we have not yet
been clever enough to discover them.

Practically, there are a lot of problems (maybe, most) that have
not been proven to be in any of the classes.

Most "lie between" polynomial and exponential – we know of
exponential algorithms, but have been unable to prove that
exponential algorithms are necessary.

Some may have polynomial algorithms, but we have not yet
been clever enough to discover them.

About Problems

Why Do We Care??Why Do We Care??

If an algorithm is O(nk) then increasing the size of an

instance by one gives a running time that is O((n+1)k)

That’s really not much more.

With an increase of one in an exponential algorithm,

O(2n) changes to O(2n+1) = O(2*2n) = 2*O(2n) – that is, it

takes about twice as long.

If an algorithm is O(nk) then increasing the size of an

instance by one gives a running time that is O((n+1)k)

That’s really not much more.

With an increase of one in an exponential algorithm,

O(2n) changes to O(2n+1) = O(2*2n) = 2*O(2n) – that is, it

takes about twice as long.

A Word about "size"A Word about "size"

Technically, the size of an instance is the minimum
number of bits (information) needed to represent the
instance - its "length."

This comes from early Formal Language researchers who
were analyzing the time needed to 'recognize' a string of
characters as a function of its length (number of
characters).

When dealing with more general problems there is usually a
parameter (number of vertices, processors, variables, etc.)
that is polynomially related to the length of the instance.
Then, we are justified in using the parameter as a measure
of the length (size), since anything polynomially related to
one will be polynomially related to the other.

Technically, the size of an instance is the minimum
number of bits (information) needed to represent the
instance - its "length."

This comes from early Formal Language researchers who
were analyzing the time needed to 'recognize' a string of
characters as a function of its length (number of
characters).

When dealing with more general problems there is usually a
parameter (number of vertices, processors, variables, etc.)
that is polynomially related to the length of the instance.
Then, we are justified in using the parameter as a measure
of the length (size), since anything polynomially related to
one will be polynomially related to the other.

A Word about "size"A Word about "size"
But, be careful.

For instance, if the "value" (magnitude) of n is both the
input and the parameter, the 'length' of the input
(number of bits) is log2(n). So, an algorithm that takes
n time is running in n = 2log2(n) time, which is
exponential in terms of the length, log2(n), but linear
(hence, polynomial) in terms of the "value," or
magnitude, of n.

It's a subtle, and usually unimportant difference, but it
can bite you.

But, be careful.

For instance, if the "value" (magnitude) of n is both the
input and the parameter, the 'length' of the input
(number of bits) is log2(n). So, an algorithm that takes
n time is running in n = 2log2(n) time, which is
exponential in terms of the length, log2(n), but linear
(hence, polynomial) in terms of the "value," or
magnitude, of n.

It's a subtle, and usually unimportant difference, but it
can bite you.

Why Do We Care??Why Do We Care??

When given a new problem to solve (design an
algorithm for), if it's undecidable, or even exponential,
you will waste a lot of time trying to write a polynomial
solution for it!!

If the problem really is polynomial, it will be
worthwhile spending some time and effort to find a
polynomial solution.

You should know something about how hard a problem
is before you try to solve it.

When given a new problem to solve (design an
algorithm for), if it's undecidable, or even exponential,
you will waste a lot of time trying to write a polynomial
solution for it!!

If the problem really is polynomial, it will be
worthwhile spending some time and effort to find a
polynomial solution.

You should know something about how hard a problem
is before you try to solve it.

Decidable – vs – Undecidable

(area of Computability Theory)

Exponential – vs – polynomial

(area of Computational Complexity)

Algorithms for any of these

(area of Algorithm Design/Analysis)

Decidable – vs – Undecidable

(area of Computability Theory)

Exponential – vs – polynomial

(area of Computational Complexity)

Algorithms for any of these

(area of Algorithm Design/Analysis)

Research Territory

Computational ComplexityComputational Complexity

Study of problems, particularly, to classifying them
according to the amount of resources (usually, time)

needed to solve them.

What problems can be solved in polynomial time?

What problems require exponential time?

The difficulty: We don’t know for most problems.

Study of problems, particularly, to classifying them
according to the amount of resources (usually, time)

needed to solve them.

What problems can be solved in polynomial time?

What problems require exponential time?

The difficulty: We don’t know for most problems.

Computational ComplexityComputational Complexity

If we have a polynomial algorithm, then we KNOW the

problem is polynomial.

But, if we don’t have a polynomial algorithm????

Does that mean it is exponential?

Or, that we are just not clever enough?

If we have a polynomial algorithm, then we KNOW the

problem is polynomial.

But, if we don’t have a polynomial algorithm????

Does that mean it is exponential?

Or, that we are just not clever enough?

Computational ComplexityComputational Complexity

Proving a problem is polynomial is usually
easier than proving it is NOT polynomial.

The first only requires one algorithm and a
proof that it (1) solves the problem and (2)
runs in polynomial time.

That’s not trivial to do, but it is usually easier
than proving no polynomial algorithm exists,
and never will exist!!

Proving a problem is polynomial is usually
easier than proving it is NOT polynomial.

The first only requires one algorithm and a
proof that it (1) solves the problem and (2)
runs in polynomial time.

That’s not trivial to do, but it is usually easier
than proving no polynomial algorithm exists,
and never will exist!!

Computational ComplexityComputational Complexity

We now have three "classes":

Polynomial,

Exponential, and

Undecidable.

We won’t deal directly with any of these.

Once we know a problem is in one of these -

we (Complexity Theorists) are done.

We now have three "classes":

Polynomial,

Exponential, and

Undecidable.

We won’t deal directly with any of these.

Once we know a problem is in one of these -

we (Complexity Theorists) are done.

An AsideAn Aside

NOTE: That doesn’t mean a problem is "well solved."

The Algorithm people still may have a lot of work to do.

An O(n10) algorithm is not really much good for n very
large, say, n around 100.

(a 1 followed by 20 zeros.)

But, it's better than 2n.

(a 1 followed by 30 zeros.)

NOTE: That doesn’t mean a problem is "well solved."

The Algorithm people still may have a lot of work to do.

An O(n10) algorithm is not really much good for n very
large, say, n around 100.

(a 1 followed by 20 zeros.)

But, it's better than 2n.

(a 1 followed by 30 zeros.)

An AsideAn Aside

• A related classification scheme has arisen in recent years -

Fixed Parameter Tractability.

• The idea is to acknowledge that a problem is hard (and

probably exponential), and to ask "what makes the problem

hard?"

• In some hard problems, it has been observed that many,

and perhaps most, instances are easily solvable. It is only a

few (proportionally few, but still infinite) that cause

algorithms to take exponential time.

• Can we isolate those instances, design algorithms that work

well most of the time?

• A related classification scheme has arisen in recent years -

Fixed Parameter Tractability.

• The idea is to acknowledge that a problem is hard (and

probably exponential), and to ask "what makes the problem

hard?"

• In some hard problems, it has been observed that many,

and perhaps most, instances are easily solvable. It is only a

few (proportionally few, but still infinite) that cause

algorithms to take exponential time.

• Can we isolate those instances, design algorithms that work

well most of the time?

Computational ComplexityComputational Complexity

There are a lot of problems, perhaps most, that

we can’t seem to fit into any of these 3 classes.

We will build (define) other classes. The classes

are intended to differentiate problems according

to how easy/hard they are to solve depending

upon the "computing power" (model of

computation) used.

There are a lot of problems, perhaps most, that

we can’t seem to fit into any of these 3 classes.

We will build (define) other classes. The classes

are intended to differentiate problems according

to how easy/hard they are to solve depending

upon the "computing power" (model of

computation) used.

Models of ComputationModels of Computation

A model of computation is essentially the set of operations

and rules you are allowed (limited) to use to design

algorithms.

When you write a program in C, Java, etc., you are using a

model of computation as defined by the syntactic and

semantic rules of that language.

Perhaps, the best well known is the Turing Machine (TM)

described by Alan Turing in the 1930's.

A model of computation is essentially the set of operations

and rules you are allowed (limited) to use to design

algorithms.

When you write a program in C, Java, etc., you are using a

model of computation as defined by the syntactic and

semantic rules of that language.

Perhaps, the best well known is the Turing Machine (TM)

described by Alan Turing in the 1930's.

Models of ComputationModels of Computation
A TM is defined on

(1) a finite 'alphabet' of characters, ,

(2) an external tape divided into 'cells,' each capable of storing
one character from . The cells are labeled with the integers
with 0 being in the middle,

(3) a 'read/write' tape head, initially positioned on tape cell 0,

(4) a 'processing unit' composed of a finite set of 'states,'
including a 'start' state and one or more 'halt' states, and
finally

(5) a 'transition' function that moves the TM from one state to
another depending upon the current state and the current
character being read from the tape.

A TM is defined on

(1) a finite 'alphabet' of characters, ,

(2) an external tape divided into 'cells,' each capable of storing
one character from . The cells are labeled with the integers
with 0 being in the middle,

(3) a 'read/write' tape head, initially positioned on tape cell 0,

(4) a 'processing unit' composed of a finite set of 'states,'
including a 'start' state and one or more 'halt' states, and
finally

(5) a 'transition' function that moves the TM from one state to
another depending upon the current state and the current
character being read from the tape.

Models of ComputationModels of Computation

The Church-Turing Thesis essentially says that
any algorithm can be implemented by a Turing
Machine.

Equivalently, if it is impossible to design a TM to
solve a problem, then the problem cannot be
solved by any algorithm.

One problem that a TM cannot solve is the
'Halting problem.'

The Church-Turing Thesis essentially says that
any algorithm can be implemented by a Turing
Machine.

Equivalently, if it is impossible to design a TM to
solve a problem, then the problem cannot be
solved by any algorithm.

One problem that a TM cannot solve is the
'Halting problem.'

Models of ComputationModels of Computation

A Turing Machine is a computational procedure. Just like
writing a program, TMs can be designed poorly and, even,
incorrectly.

But, TMs are not hampered by running out of memory,
round-off errors, dropping bits, etc.

Plus, they have a very very small "instruction" set making it
much easier to prove what TMs can and cannot do.

TMs are idealized computational procedures.

A Turing Machine is a computational procedure. Just like
writing a program, TMs can be designed poorly and, even,
incorrectly.

But, TMs are not hampered by running out of memory,
round-off errors, dropping bits, etc.

Plus, they have a very very small "instruction" set making it
much easier to prove what TMs can and cannot do.

TMs are idealized computational procedures.

Models of ComputationModels of Computation

• Many other models have been proposed, but
none have proven to be more powerful than
TMs, although some have been proven to be
equally powerful.

• By "power" we mean the class of problems
that can be solved - not the time required to
solve them.

• Many other models have been proposed, but
none have proven to be more powerful than
TMs, although some have been proven to be
equally powerful.

• By "power" we mean the class of problems
that can be solved - not the time required to
solve them.

Models of ComputationModels of Computation

NonDeterminism

Since we can't seem to find a model of
computation that is more powerful than a TM,
can we find one that is 'faster'?

In particular, we want one that takes us from
exponential time to polynomial time.

Our candidate will be the NonDeterministic
Turing Machine (NDTM).

NonDeterminism

Since we can't seem to find a model of
computation that is more powerful than a TM,
can we find one that is 'faster'?

In particular, we want one that takes us from
exponential time to polynomial time.

Our candidate will be the NonDeterministic
Turing Machine (NDTM).

NDTM'sNDTM's

In the basic Deterministic Turing Machine (DTM) we make
one major alteration (and take care of a few
repercussions):

The 'transition functon' in DTM's is allowed to become a
'transition mapping' in NDTM's.

This means that rather than the next action being totally
specified (deterministic) by the current state and input
character, we now can have many next actions -
simultaneously. That is, a NDTM can be in many states at
once. (That raises some interesting problems with writing
on the tape, just where the tape head is, etc., but those
little things can be explained away).

In the basic Deterministic Turing Machine (DTM) we make
one major alteration (and take care of a few
repercussions):

The 'transition functon' in DTM's is allowed to become a
'transition mapping' in NDTM's.

This means that rather than the next action being totally
specified (deterministic) by the current state and input
character, we now can have many next actions -
simultaneously. That is, a NDTM can be in many states at
once. (That raises some interesting problems with writing
on the tape, just where the tape head is, etc., but those
little things can be explained away).

NDTM'sNDTM's

We also require that there be only one halt
state - the 'accept' state. That also raises an
interesting question - what if we give it an
instance that is not 'acceptable'? The answer -
it blows up (or goes into an infinite loop).

The solution is that we are only allowed to
give it 'acceptable' input. That means

NDTM's are only defined for decision problems

and, in particular, only for Yes instances.

We also require that there be only one halt
state - the 'accept' state. That also raises an
interesting question - what if we give it an
instance that is not 'acceptable'? The answer -
it blows up (or goes into an infinite loop).

The solution is that we are only allowed to
give it 'acceptable' input. That means

NDTM's are only defined for decision problems

and, in particular, only for Yes instances.

NDTM'sNDTM's

We want to determine how long it takes to get to the
accept state - that's our only motive!!

So, what is a NDTM doing?

In a normal (deterministic) algorithm, we often have a
loop where each time through the loop we are testing a
different option to see if that "choice" leads to a correct
solution. If one does, fine, we go on to another part of
the problem. If one doesn't, we return to the same place
and make a different choice, and test it, etc.

We want to determine how long it takes to get to the
accept state - that's our only motive!!

So, what is a NDTM doing?

In a normal (deterministic) algorithm, we often have a
loop where each time through the loop we are testing a
different option to see if that "choice" leads to a correct
solution. If one does, fine, we go on to another part of
the problem. If one doesn't, we return to the same place
and make a different choice, and test it, etc.

NDTM'sNDTM's

If this is a Yes instance, we are guaranteed that an
acceptable choice will eventually be found and we go
on.

In a NDTM, what we are doing is making, and testing,
all of those choices at once by 'spawning' a different
NDTM for each of them. Those that don't work out,
simply die (or something).

This is kind of like the ultimate in parallel
programming.

If this is a Yes instance, we are guaranteed that an
acceptable choice will eventually be found and we go
on.

In a NDTM, what we are doing is making, and testing,
all of those choices at once by 'spawning' a different
NDTM for each of them. Those that don't work out,
simply die (or something).

This is kind of like the ultimate in parallel
programming.

NDTM'sNDTM's

To allay concerns about not being able to write
on the tape, we can allow each spawned NDTM
to have its own copy of the tape with a
read/write head.

The restriction is that nothing can be reported
back except that the accept state was reached.

To allay concerns about not being able to write
on the tape, we can allow each spawned NDTM
to have its own copy of the tape with a
read/write head.

The restriction is that nothing can be reported
back except that the accept state was reached.

NDTM'sNDTM's
Another interpretation of nondeterminism:

From the basic definition, we notice that out of
every state having a nondeterministic choice, at
least one choice is valid and all the rest sort of die
off. That is they really have no reason for being
spawned (for this instance - maybe for another). So,
we station at each such state, an 'oracle' (an all
knowing being) who only allows the correct NDTM
to be spawned.

An 'Oracle Machine.'

Another interpretation of nondeterminism:
From the basic definition, we notice that out of
every state having a nondeterministic choice, at
least one choice is valid and all the rest sort of die
off. That is they really have no reason for being
spawned (for this instance - maybe for another). So,
we station at each such state, an 'oracle' (an all
knowing being) who only allows the correct NDTM
to be spawned.

An 'Oracle Machine.'

NDTM'sNDTM's

This is not totally unreasonable. We can look
at a non deterministic decision as a
deterministic algorithm in which, when an
"option" is to be tested, it is very lucky, or
clever, to make the correct choice the first
time.

In this sense, the two machines would work
identically, and we are just asking "How long
does a DTM take if it always makes the
correct decisions?"

This is not totally unreasonable. We can look
at a non deterministic decision as a
deterministic algorithm in which, when an
"option" is to be tested, it is very lucky, or
clever, to make the correct choice the first
time.

In this sense, the two machines would work
identically, and we are just asking "How long
does a DTM take if it always makes the
correct decisions?"

NDTM'sNDTM's

As long as we are talking magic, we might as well
talk about a 'super' oracle stationed at the start
state (and get rid of the rest of the oracles)
whose task is to examine the given instance and
simply tell you what sequence of transitions
needs to be executed to reach the accept state.

He/she will write them to the left of cell 0 (the
instance is to the right).

As long as we are talking magic, we might as well
talk about a 'super' oracle stationed at the start
state (and get rid of the rest of the oracles)
whose task is to examine the given instance and
simply tell you what sequence of transitions
needs to be executed to reach the accept state.

He/she will write them to the left of cell 0 (the
instance is to the right).

NDTM'sNDTM's

• Now, you simply write a DTM to run back and

forth between the left of the tape to get the

'next action' and then go back to the right

half to examine the NDTM and instance to

verify that the provided transition is a valid

next action. As predicted by the oracle, the

DTM will see that the NDTM would reach the

accept state and can report the number of

steps required.

• Now, you simply write a DTM to run back and

forth between the left of the tape to get the

'next action' and then go back to the right

half to examine the NDTM and instance to

verify that the provided transition is a valid

next action. As predicted by the oracle, the

DTM will see that the NDTM would reach the

accept state and can report the number of

steps required.

NDTM'sNDTM's
All of this was originally designed with Language
Recognition problems in mind. It is not a far stretch to
realize the Yes instances of any of our more real word-
like decision problems defines a language, and that the
same approach can be used to "solve" them.

Rather than the oracle placing the sequence of
transitions on the tape, we ask him/her to provide a
'witness' to (a 'proof' of) the correctness of the
instance.

All of this was originally designed with Language
Recognition problems in mind. It is not a far stretch to
realize the Yes instances of any of our more real word-
like decision problems defines a language, and that the
same approach can be used to "solve" them.

Rather than the oracle placing the sequence of
transitions on the tape, we ask him/her to provide a
'witness' to (a 'proof' of) the correctness of the
instance.

NDTM'sNDTM's

For example, in the SubsetSum problem, we ask the

oracle to write down the subset of objects whose sum

is B (the desired sum). Then we ask "Can we write a

deterministic polynomial algorithm to test the given

witness."

The answer for SubsetSum is Yes, we can, i.e., the

witness is verifiable in deterministic polynomial time.

For example, in the SubsetSum problem, we ask the

oracle to write down the subset of objects whose sum

is B (the desired sum). Then we ask "Can we write a

deterministic polynomial algorithm to test the given

witness."

The answer for SubsetSum is Yes, we can, i.e., the

witness is verifiable in deterministic polynomial time.

NDTM's - WitnessesNDTM's - Witnesses

Just what can we ask and expect of a "witness"?

The witness must be something that

(1) we can verify to be accurate (for the given the

problem and instance) and

(2) we must be able to "finish off" the solution.

All in polynomial time.

Just what can we ask and expect of a "witness"?

The witness must be something that

(1) we can verify to be accurate (for the given the

problem and instance) and

(2) we must be able to "finish off" the solution.

All in polynomial time.

NDTM's - WitnessesNDTM's - Witnesses

The witness can be nothing!
Then, we are on our own. We have to "solve the instance in
polynomial time."

The witness can be "Yes."
Duh. We already knew that. We have to now verify the yes
instance is a yes instance (same as above).

The witness has to be something other than
nothing and Yes.

The witness can be nothing!
Then, we are on our own. We have to "solve the instance in
polynomial time."

The witness can be "Yes."
Duh. We already knew that. We have to now verify the yes
instance is a yes instance (same as above).

The witness has to be something other than
nothing and Yes.

NDTM's - WitnessesNDTM's - Witnesses

The information provided must be something we could
have come up with ourselves, but probably at an
exponential cost. And, it has to be enough so that we
can conclude the final answer Yes from it.

Consider a witness for the graph coloring problem:

Given: A graph G = (V, E) and an integer k.

Question: Can the vertices of G be assigned colors so

that adjacent vertices have different

colors and use at most k colors?

The information provided must be something we could
have come up with ourselves, but probably at an
exponential cost. And, it has to be enough so that we
can conclude the final answer Yes from it.

Consider a witness for the graph coloring problem:

Given: A graph G = (V, E) and an integer k.

Question: Can the vertices of G be assigned colors so

that adjacent vertices have different

colors and use at most k colors?

NDTM's - WitnessesNDTM's - Witnesses

The witness could be nothing, or Yes.
But that's not good enough - we don't know of a

polynomial algorithm for graph coloring.

It could be "vertex 10 is colored Red."
That's not good enough either. Any single vertex can

be colored any color we want.

It could be a color assigned to each vertex.
That would work, because we can verify its validity in

polynomial time, and we can conclude the correct

answer of Yes.

The witness could be nothing, or Yes.
But that's not good enough - we don't know of a

polynomial algorithm for graph coloring.

It could be "vertex 10 is colored Red."
That's not good enough either. Any single vertex can

be colored any color we want.

It could be a color assigned to each vertex.
That would work, because we can verify its validity in

polynomial time, and we can conclude the correct

answer of Yes.

NDTM's - WitnessesNDTM's - Witnesses

What if it was a color for all vertices but one?
That also is enough. We can verify the correctness of
the n-1 given to us, then we can verify that the one
uncolored vertex can be colored with a color not on
any neighbor, and that the total is not more than k.

What if all but 2, 3, or 20 vertices are colored
All are valid witnesses.

What if half the vertices are colored?
Usually, No. There's not enough information. Sure,
we can check that what is give to us is properly
colored, but we don't know how to "finish it off."

What if it was a color for all vertices but one?
That also is enough. We can verify the correctness of
the n-1 given to us, then we can verify that the one
uncolored vertex can be colored with a color not on
any neighbor, and that the total is not more than k.

What if all but 2, 3, or 20 vertices are colored
All are valid witnesses.

What if half the vertices are colored?
Usually, No. There's not enough information. Sure,
we can check that what is give to us is properly
colored, but we don't know how to "finish it off."

NDTM's - WitnessesNDTM's - Witnesses

An interesting question: For a given problem,

what is (are) the limits to what can be

provided that still allows a polynomial

verification?

An interesting question: For a given problem,

what is (are) the limits to what can be

provided that still allows a polynomial

verification?

NDTM'sNDTM's

A major question remains: Do we have, in

NDTMs, a model of computation that solves all

deterministic exponential (DE) problems in

polynomial time (nondeterministic polynomial

time)??

It definitely solves some problems we think

are DE in nondeterministic polynomial time.

A major question remains: Do we have, in

NDTMs, a model of computation that solves all

deterministic exponential (DE) problems in

polynomial time (nondeterministic polynomial

time)??

It definitely solves some problems we think

are DE in nondeterministic polynomial time.

NDTM'sNDTM's

But, so far, all problems that have been proven to
require deterministic exponential time also require
nondeterministic exponential time.

So, the jury is still out. In the meantime, NDTMs are
still valuable, because they identify a larger class of
problems than does a deterministic TM - the set of
decision problems for which Yes instances can be
verified in polynomial time.

But, so far, all problems that have been proven to
require deterministic exponential time also require
nondeterministic exponential time.

So, the jury is still out. In the meantime, NDTMs are
still valuable, because they identify a larger class of
problems than does a deterministic TM - the set of
decision problems for which Yes instances can be
verified in polynomial time.

Problem ClassesProblem Classes

We now begin to discuss several different classes of

problems. The first two will be:

NP 'Nondeterministic' Polynomial

P 'Deterministic' Polynomial,

The 'easiest' problems in NP

Their definitions are rooted in the depths of Formal

Languages and Automata Theory as just described, but it is

worth repeating some of it in the next few slides.

We now begin to discuss several different classes of

problems. The first two will be:

NP 'Nondeterministic' Polynomial

P 'Deterministic' Polynomial,

The 'easiest' problems in NP

Their definitions are rooted in the depths of Formal

Languages and Automata Theory as just described, but it is

worth repeating some of it in the next few slides.

Problem ClassesProblem Classes

We assume knowledge of Deterministic and

Nondeterministic Turing Machines. (DTM's and NDTM's)

The only use in life of a NDTM is to scan a string of

characters X and proceed by state transitions until an

'accept' state is entered.

X must be in the language the NDTM is designed to

recognize. Otherwise, it blows up!!

We assume knowledge of Deterministic and

Nondeterministic Turing Machines. (DTM's and NDTM's)

The only use in life of a NDTM is to scan a string of

characters X and proceed by state transitions until an

'accept' state is entered.

X must be in the language the NDTM is designed to

recognize. Otherwise, it blows up!!

Problem ClassesProblem Classes

So, what good is it?

We can count the number of transitions on the shortest

path (elapsed time) to the accept state!!!

If there is a constant k for which the number of

transitions is at most |X|k, then the language is said to

be 'nondeterministic polynomial.'

So, what good is it?

We can count the number of transitions on the shortest

path (elapsed time) to the accept state!!!

If there is a constant k for which the number of

transitions is at most |X|k, then the language is said to

be 'nondeterministic polynomial.'

Problem ClassesProblem Classes

The subset of YES instances of the set of instances of a

decision problem, as we have described them above, is

a language.

When given an instance, we want to know that it is in the

subset of Yes instances. (All answers to Yes instances look

alike - we don't care which one we get or how it was

obtained).

This begs the question "What about the No instances?"

The answer is that we will get to them later. (They will

actually form another class of problems.)

The subset of YES instances of the set of instances of a

decision problem, as we have described them above, is

a language.

When given an instance, we want to know that it is in the

subset of Yes instances. (All answers to Yes instances look

alike - we don't care which one we get or how it was

obtained).

This begs the question "What about the No instances?"

The answer is that we will get to them later. (They will

actually form another class of problems.)

Problem ClassesProblem Classes

This actually defines our first Class, NP, the set of decision
problems whose Yes instances can be solved by a
Nondeterministic Turing Machine in polynomial time.

That knowledge is not of much use!! We still don't know how
to tell (easily) if a problem is in NP. And, that's our goal.

Fortunately, all we are doing with a NDTM is tracing the
correct path to the accept state. Since all we are interested
in doing is counting it's length, if someone just gave us the
correct path and we followed it, we could learn the same
thing - how long it is.

This actually defines our first Class, NP, the set of decision
problems whose Yes instances can be solved by a
Nondeterministic Turing Machine in polynomial time.

That knowledge is not of much use!! We still don't know how
to tell (easily) if a problem is in NP. And, that's our goal.

Fortunately, all we are doing with a NDTM is tracing the
correct path to the accept state. Since all we are interested
in doing is counting it's length, if someone just gave us the
correct path and we followed it, we could learn the same
thing - how long it is.

Problem ClassesProblem Classes

It is even simpler than that (all this has been
proven mathematically). Consider the
following problem:

You have a big van that can carry 10,000 lbs. You
also have a batch of objects with weights w1, w2, …,
wn lbs. Their total sum is more than 10,000 lbs, so
you can't haul all of them.

Can you load the van with exactly 10,000 lbs?

(WOW. That's the SubsetSum problem.)

It is even simpler than that (all this has been
proven mathematically). Consider the
following problem:

You have a big van that can carry 10,000 lbs. You
also have a batch of objects with weights w1, w2, …,
wn lbs. Their total sum is more than 10,000 lbs, so
you can't haul all of them.

Can you load the van with exactly 10,000 lbs?

(WOW. That's the SubsetSum problem.)

Problem ClassesProblem Classes

Now, suppose it is possible (i.e., a Yes instance) and
someone tells you exactly what objects to select.

We can add the weights of those selected objects and
verify the correctness of the selection.

This is the same as following the correct path in a
NDTM. (Well, not just the same, but it can be proven to
be equivalent.)

Therefore, all we have to do is count how long it takes
to verify that a "correct" answer" is in fact correct.

Now, suppose it is possible (i.e., a Yes instance) and
someone tells you exactly what objects to select.

We can add the weights of those selected objects and
verify the correctness of the selection.

This is the same as following the correct path in a
NDTM. (Well, not just the same, but it can be proven to
be equivalent.)

Therefore, all we have to do is count how long it takes
to verify that a "correct" answer" is in fact correct.

We are now ready for our

First Significant Class of Problems:

The Class NP

We are now ready for our

First Significant Class of Problems:

The Class NP

We have, already, an informal definition for

the set NP. We will now try to get a better

idea of what NP includes, what it does not

include, and give a formal definition.

We have, already, an informal definition for

the set NP. We will now try to get a better

idea of what NP includes, what it does not

include, and give a formal definition.

Consider two seemingly closely related

statements (versions) of a single problem.

We show they are actually very different.

Let G = (V, E) be a graph.

Definition: X  V(G) is a vertex cover if every

edge in G has at least one endpoint in X.

Consider two seemingly closely related

statements (versions) of a single problem.

We show they are actually very different.

Let G = (V, E) be a graph.

Definition: X  V(G) is a vertex cover if every

edge in G has at least one endpoint in X.

Version 1. Given a graph G and an integer k.

Does G contain a vertex cover

with at most k vertices?

Version 2. Given a graph G and an integer k.

Does the smallest vertex cover of G

have exactly k vertices?

Version 1. Given a graph G and an integer k.

Does G contain a vertex cover

with at most k vertices?

Version 2. Given a graph G and an integer k.

Does the smallest vertex cover of G

have exactly k vertices?

Suppose, for either version, we are given a

graph G and an integer k for which the

answer is "yes." Someone also gives us a set

X of vertices and claims

"X satisfies the conditions."

Suppose, for either version, we are given a

graph G and an integer k for which the

answer is "yes." Someone also gives us a set

X of vertices and claims

"X satisfies the conditions."

In Version 1, we can fairly easily check that

the claim is correct – in polynomial time.

That is, in polynomial time, we can check

that X has k vertices, and that X is a vertex

cover.

In Version 1, we can fairly easily check that

the claim is correct – in polynomial time.

That is, in polynomial time, we can check

that X has k vertices, and that X is a vertex

cover.

In Version 2, we can also easily check that X has
exactly k vertices and that X is a vertex cover.

But, we don't know how to easily check that there is
not a smaller vertex cover!!

That seems to require exponential time.

These are very similar looking "decision" problems
(Yes/No answers), yet they are VERY different in this
one important respect.

In Version 2, we can also easily check that X has
exactly k vertices and that X is a vertex cover.

But, we don't know how to easily check that there is
not a smaller vertex cover!!

That seems to require exponential time.

These are very similar looking "decision" problems
(Yes/No answers), yet they are VERY different in this
one important respect.

In the first: We can verify a correct answer

in polynomial time.

In the second: We apparently can not verify

a correct answer in polynomial time.

(At least, we don't know how to verify one in

polynomial time.)

In the first: We can verify a correct answer

in polynomial time.

In the second: We apparently can not verify

a correct answer in polynomial time.

(At least, we don't know how to verify one in

polynomial time.)

Could we have asked to be given something that
would have allowed us to easily verify that X was the
smallest such set?

No one knows what to ask for!!

To check all subsets of k or fewer vertices requires
exponential time (there can be an exponential
number of them).

Could we have asked to be given something that
would have allowed us to easily verify that X was the
smallest such set?

No one knows what to ask for!!

To check all subsets of k or fewer vertices requires
exponential time (there can be an exponential
number of them).

Version 1 problems make up the class called NP

Definition: The Class NP is the set of all decision
problems for which answers to Yes instances can be
verified in polynomial time.

{Why not the NO instances? We'll answer that later.}

For historical reasons, NP means

"Nondeterministic Polynomial."

(Specifically, it does not mean "not polynomial").

Version 1 problems make up the class called NP

Definition: The Class NP is the set of all decision
problems for which answers to Yes instances can be
verified in polynomial time.

{Why not the NO instances? We'll answer that later.}

For historical reasons, NP means

"Nondeterministic Polynomial."

(Specifically, it does not mean "not polynomial").

Version 2 of the Vertex Cover problem is not unique.
There are other versions that exhibit this same
property. For example,

Version 3: Given: A graph G = (V, E) and an

integer k.

Question: Do all vertex covers of G

have more than k vertices?

What would/could a 'witness' for a Yes instance be?

Version 2 of the Vertex Cover problem is not unique.
There are other versions that exhibit this same
property. For example,

Version 3: Given: A graph G = (V, E) and an

integer k.

Question: Do all vertex covers of G

have more than k vertices?

What would/could a 'witness' for a Yes instance be?

Again, no one knows except to list all subsets of at

most k vertices. Then we would have to check each of

the possible exponential number of sets.

Further, this is not isolated to the Vertex Cover

problem. Every decision problem has a 'Version 3,'

also known as the 'complement' problem (we will

discuss these further at a later point).

Again, no one knows except to list all subsets of at

most k vertices. Then we would have to check each of

the possible exponential number of sets.

Further, this is not isolated to the Vertex Cover

problem. Every decision problem has a 'Version 3,'

also known as the 'complement' problem (we will

discuss these further at a later point).

All problems in NP are decidable.

That means there is an algorithm.

And, the algorithm is no worse than O(2n).

All problems in NP are decidable.

That means there is an algorithm.

And, the algorithm is no worse than O(2n).

Version 2 and 3 problems are apparently not

in NP.

So, where are they??

We need more structure! {Again, later.}

First we look inward, within NP.

Version 2 and 3 problems are apparently not

in NP.

So, where are they??

We need more structure! {Again, later.}

First we look inward, within NP.

Second Significant Class of Problems:

The Class P

Second Significant Class of Problems:

The Class P

Some decision problems in NP can be solved (without
knowing the answer in advance) - in polynomial time.
That is, not only can we verify a correct answer in
polynomial time, but we can actually compute the
correct answer in polynomial time - from "scratch."

These are the problems that make up the class P.

P is a subset of NP.

Some decision problems in NP can be solved (without
knowing the answer in advance) - in polynomial time.
That is, not only can we verify a correct answer in
polynomial time, but we can actually compute the
correct answer in polynomial time - from "scratch."

These are the problems that make up the class P.

P is a subset of NP.

Problems in P can also have a witness – we

just don't need one. But, this line of thought

leads to an interesting observation. Consider

the problem of searching a list L for a key X.

Given: A list L of n values and a key X.

Question: Is X in L?

Problems in P can also have a witness – we

just don't need one. But, this line of thought

leads to an interesting observation. Consider

the problem of searching a list L for a key X.

Given: A list L of n values and a key X.

Question: Is X in L?

We know this problem is in P. But, we can
also envision a nondeterministic solution. An
oracle can, in fact, provide a "witness" for a
Yes instance by simply writing down the index
of where X is located.

We can verify the correctness with one simple
comparison and reporting, Yes the witness is
correct.

We know this problem is in P. But, we can
also envision a nondeterministic solution. An
oracle can, in fact, provide a "witness" for a
Yes instance by simply writing down the index
of where X is located.

We can verify the correctness with one simple
comparison and reporting, Yes the witness is
correct.

Now, consider the complement (Version 3) of this
problem:

Given: A list L of n values and a key X.

Question: Is X not in L?

Here, for any Yes instance, no 'witness' seems to exist,
but if the oracle simply writes down "Yes" we can
verify the correctness in polynomial time by comparing
X with each of the n values and report "Yes, X is not in
the list."

Now, consider the complement (Version 3) of this
problem:

Given: A list L of n values and a key X.

Question: Is X not in L?

Here, for any Yes instance, no 'witness' seems to exist,
but if the oracle simply writes down "Yes" we can
verify the correctness in polynomial time by comparing
X with each of the n values and report "Yes, X is not in
the list."

Therefore, both problems can be verified in polynomial

time and, hence, both are in NP.

This is a characteristic of any problem in P - both it and

its complement can be verified in polynomial time (of

course, they can both be 'solved' in polynomial time,

too.)

Therefore, we can again conclude P  NP.

Therefore, both problems can be verified in polynomial

time and, hence, both are in NP.

This is a characteristic of any problem in P - both it and

its complement can be verified in polynomial time (of

course, they can both be 'solved' in polynomial time,

too.)

Therefore, we can again conclude P  NP.

There is a popular conjecture that if any problem and
its complement are both in NP, then both are also in P.

This has been the case for several problems that for
many years were not known to be in P, but both the
problem and it's complement were known to be in NP.

For example, Linear Programming (proven to be in P in
the 1980's), and Prime Number (proven in 2006 to be
in P).

A notable 'holdout' to date is Graph Isomorphism.

There is a popular conjecture that if any problem and
its complement are both in NP, then both are also in P.

This has been the case for several problems that for
many years were not known to be in P, but both the
problem and it's complement were known to be in NP.

For example, Linear Programming (proven to be in P in
the 1980's), and Prime Number (proven in 2006 to be
in P).

A notable 'holdout' to date is Graph Isomorphism.

There are a lot of problems in NP that we do not

know how to solve in polynomial time. Why?

Because they really don't have polynomial algorithms?

Or, because we are not yet clever enough to have found

a polynomial algorithm for them?

There are a lot of problems in NP that we do not

know how to solve in polynomial time. Why?

Because they really don't have polynomial algorithms?

Or, because we are not yet clever enough to have found

a polynomial algorithm for them?

At the moment, no one knows.

Some believe all problems in NP have polynomial algorithms.
Many do not (believe that).

The fundamental question in theoretical computer science is:

Does P = NP?

There is an award of one million dollars for a proof.

– Either way, True or False.

At the moment, no one knows.

Some believe all problems in NP have polynomial algorithms.
Many do not (believe that).

The fundamental question in theoretical computer science is:

Does P = NP?

There is an award of one million dollars for a proof.

– Either way, True or False.

Other ClassesOther Classes

We now look at other classes of problems.

Hard appearing problems can turn out to be
easy to solve. And, easy looking problems can
actually be very hard (Graph Theory is rich
with such examples).

We must deal with the concept of "as hard
as," "no harder than," etc. in a more rigorous
way.

We now look at other classes of problems.

Hard appearing problems can turn out to be
easy to solve. And, easy looking problems can
actually be very hard (Graph Theory is rich
with such examples).

We must deal with the concept of "as hard
as," "no harder than," etc. in a more rigorous
way.

"No harder than""No harder than"

Problem A is said to be 'no harder than' problem B when the
smallest class containing A is a subset of the smallest class
containing B.

Recall that fX(n) is the order of the smallest complexity class
containing problem X.

If, for some constant ,

fA(n) ≤ nfB(n),

the time to solve A is no more than some polynomial multiple
of the time required to solve B, i.e., A is 'no harder than' B.

Problem A is said to be 'no harder than' problem B when the
smallest class containing A is a subset of the smallest class
containing B.

Recall that fX(n) is the order of the smallest complexity class
containing problem X.

If, for some constant ,

fA(n) ≤ nfB(n),

the time to solve A is no more than some polynomial multiple
of the time required to solve B, i.e., A is 'no harder than' B.

"No harder than""No harder than"

The requirement for determining the relative difficulty

of two problems A and B requires that we know, at

least, the order of the fastest algorithm for problem B

and the order of some algorithm for Problem A.

We may not know either!!

In the following we exhibit a technique that can allow

us to determine this relationship without knowing

anything about an algorithm for either problem.

The requirement for determining the relative difficulty

of two problems A and B requires that we know, at

least, the order of the fastest algorithm for problem B

and the order of some algorithm for Problem A.

We may not know either!!

In the following we exhibit a technique that can allow

us to determine this relationship without knowing

anything about an algorithm for either problem.

The "Key" to Complexity Theory

'Reductions,' 'Reductions,' 'Reductions.'

The "Key" to Complexity Theory

'Reductions,' 'Reductions,' 'Reductions.'

ReductionsReductions

For any problem X, let X(IX, AnswerX)

represents an algorithm for problem X – even

if none is known to exist.

IX is an arbitray instance given to the algorithm and

AnswerX is the returned answer determined by the

algorithm.

For any problem X, let X(IX, AnswerX)

represents an algorithm for problem X – even

if none is known to exist.

IX is an arbitray instance given to the algorithm and

AnswerX is the returned answer determined by the

algorithm.

ReductionsReductions

Definition: For problems A and B, a (Polynomial)

Turing Reduction is an algorithm A(IA, AnswerA)

for solving all instances of problem A and satisfies

the following:

(1) Constructs zero or more instances of problem B and

invokes algorithm B(IB, AnswerB), on each.

(2) Computes the result, AnswerA, for IA.

(3) Except for the time required to execute algorithm B, the

execution time of algorithm A must be polynomial with

respect to the size of IA.

Definition: For problems A and B, a (Polynomial)

Turing Reduction is an algorithm A(IA, AnswerA)

for solving all instances of problem A and satisfies

the following:

(1) Constructs zero or more instances of problem B and

invokes algorithm B(IB, AnswerB), on each.

(2) Computes the result, AnswerA, for IA.

(3) Except for the time required to execute algorithm B, the

execution time of algorithm A must be polynomial with

respect to the size of IA.

ReductionsReductions

proc A(IA, AnswerA)

For i = 1 to alpha
• Compute IB

•

B(IB, AnswerB)

•

End For

Compute AnswerA

End proc

proc A(IA, AnswerA)

For i = 1 to alpha
• Compute IB

•

B(IB, AnswerB)

•

End For

Compute AnswerA

End proc

ReductionsReductions

We may assume a 'best' algorithm for problem B

without actually knowing it.

If A(IA, AnswerA) can be written without

algorithm B, then problem A is simply a

polynomial problem.

We may assume a 'best' algorithm for problem B

without actually knowing it.

If A(IA, AnswerA) can be written without

algorithm B, then problem A is simply a

polynomial problem.

ReductionsReductions

The existence of a Turing reduction is often
stated as:

"Problem A reduces to problem B" or, simply,

"A  B"

(Note: G & J use a symbol that I don't have.).

The existence of a Turing reduction is often
stated as:

"Problem A reduces to problem B" or, simply,

"A  B"

(Note: G & J use a symbol that I don't have.).

ReductionsReductions

Theorem. If A  B and problem B is polynomial,

then problem A is polynomial.

Corollary. If A  B and problem A is exponential,

then problem B is exponential.

Theorem. If A  B and problem B is polynomial,

then problem A is polynomial.

Corollary. If A  B and problem A is exponential,

then problem B is exponential.

ReductionsReductions

The previous theorem and its corollary do not

capture the full implication of Turing reductions.

Regardless of the complexity class problem B is in,
a Turing reduction implies problem A is in a
subclass.

Regardless of the class problem A might be in,
problem B is in a super class.

The previous theorem and its corollary do not

capture the full implication of Turing reductions.

Regardless of the complexity class problem B is in,
a Turing reduction implies problem A is in a
subclass.

Regardless of the class problem A might be in,
problem B is in a super class.

ReductionsReductions

Theorem. If A  B , then problem A is "no harder than"

problem B.

Proof: Let tA(n) and tB(n) be the maximum times for

algorithms A and B per the definition. Thus, fA(n) ≤

tA(n). Further, since we assume the best algorithm for

B, tB(n) = fB(n). Since A  B, there is a constant k such

that tA(n) ≤ nktB(n). Therefore, fA(n) ≤ tA(n) ≤ nktB(n) =

nkfB(n). That is, A is no harder than B.

Theorem. If A  B , then problem A is "no harder than"

problem B.

Proof: Let tA(n) and tB(n) be the maximum times for

algorithms A and B per the definition. Thus, fA(n) ≤

tA(n). Further, since we assume the best algorithm for

B, tB(n) = fB(n). Since A  B, there is a constant k such

that tA(n) ≤ nktB(n). Therefore, fA(n) ≤ tA(n) ≤ nktB(n) =

nkfB(n). That is, A is no harder than B.

ReductionsReductions

Theorem.
If A  B and B  C then A  C.

Definition.
If A  B and B  A, then A and B are
polynomially equivalent.

Theorem.
If A  B and B  C then A  C.

Definition.
If A  B and B  A, then A and B are
polynomially equivalent.

ReductionsReductions

A  B means:

'Problem A is no harder than problem B,' and

'Problem B is as hard as problem A.'

A  B means:

'Problem A is no harder than problem B,' and

'Problem B is as hard as problem A.'

An Aside (Computability Theory)An Aside (Computability Theory)

Without condition (3) of the definition, a simple
Reduction results.

If problem B is decidable,

then so is problem A.

Equivalently,

If problem A is undecidable,

then problem B is undecidable.

Without condition (3) of the definition, a simple
Reduction results.

If problem B is decidable,

then so is problem A.

Equivalently,

If problem A is undecidable,

then problem B is undecidable.

Special Type of ReductionSpecial Type of Reduction

Polynomial Transformation
(Refer to the definition of Turing Reductions)

(1) Problems A and B must both be decision problems.

(2) A single instance, IB, of problem B is constructed from a
single instance, IA, of problem A.

(3) IB is true for problem B if and only if IA is true for problem A.

Polynomial Transformation
(Refer to the definition of Turing Reductions)

(1) Problems A and B must both be decision problems.

(2) A single instance, IB, of problem B is constructed from a
single instance, IA, of problem A.

(3) IB is true for problem B if and only if IA is true for problem A.

Polynomial TransformationsPolynomial Transformations

Polynomial transformations are also known as Karp

Reductions

When a reduction is a polynomial transformation, we

subscript the symbol with a "p" as follows:

A P B

Polynomial transformations are also known as Karp

Reductions

When a reduction is a polynomial transformation, we

subscript the symbol with a "p" as follows:

A P B

Polynomial TransformationsPolynomial Transformations

Following Garey and Johnson, we recognize three

forms of polynomial transformations.

(a) restriction,

(b) local replacement, and

(c) component design.

Following Garey and Johnson, we recognize three

forms of polynomial transformations.

(a) restriction,

(b) local replacement, and

(c) component design.

Polynomial TransformationsPolynomial Transformations

Restriction allows nothing much more complex

than renaming the objects in IA so that they are,

in a straightforward manner, objects in IB.

For example, objects in IA could be a collection

of cities with distances between certain pairs of

cities. In IB, these might correspond to vertices

in a graph and weighted edges.

Restriction allows nothing much more complex

than renaming the objects in IA so that they are,

in a straightforward manner, objects in IB.

For example, objects in IA could be a collection

of cities with distances between certain pairs of

cities. In IB, these might correspond to vertices

in a graph and weighted edges.

Polynomial TransformationsPolynomial Transformations

The term 'restriction' alludes to the fact that a proof of

correctness often is simply describing the subset of

instances of problem B that are essentially identical

(isomorphic) to the instances of problem A, that is, the

instances of B are restricted to those that are instances of

A. To apply restriction, the relevant instances in Problem B

must be identifiable in polynomial time.

For example, if P ≠ NP and B is defined over the set of all

graphs, we can not restrict to the instances that possess a

Hamiltonian Circuit.

The term 'restriction' alludes to the fact that a proof of

correctness often is simply describing the subset of

instances of problem B that are essentially identical

(isomorphic) to the instances of problem A, that is, the

instances of B are restricted to those that are instances of

A. To apply restriction, the relevant instances in Problem B

must be identifiable in polynomial time.

For example, if P ≠ NP and B is defined over the set of all

graphs, we can not restrict to the instances that possess a

Hamiltonian Circuit.

Polynomial TransformationsPolynomial Transformations

Local Replacement is more complex because there is

usually not an obvious map between instance IA and

instance IB. But, by modifying objects or small groups of

objects a transformation often results. Sometimes the

alterations are so that some feature or property of problem

A that is not a part of all instances of problem B can be

enforced in problem B. As in (a), the instances of problem B

are usually of the same type as of problem A.

Local Replacement is more complex because there is

usually not an obvious map between instance IA and

instance IB. But, by modifying objects or small groups of

objects a transformation often results. Sometimes the

alterations are so that some feature or property of problem

A that is not a part of all instances of problem B can be

enforced in problem B. As in (a), the instances of problem B

are usually of the same type as of problem A.

Polynomial TransformationsPolynomial Transformations

In a sense, Local Replacement might be viewed

as a form of Restriction. In Local Replacement,

we describe how to construct the instances of B

that are isomorphic to the instances of A, and in

Restriction we describe how to eliminate

instances of B that are not isomorphic to

instances of A.

In a sense, Local Replacement might be viewed

as a form of Restriction. In Local Replacement,

we describe how to construct the instances of B

that are isomorphic to the instances of A, and in

Restriction we describe how to eliminate

instances of B that are not isomorphic to

instances of A.

Polynomial TransformationsPolynomial Transformations

Component Design is when instances of

problem B are essentially constructed

"from scratch," and there may be little

resemblance between instances of A

and those of B.

Component Design is when instances of

problem B are essentially constructed

"from scratch," and there may be little

resemblance between instances of A

and those of B.

Third Significant Class of Problems:

The Class NP–Complete

Third Significant Class of Problems:

The Class NP–Complete

Polynomial Transformations enforce an equivalence

relationship on all decision problems, particularly, those

in the Class NP. Class P is one of those classes and is the

"easiest" class of problems in NP.

Is there a class in NP that is the hardest class in NP?

A problem B in NP such that A P B for every A in NP.

Polynomial Transformations enforce an equivalence

relationship on all decision problems, particularly, those

in the Class NP. Class P is one of those classes and is the

"easiest" class of problems in NP.

Is there a class in NP that is the hardest class in NP?

A problem B in NP such that A P B for every A in NP.

In 1971, Stephen Cook proved there was.

Specifically, a problem called

Satisfiability (or, SAT).

In 1971, Stephen Cook proved there was.

Specifically, a problem called

Satisfiability (or, SAT).

SatisfiabilitySatisfiability

U = {u1, u2,…, un}, Boolean variables.

C = {c1, c2,…, cm}, "OR clauses"

For example:

ci = (u4  u35  ~u18  u3…  ~u6)

U = {u1, u2,…, un}, Boolean variables.

C = {c1, c2,…, cm}, "OR clauses"

For example:

ci = (u4  u35  ~u18  u3…  ~u6)

SatisfiabilitySatisfiability

Can we assign Boolean values to the variables

in U so that every clause is TRUE?

There is no known polynomial algorithm!!

Can we assign Boolean values to the variables

in U so that every clause is TRUE?

There is no known polynomial algorithm!!

Cooks Theorem:

1) SAT is in NP

2) For every problem A in NP,

A P SAT

Thus, SAT is as hard as every problem in NP.

(For a proof, see Garey and Johnson, pgs. 39 – 44)

Cooks Theorem:

1) SAT is in NP

2) For every problem A in NP,

A P SAT

Thus, SAT is as hard as every problem in NP.

(For a proof, see Garey and Johnson, pgs. 39 – 44)

Since SAT is itself in NP, that means
SAT is a hardest problem in NP (there
can be more than one.).

A hardest problem in a class is called
the "completion" of that class.

Therefore, SAT is NP–Complete.

Since SAT is itself in NP, that means
SAT is a hardest problem in NP (there
can be more than one.).

A hardest problem in a class is called
the "completion" of that class.

Therefore, SAT is NP–Complete.

Within a year, Richard Karp added 22 problems to
this special class.

These included such problems as:

3-SAT

3DM

Vertex Cover,

Independent Set,

Knapsack,

Multiprocessor Scheduling, and

Partition.

Within a year, Richard Karp added 22 problems to
this special class.

These included such problems as:

3-SAT

3DM

Vertex Cover,

Independent Set,

Knapsack,

Multiprocessor Scheduling, and

Partition.

SubsetSumSubsetSum

S = {s1, s2, …, sn}

set of positive integers

and an integer B.

Question: Does S have a subset whose
values sum to B?

No one knows of a polynomial algorithm.

{No one has proven there isn’t one, either!!}

S = {s1, s2, …, sn}

set of positive integers

and an integer B.

Question: Does S have a subset whose
values sum to B?

No one knows of a polynomial algorithm.

{No one has proven there isn’t one, either!!}

SubsetSumSubsetSum

The following polynomial transformations have been
shown to exist.(Later, we will see what these problems
actually are.)

Theorem. SAT P 3SAT

Theorem. 3SAT P 3DM

Theorem. 3DM P Partition

The following polynomial transformations have been
shown to exist.(Later, we will see what these problems
actually are.)

Theorem. SAT P 3SAT

Theorem. 3SAT P 3DM

Theorem. 3DM P Partition

SubsetSumSubsetSum

We also can prove:

Theorem. Partition P SubsetSum

Therefore, not only is Satisfiability

In NP–Complete, but so is 3SAT, 3DM,

Partition, and SubsetSum.

We also can prove:

Theorem. Partition P SubsetSum

Therefore, not only is Satisfiability

In NP–Complete, but so is 3SAT, 3DM,

Partition, and SubsetSum.

Today, there are 100's, if not 1,000's, of problems

that have been proven to be NP–Complete. (See

Garey and Johnson, Computers and Intractability:

A Guide to the Theory of NP–Completeness, for a

list of over 300 as of the early 1980's).

Today, there are 100's, if not 1,000's, of problems

that have been proven to be NP–Complete. (See

Garey and Johnson, Computers and Intractability:

A Guide to the Theory of NP–Completeness, for a

list of over 300 as of the early 1980's).

P = NP?P = NP?

If P = NP then all problems in NP are

polynomial problems.

If P ≠ NP then all NP–C problems are

exponential.

If P = NP then all problems in NP are

polynomial problems.

If P ≠ NP then all NP–C problems are

exponential.

P = NP?P = NP?
Why should P equal NP?

There seems to be a huge "gap" between the known
problems in P and Exponential. That is, almost all known
polynomial problems are no worse than n3 or n4.

Where are the O(n50) problems?? O(n100)? Maybe they
are the ones in NP–Complete?

It's awfully hard to envision a problem that would
require n100, but surely they exist?

Some of the problems in NP–C just look like we should
be able to find a polynomial solution (looks can be
deceiving, though).

Why should P equal NP?
There seems to be a huge "gap" between the known
problems in P and Exponential. That is, almost all known
polynomial problems are no worse than n3 or n4.

Where are the O(n50) problems?? O(n100)? Maybe they
are the ones in NP–Complete?

It's awfully hard to envision a problem that would
require n100, but surely they exist?

Some of the problems in NP–C just look like we should
be able to find a polynomial solution (looks can be
deceiving, though).

P ≠ NP?P ≠ NP?
Why should P not equal NP?

• P = NP would mean, for any problem in NP, that
it is just as easy to solve an instance form
"scratch," as it is to verify the answer if
someone gives it to you. That seems a bit hard
to believe.

• There simply are a lot of awfully hard looking
problems in NP–Complete (and Co–NP-Complete)
and some just don't seem to be solvable in
polynomial time.

• An awfully lot of smart people have tried for a
long time to find polynomial algorithms for some
of the problems in NP-Complete - with no luck.

Why should P not equal NP?
• P = NP would mean, for any problem in NP, that

it is just as easy to solve an instance form
"scratch," as it is to verify the answer if
someone gives it to you. That seems a bit hard
to believe.

• There simply are a lot of awfully hard looking
problems in NP–Complete (and Co–NP-Complete)
and some just don't seem to be solvable in
polynomial time.

• An awfully lot of smart people have tried for a
long time to find polynomial algorithms for some
of the problems in NP-Complete - with no luck.

Beyond NPBeyond NP

We now explore problems (possibly) outside
NP.

The first are closely related to NP problems,
are simple looking, but some seem very
difficult to solve.

For most of these, we must invoke Turing
Reductions, because Polynomial
Transformations do not seem to be powerful
enough.

We now explore problems (possibly) outside
NP.

The first are closely related to NP problems,
are simple looking, but some seem very
difficult to solve.

For most of these, we must invoke Turing
Reductions, because Polynomial
Transformations do not seem to be powerful
enough.

Fourth Significant Class of Problems:

The Class Co–NP

(The COmplement problems of NP)

Fourth Significant Class of Problems:

The Class Co–NP

(The COmplement problems of NP)

For any decision problem A in NP, there is a
„complement‟ problem Co–A defined on the same
instances as A, but with a question whose answer is
the negation of the answer in A. That is, an instance is
a "yes" instance for A if and only if it is a "no"
instance in Co–A.

Notice that the complement of a complement problem
is the original problem.

For any decision problem A in NP, there is a
„complement‟ problem Co–A defined on the same
instances as A, but with a question whose answer is
the negation of the answer in A. That is, an instance is
a "yes" instance for A if and only if it is a "no"
instance in Co–A.

Notice that the complement of a complement problem
is the original problem.

Co–NP is the set of all decision problems whose

complements are members of NP.

For example: consider Graph Color

GC

Given: A graph G and an integer k.

Question: Can G be properly colored with k colors?

Co–NP is the set of all decision problems whose

complements are members of NP.

For example: consider Graph Color

GC

Given: A graph G and an integer k.

Question: Can G be properly colored with k colors?

The complement problem of GC

Co–GC

Given: A graph G and an integer k.

Question: Do all proper colorings of G

require more than k colors?

The complement problem of GC

Co–GC

Given: A graph G and an integer k.

Question: Do all proper colorings of G

require more than k colors?

Notice that Co–GC is a problem that does
not appear to be in the set NP. That is, we
know of no way to check in polynomial
time the answer to a "Yes" instance of Co–
GC.

What is the "answer" to a Yes instance
that can be verified in polynomial time?

Notice that Co–GC is a problem that does
not appear to be in the set NP. That is, we
know of no way to check in polynomial
time the answer to a "Yes" instance of Co–
GC.

What is the "answer" to a Yes instance
that can be verified in polynomial time?

Not all problems in NP behave this way. For example,
if X is a problem in class P, then both "yes" and "no"
instances can be solved in polynomial time.

That is, both "yes" and "no" instances can be
verified in polynomial time and hence, X and Co–X
are both in NP, in fact, both are in P.

This implies P = Co–P and, further,

P = Co–P  NP  Co–NP.

Not all problems in NP behave this way. For example,
if X is a problem in class P, then both "yes" and "no"
instances can be solved in polynomial time.

That is, both "yes" and "no" instances can be
verified in polynomial time and hence, X and Co–X
are both in NP, in fact, both are in P.

This implies P = Co–P and, further,

P = Co–P  NP  Co–NP.

This gives rise to a second fundamental question:

NP = Co–NP?

If P = NP, then NP = Co–NP.

This is not "if and only if."

It is possible that NP = Co–NP and, yet, P ≠ NP.

This gives rise to a second fundamental question:

NP = Co–NP?

If P = NP, then NP = Co–NP.

This is not "if and only if."

It is possible that NP = Co–NP and, yet, P ≠ NP.

If A P B and both are in NP, then the same

polynomial transformation will reduce Co-A to

Co–B. That is, Co–A P Co–B. Therefore, Co–

SAT is 'complete' in Co–NP.

In fact, corresponding to NP–Complete is the

complement set Co–NP–Complete, the set of

hardest problems in Co–NP.

If A P B and both are in NP, then the same

polynomial transformation will reduce Co-A to

Co–B. That is, Co–A P Co–B. Therefore, Co–

SAT is 'complete' in Co–NP.

In fact, corresponding to NP–Complete is the

complement set Co–NP–Complete, the set of

hardest problems in Co–NP.

Turing ReductionsTuring Reductions

Now, return to Turing Reductions.

Recall that Turing reductions include

polynomial transformations as a special

case. So, we should expect they will be

more powerful.

Now, return to Turing Reductions.

Recall that Turing reductions include

polynomial transformations as a special

case. So, we should expect they will be

more powerful.

(1) Problems A and B can, but need not, be

decision problems.

(2) No restriction placed upon the number

of instances of B that are constructed.

(3) Nor, how the result, AnswerA, is computed.

(1) Problems A and B can, but need not, be

decision problems.

(2) No restriction placed upon the number

of instances of B that are constructed.

(3) Nor, how the result, AnswerA, is computed.

Technically, Turing Reductions include

Polynomial Transformations, but it is useful to

distinguish them.

Polynomial transformations are often the easiest to

apply.

Technically, Turing Reductions include

Polynomial Transformations, but it is useful to

distinguish them.

Polynomial transformations are often the easiest to

apply.

NP–HardNP–Hard

Fifth Significant Class of Problems:

The Class NP–Hard

Fifth Significant Class of Problems:

The Class NP–Hard

To date, we have concerned ourselves with
decision problems. We are now in a
position to include additional problems. In
particular, optimization problems.

We require one additional tool – the second
type of transformation discussed above –
Turing reductions.

To date, we have concerned ourselves with
decision problems. We are now in a
position to include additional problems. In
particular, optimization problems.

We require one additional tool – the second
type of transformation discussed above –
Turing reductions.

Definition: Problem B is NP–Hard if there is a Turing

reduction A  B for some problem A in NP–

Complete.

This implies NP–Hard problems are at least as hard

as NP–Complete problems. Therefore, they can not

be solved in polynomial time unless P = NP (and

maybe not then).

Definition: Problem B is NP–Hard if there is a Turing

reduction A  B for some problem A in NP–

Complete.

This implies NP–Hard problems are at least as hard

as NP–Complete problems. Therefore, they can not

be solved in polynomial time unless P = NP (and

maybe not then).

• {Example}• {Example}

Polynomial transformations are Turing reductions.

Thus, NP–Complete is a subset of NP–Hard.

Co–NP–Complete also is a subset of NP–Hard.

NP–Hard contains many other interesting problems.

Polynomial transformations are Turing reductions.

Thus, NP–Complete is a subset of NP–Hard.

Co–NP–Complete also is a subset of NP–Hard.

NP–Hard contains many other interesting problems.

NP–EquivalentNP–Equivalent

Co–NP problems are solvable in polynomial time if and

only their complement problem in NP is solvable in

polynomial time.

Due to the existence of Turing reductions reducing

either to the other.

Other problems not known to be in NP can also have

this property (besides those in Co–NP).

Co–NP problems are solvable in polynomial time if and

only their complement problem in NP is solvable in

polynomial time.

Due to the existence of Turing reductions reducing

either to the other.

Other problems not known to be in NP can also have

this property (besides those in Co–NP).

NP–EquivalentNP–Equivalent

Problem B in NP–Hard is NP–Equivalent when B reduces to
any problem X in NP, That is, B  X.

Since B is in NP–Hard, we already know there is a problem A
in NP–Complete that reduces to B. That is, A  B.

Since X is in NP, X  A. Therefore, X  A  B  X.

Thus, X, A, and B are all polyomially equivalent, and we can
say

Theorem. Problems in NP–Equivalent are polynomial if and
only if P = NP.

Problem B in NP–Hard is NP–Equivalent when B reduces to
any problem X in NP, That is, B  X.

Since B is in NP–Hard, we already know there is a problem A
in NP–Complete that reduces to B. That is, A  B.

Since X is in NP, X  A. Therefore, X  A  B  X.

Thus, X, A, and B are all polyomially equivalent, and we can
say

Theorem. Problems in NP–Equivalent are polynomial if and
only if P = NP.

NP–EquivalentNP–Equivalent

Problem X need not be, but often is, NP–

Complete.

In fact, X can be any problem in NP or Co–NP.

Problem X need not be, but often is, NP–

Complete.

In fact, X can be any problem in NP or Co–NP.

Case StudiesCase Studies

Alliances and Secure SetsAlliances and Secure Sets

Alliances: Members of a group who have agreed to

support their neighbors in the group in times of

need/crisis.

Military alliances

Businesses alliances

etc.

Alliances: Members of a group who have agreed to

support their neighbors in the group in times of

need/crisis.

Military alliances

Businesses alliances

etc.

Basic Property

Any "attacking" force by nonmembers on a single member

of the alliance can be "defended" by that member and its

neighbors in the alliance.

A number of variations exist and have been studied.

For example, we might require there be k more, or

fewer, defenders than attackers, etc.

Basic Property

Any "attacking" force by nonmembers on a single member

of the alliance can be "defended" by that member and its

neighbors in the alliance.

A number of variations exist and have been studied.

For example, we might require there be k more, or

fewer, defenders than attackers, etc.

A Graph Model:

For a graph G = (V, E),

S  V(G) is a defensive alliance if for every vertex

x in S, x plus its neighbors in S are, in number, at

least as many as the number of neighbors of x

that are not in S.

A Graph Model:

For a graph G = (V, E),

S  V(G) is a defensive alliance if for every vertex

x in S, x plus its neighbors in S are, in number, at

least as many as the number of neighbors of x

that are not in S.

Formally:

For every x  S,

|N[x]  S| ≥ |N[x]–S|.

{A simple picture?}

Formally:

For every x  S,

|N[x]  S| ≥ |N[x]–S|.

{A simple picture?}

Alliances have also been proposed as:

Similarity measures for large data bases for

finding "clusters" of similar objects; Related

pages on the World Wide Web; etc.

Alliances have also been proposed as:

Similarity measures for large data bases for

finding "clusters" of similar objects; Related

pages on the World Wide Web; etc.

Formal statement of the Defensive Alliance problem (as
a decision problem):

Defensive Alliance:

Given: A graph G and an integer k.

Does G have a Defensive Alliance with at

most k vertices?

This has been proven to be NP–Complete.

Formal statement of the Defensive Alliance problem (as
a decision problem):

Defensive Alliance:

Given: A graph G and an integer k.

Does G have a Defensive Alliance with at

most k vertices?

This has been proven to be NP–Complete.

It is a hard problem.

There may not exist any

"fast" algorithms.

It is a hard problem.

There may not exist any

"fast" algorithms.

As models for businesses and military, it was

quickly realized that a defensive alliance could not

always protect it's members from an intelligent

enemy making use of a coordinated and

simultaneous attack on several alliance members.

As models for businesses and military, it was

quickly realized that a defensive alliance could not

always protect it's members from an intelligent

enemy making use of a coordinated and

simultaneous attack on several alliance members.

{Use the picture above as an example.}{Use the picture above as an example.}

A stronger version of a defensive alliance

was proposed – a Secure Set:

An alliance in which every possible simultaneous

attack can be defended.

A stronger version of a defensive alliance

was proposed – a Secure Set:

An alliance in which every possible simultaneous

attack can be defended.

Formally, in graph theoretic terminology:

S  V(G) is a secure set if and only if

|N[X|  S| ≥ |N[X]–S| for every X  S.

Formally, in graph theoretic terminology:

S  V(G) is a secure set if and only if

|N[X|  S| ≥ |N[X]–S| for every X  S.

Notice, if we only consider sets X  S for

which X has a single vertex – identical to the

definition of a Defensive Alliance.

Notice, if we only consider sets X  S for

which X has a single vertex – identical to the

definition of a Defensive Alliance.

Formal statement of the Secure Set problem

(as a decision problem):

Secure Set:

Given: A graph G and an integer k.

Does G have a Secure Set with at most k

vertices?

Formal statement of the Secure Set problem

(as a decision problem):

Secure Set:

Given: A graph G and an integer k.

Does G have a Secure Set with at most k

vertices?

Notice: If someone were to give us a set of k vertices
and claimed it was a Secure Set:

We do not know how to verify the claim in polynomial
time.

It seems we must check each individual subset of the
given set of k vertices. There are 2k possible subsets to
check. Since k can be n/2, or n/4, etc., k can be order
n, implying 2k is O(2n).

Notice: If someone were to give us a set of k vertices
and claimed it was a Secure Set:

We do not know how to verify the claim in polynomial
time.

It seems we must check each individual subset of the
given set of k vertices. There are 2k possible subsets to
check. Since k can be n/2, or n/4, etc., k can be order
n, implying 2k is O(2n).

So, it seems it can take exponential, O(2n), time to

verify a correct answer.

That would mean Secure Set is not even in the set NP.

Secure Set may be a VERY hard problem.

So, it seems it can take exponential, O(2n), time to

verify a correct answer.

That would mean Secure Set is not even in the set NP.

Secure Set may be a VERY hard problem.

To explore this a little further, consider the

following related problem:

S–Secure

Given: A graph G = (V, E) and S  V.

Is S a secure set?

To explore this a little further, consider the

following related problem:

S–Secure

Given: A graph G = (V, E) and S  V.

Is S a secure set?

Notice that we encounter the same difficulty

as above – We don't know what we could be

given that we could use, in polynomial time,

to verify that S is, in deed, a secure set.

Notice that we encounter the same difficulty

as above – We don't know what we could be

given that we could use, in polynomial time,

to verify that S is, in deed, a secure set.

Suppose, though, we asked the question

differently – the complemented version:

S–notSecure

Given: A graph G = (V, E) and S  V.

Is S not a secure set?

Suppose, though, we asked the question

differently – the complemented version:

S–notSecure

Given: A graph G = (V, E) and S  V.

Is S not a secure set?

Both of these problems use the same set of

instances, and an instance in the first is

"yes" if and only if it is "no" in the second.

The problems are said to be "complements"

of each other. If one is shown to be in NP,

the other is said to be in Co–NP.

Both of these problems use the same set of

instances, and an instance in the first is

"yes" if and only if it is "no" in the second.

The problems are said to be "complements"

of each other. If one is shown to be in NP,

the other is said to be in Co–NP.

Recall that if S is not a secure set, then
there exists a subset X of S for which |N[X]
 S| < |N[X]–S|. So, if we are given an
instance – a graph G and set S – where S is
not a secure set, then someone can give us a
set X and claim "X will not satisfy the
secure set property," that is,

|N[X]  S| < |N[X]–S|.

Recall that if S is not a secure set, then
there exists a subset X of S for which |N[X]
 S| < |N[X]–S|. So, if we are given an
instance – a graph G and set S – where S is
not a secure set, then someone can give us a
set X and claim "X will not satisfy the
secure set property," that is,

|N[X]  S| < |N[X]–S|.

It is an easy process, when given G, S, and

X, to simply count the two quantities and

determine that X does not satisfy the secure

set property. Hence, verifying the answer in

polynomial time. Therefore, S–notSecure is

in the set NP. It follows that S–Secure must

then be in Co–NP.

It is an easy process, when given G, S, and

X, to simply count the two quantities and

determine that X does not satisfy the secure

set property. Hence, verifying the answer in

polynomial time. Therefore, S–notSecure is

in the set NP. It follows that S–Secure must

then be in Co–NP.

Unless P = NP, all NP–Hard problems have

only exponential algorithms.

That is, O(2n) where n is the size of the

instance. This is essentially: "generate and

test each possible solution."

Unless P = NP, all NP–Hard problems have

only exponential algorithms.

That is, O(2n) where n is the size of the

instance. This is essentially: "generate and

test each possible solution."

On the other hand, there are documented

cases of algorithms for some of these

problems that work surprisingly well for

many, if not most, instances.

Why?

On the other hand, there are documented

cases of algorithms for some of these

problems that work surprisingly well for

many, if not most, instances.

Why?

For some problems, we don't know.

But, for others: When certain properties or

features of the problem instances are

restricted, the algorithm actually behaves in

a polynomial manner.

For some problems, we don't know.

But, for others: When certain properties or

features of the problem instances are

restricted, the algorithm actually behaves in

a polynomial manner.

For example –

Subset Sum

Given: n positive integers S = {s1, s2, …, sn} and a value

B.

Is there a subset of S that totals exactly B?

This is an NP–Complete problem. There is a dynamic

programming algorithm that executes in O(Bn) time.

For example –

Subset Sum

Given: n positive integers S = {s1, s2, …, sn} and a value

B.

Is there a subset of S that totals exactly B?

This is an NP–Complete problem. There is a dynamic

programming algorithm that executes in O(Bn) time.

Why is O(Bn) not polynomial?

Because B can be exponentially large, in fact, bigger

than 2n. Notice that 2n can be represented with n bits.

So, B can double when n is increased by only one.

But, if B is relatively small, this is a very reasonable

algorithm.

Why is O(Bn) not polynomial?

Because B can be exponentially large, in fact, bigger

than 2n. Notice that 2n can be represented with n bits.

So, B can double when n is increased by only one.

But, if B is relatively small, this is a very reasonable

algorithm.

Is this "significant"?

Yes, from both a practical and theoretical point of
view.

Practically, there are several other problems that this
approach applies to: Knapsack, bin packing, multi-
processor scheduling, etc., and many of these have
real world implications.

Is this "significant"?

Yes, from both a practical and theoretical point of
view.

Practically, there are several other problems that this
approach applies to: Knapsack, bin packing, multi-
processor scheduling, etc., and many of these have
real world implications.

For example, consider a freight shipping
company that has n = 100 items to be
transported by truck from one coast to the
other. A truck can haul B tons. The total of
the 100 items far exceeds B, so one wishes to
fill the truck to B, if possible (note: getting
as close as possible is an equally difficult
problem).

For example, consider a freight shipping
company that has n = 100 items to be
transported by truck from one coast to the
other. A truck can haul B tons. The total of
the 100 items far exceeds B, so one wishes to
fill the truck to B, if possible (note: getting
as close as possible is an equally difficult
problem).

For the DP algorithm to run in exponential time,

B would need to be in the order of 2100 –

They don't make trucks that big.

Normally, B might be 5 to 10 tons. Thus the

algorithm runs in O(20,000n) time. A large

coefficient, but still linear in n.

For the DP algorithm to run in exponential time,

B would need to be in the order of 2100 –

They don't make trucks that big.

Normally, B might be 5 to 10 tons. Thus the

algorithm runs in O(20,000n) time. A large

coefficient, but still linear in n.

So, what do we mean by FPT?

The idea is to design a solution (an
algorithm) for solving some NP–
Hard problem in such a way that
the part of the problem that leads
to exponential time is isolated.

So, what do we mean by FPT?

The idea is to design a solution (an
algorithm) for solving some NP–
Hard problem in such a way that
the part of the problem that leads
to exponential time is isolated.

Suppose we have developed an

algorithm to find the minimum number

of "bandersnatches" in a graph G. It’s

running time is order

2–n3.

In some sense, what makes this problem

hard is a large difference between the

maximum and minimum degrees.

Suppose we have developed an

algorithm to find the minimum number

of "bandersnatches" in a graph G. It’s

running time is order

2–n3.

In some sense, what makes this problem

hard is a large difference between the

maximum and minimum degrees.

We have a polynomial algorithm for

graphs that are "nearly" regular.

We have a polynomial algorithm for

graphs that are "nearly" regular.

Design algorithms which execute in

f(k)n (or, f(k) + n)

where f is a function independent of n,

and  is a constant.

Unless P = NP, f is exponential in k.

Design algorithms which execute in

f(k)n (or, f(k) + n)

where f is a function independent of n,

and  is a constant.

Unless P = NP, f is exponential in k.

Computability
Theory

Computability
Theory

GoalsGoals

• Provide characterizations (computational models) of
the class of effective procedures / algorithms.

• Study the boundaries between complete (or so it
seems) and incomplete models of computation.

• Study the properties of classes of solvable and
unsolvable problems.

• Solve or prove unsolvable open problems.

• Determine reducibility and equivalence relations
among unsolvable problems.

• Apply results to various other areas of CS.

• Provide characterizations (computational models) of
the class of effective procedures / algorithms.

• Study the boundaries between complete (or so it
seems) and incomplete models of computation.

• Study the properties of classes of solvable and
unsolvable problems.

• Solve or prove unsolvable open problems.

• Determine reducibility and equivalence relations
among unsolvable problems.

• Apply results to various other areas of CS.

The Quest to Mechanize

Mathematical Proofs

The Quest to Mechanize

Mathematical Proofs
• Late 1800’s to early 1900’s

• Axiomatic schemes

• Axioms plus sound rules of inference

• Much of focus on number theory

• First Order Predicate Calculus

• xy [y > x] //quantify variables

• Second Order (Peano’s Axiom)

• P [[P(0) & x[P(x) P(x+1)]]  xP(x)]

//Quantify variables and functions/predicates

• Late 1800’s to early 1900’s

• Axiomatic schemes

• Axioms plus sound rules of inference

• Much of focus on number theory

• First Order Predicate Calculus

• xy [y > x] //quantify variables

• Second Order (Peano’s Axiom)

• P [[P(0) & x[P(x) P(x+1)]]  xP(x)]

//Quantify variables and functions/predicates

MotivationMotivation

• Hilbert’s Belief in 1900

• All mathematics can be developed

within a formal system that allows

the mechanical creation and

checking of proofs.

• Hilbert’s Belief in 1900

• All mathematics can be developed

within a formal system that allows

the mechanical creation and

checking of proofs.

GödelGödel

• In 1931 he showed that any first order theory
that embeds elementary arithmetic is either
incomplete or inconsistent.

• He did this by showing that such a first order
theory cannot reason about itself. That is,
there is a first order expressible proposition
that cannot be either proved or disproved, or
the theory is inconsistent (some proposition
and its complement are both provable).

• Gödel also developed the general notion of
recursive functions but made no claims about
their strength.

• In 1931 he showed that any first order theory
that embeds elementary arithmetic is either
incomplete or inconsistent.

• He did this by showing that such a first order
theory cannot reason about itself. That is,
there is a first order expressible proposition
that cannot be either proved or disproved, or
the theory is inconsistent (some proposition
and its complement are both provable).

• Gödel also developed the general notion of
recursive functions but made no claims about
their strength.

Turing, Post, Church, KleeneTuring, Post, Church, Kleene

• In 1936, each presented a formalism for
computability.
• Turing and Post devised abstract machines and

claimed these represented all mechanically
computable functions.

• Church developed the notion of lambda-
computability (the birth of Lisp) from recursive
functions (as previously defined by Gödel and
Kleene) and claimed completeness for this model.

• Kleene demonstrated the computational
equivalence of recursively defined functions
to Post-Turing machines.

• In 1936, each presented a formalism for
computability.
• Turing and Post devised abstract machines and

claimed these represented all mechanically
computable functions.

• Church developed the notion of lambda-
computability (the birth of Lisp) from recursive
functions (as previously defined by Gödel and
Kleene) and claimed completeness for this model.

• Kleene demonstrated the computational
equivalence of recursively defined functions
to Post-Turing machines.

More Emil PostMore Emil Post

• In the 1920’s, starting with notation developed by
Frege and others in 1880s, Post devised the truth table
form we all use now for Boolean expressions
(propositional logic). This was a part of his PhD thesis
in which he showed the axiomatic completeness of the
propositional calculus.

• In 1936, Post independently devised a formalism
similar to and equivalent to Turing machines.

• In the late 1930’s and the 1940’s, Post devised symbol
manipulation systems in the form of rewriting rules
(precursors to Chomsky’s grammars). He showed their
equivalence to Turing machines.

• Later (1940s), Post showed the complexity
(undecidability) of determining what is derivable from
an arbitrary set of propositional axioms.

• In the 1920’s, starting with notation developed by
Frege and others in 1880s, Post devised the truth table
form we all use now for Boolean expressions
(propositional logic). This was a part of his PhD thesis
in which he showed the axiomatic completeness of the
propositional calculus.

• In 1936, Post independently devised a formalism
similar to and equivalent to Turing machines.

• In the late 1930’s and the 1940’s, Post devised symbol
manipulation systems in the form of rewriting rules
(precursors to Chomsky’s grammars). He showed their
equivalence to Turing machines.

• Later (1940s), Post showed the complexity
(undecidability) of determining what is derivable from
an arbitrary set of propositional axioms.

Sets, Predicates, ProblemsSets, Predicates, Problems

• Let S be an arbitrary subset of some universe U. The
predicate cS over U may be defined by:

cS(x) = true if and only if x  S

cS is called the characteristic function of S.

• Let K be some arbitrary predicate defined over some
universe U. The problem PK associated with K is the
problem to decide of an arbitrary member x of U,
whether or not K(x) is true.

• Let P be an arbitrary decision problem and let U denote
the set of questions in P (usually just the set over which
a single variable part of the questions ranges). The set
SP associated with P is

{ x | x  U and x has answer “yes” in P }

• Let S be an arbitrary subset of some universe U. The
predicate cS over U may be defined by:

cS(x) = true if and only if x  S

cS is called the characteristic function of S.

• Let K be some arbitrary predicate defined over some
universe U. The problem PK associated with K is the
problem to decide of an arbitrary member x of U,
whether or not K(x) is true.

• Let P be an arbitrary decision problem and let U denote
the set of questions in P (usually just the set over which
a single variable part of the questions ranges). The set
SP associated with P is

{ x | x  U and x has answer “yes” in P }

Categorizing Problems/SetsCategorizing Problems/Sets

• Solvable or Decidable -- A problem P is said to be

solvable (decidable) if there exists an algorithm F which,

when applied to a question q in P, produces the correct

answer (“yes” or “no”).

• Solved -- A problem P is said to solved if P is solvable and

we have produced its solution.

• Unsolved, Unsolvable (Undecidable) -- Complements of

above concepts

• Solvable or Decidable -- A problem P is said to be

solvable (decidable) if there exists an algorithm F which,

when applied to a question q in P, produces the correct

answer (“yes” or “no”).

• Solved -- A problem P is said to solved if P is solvable and

we have produced its solution.

• Unsolved, Unsolvable (Undecidable) -- Complements of

above concepts

Categorizing Problems/SetsCategorizing Problems/Sets

• Recursively enumerable -- A set S is recursively
enumerable (re) if S is empty (S = Ø) or there exists an
algorithm F, over the natural numbers , whose range is
exactly S. A problem is said to be re if the set associated
with it is re.

• Semi-Decidable -- A problem is said to be semi-decidable
if there is an effective procedure F which, when applied
to a question q in P, produces the answer “yes” if and
only if q has answer “yes.” F need not halt if q has
answer “no.”

• Non-re, Not Semi-Decidable -- Complements of above
concepts

• Recursively enumerable -- A set S is recursively
enumerable (re) if S is empty (S = Ø) or there exists an
algorithm F, over the natural numbers , whose range is
exactly S. A problem is said to be re if the set associated
with it is re.

• Semi-Decidable -- A problem is said to be semi-decidable
if there is an effective procedure F which, when applied
to a question q in P, produces the answer “yes” if and
only if q has answer “yes.” F need not halt if q has
answer “no.”

• Non-re, Not Semi-Decidable -- Complements of above
concepts

Immediate ImplicationsImmediate Implications

• P re iff P semi-decidable.

• P solvable iff both SP and (U — SP) are re (semi-
decidable).

• P solved implies P solvable implies P semi-decidable (re).

• P non-re implies P unsolvable implies P unsolved.

• P finite implies P solvable.

• THINK ABOUT THESE.

• P re iff P semi-decidable.

• P solvable iff both SP and (U — SP) are re (semi-
decidable).

• P solved implies P solvable implies P semi-decidable (re).

• P non-re implies P unsolvable implies P unsolved.

• P finite implies P solvable.

• THINK ABOUT THESE.

How many programs?How many programs?

• Since each procedure must be built from a finite

alphabet and must be of finite length, then the number

of procedures in any model of computation must be

countable.

• Since the number of procedures is countable, then the

set of procedures (and also algorithms which are a subset

of the procedures) is also countable.

• In fact, the set of procedures in any programming

languages is decidable (we just need to check syntax),

and hence recursively enumerable.

• Since each procedure must be built from a finite

alphabet and must be of finite length, then the number

of procedures in any model of computation must be

countable.

• Since the number of procedures is countable, then the

set of procedures (and also algorithms which are a subset

of the procedures) is also countable.

• In fact, the set of procedures in any programming

languages is decidable (we just need to check syntax),

and hence recursively enumerable.

How many decision problems?How many decision problems?

• We will just consider decision problems about sets of

natural numbers.

• Clearly, the number of such decision problems is the

same as the number of subsets of the natural numbers.

• The number of subset of any set S is 2|S|, and this is

strictly larger than |S|, even if S is infinite.

• Specifically, the number of programs in any model of

computation is countably infinite (0), but the number

of decision problems is uncountably infinite

(20=1>0).

• We will just consider decision problems about sets of

natural numbers.

• Clearly, the number of such decision problems is the

same as the number of subsets of the natural numbers.

• The number of subset of any set S is 2|S|, and this is

strictly larger than |S|, even if S is infinite.

• Specifically, the number of programs in any model of

computation is countably infinite (0), but the number

of decision problems is uncountably infinite

(20=1>0).

Existence of UndecidablesExistence of Undecidables

• A counting argument
From the previous slide we see that the there are a
countable number of algorithms, but that there are an
uncountable number of decision problems. Thus, most
decision problems have no associated algorithms that
can decide their memberships.

This means that there are undecidable problems, but
this kind of proof does nothing to identify any
interesting ones.

• A counting argument
From the previous slide we see that the there are a
countable number of algorithms, but that there are an
uncountable number of decision problems. Thus, most
decision problems have no associated algorithms that
can decide their memberships.

This means that there are undecidable problems, but
this kind of proof does nothing to identify any
interesting ones.

Finite versus Infinite ProblemsFinite versus Infinite Problems

Every decision problem with a finite number of instances,

say N, is solvable. The solution is contained in one of the

rows of the Truth Table that has N columns, one for each

instance of the problem, and 2N rows, one for each possible

solution.

Any problem with an infinite number of instances may

potentially be unsolvable. We’ll give an existence proof on

the next slide.

Every decision problem with a finite number of instances,

say N, is solvable. The solution is contained in one of the

rows of the Truth Table that has N columns, one for each

instance of the problem, and 2N rows, one for each possible

solution.

Any problem with an infinite number of instances may

potentially be unsolvable. We’ll give an existence proof on

the next slide.

A Classic Unsolvable ProblemA Classic Unsolvable Problem

Given an arbitrary program P, in some language L, and an

input x to P, will P eventually stop when run with input x?

The above problem is called the “Halting Problem.” It is

clearly an important and practical one – wouldn't it be nice

to not be embarrassed by having your program run

“forever” when you try to do a demo for the boss or

professor? Unfortunately, there’s a fly in the ointment as

one can prove that no algorithm can be written in L that

solves the halting problem for L.

Given an arbitrary program P, in some language L, and an

input x to P, will P eventually stop when run with input x?

The above problem is called the “Halting Problem.” It is

clearly an important and practical one – wouldn't it be nice

to not be embarrassed by having your program run

“forever” when you try to do a demo for the boss or

professor? Unfortunately, there’s a fly in the ointment as

one can prove that no algorithm can be written in L that

solves the halting problem for L.

Some terminologySome terminology

We will say that a procedure, f, converges on input x if it

eventually halts when it receives x as input. We denote this

as f(x).

We will say that a procedure, f, diverges on input x if it

never halts when it receives x as input. We denote this as

f(x).

Of course, if f(x) then f defines a value for x. In fact we

also say that f(x) is defined if f(x) and undefined if f(x).

Finally, we define the domain of f as {x | f(x)}. The range

of f is {y | f(x) and f(x) = y }.

We will say that a procedure, f, converges on input x if it

eventually halts when it receives x as input. We denote this

as f(x).

We will say that a procedure, f, diverges on input x if it

never halts when it receives x as input. We denote this as

f(x).

Of course, if f(x) then f defines a value for x. In fact we

also say that f(x) is defined if f(x) and undefined if f(x).

Finally, we define the domain of f as {x | f(x)}. The range

of f is {y | f(x) and f(x) = y }.

Halting ProblemHalting Problem

Assume we can decide the Halting Problem. Then there
exists some total function Halt such that

1 if [x](y)

Halt(x,y) =

0 if [x](y)

Here, we have numbered all programs and [x] refers to
the x-th program in this ordering. Now we can view Halt
as a mapping from  into {0,1} by treating its input as a
single number representing the pairing of two numbers
via the one-one onto function

pair(x,y) = <x,y> = 2x (2y + 1) – 1

with inverses

<z>1 = exp(z+1,1)
<z>2 = (((z + 1) // 2 <z>1) – 1) // 2

Assume we can decide the Halting Problem. Then there
exists some total function Halt such that

1 if [x](y)

Halt(x,y) =

0 if [x](y)

Here, we have numbered all programs and [x] refers to
the x-th program in this ordering. Now we can view Halt
as a mapping from  into {0,1} by treating its input as a
single number representing the pairing of two numbers
via the one-one onto function

pair(x,y) = <x,y> = 2x (2y + 1) – 1

with inverses

<z>1 = exp(z+1,1)
<z>2 = (((z + 1) // 2 <z>1) – 1) // 2

Halting ProblemHalting Problem

Now if Halt exist, then so does Disagree, where

0 if Halt(x,x)=0, i.e., if x

Disagree(x) =

my (y=y+1) if Halt(x,x)=1, i.e., if x

Since Disagree is a program from  into , Disagree can
be reasoned about by Halt. Let d be such that Disagree
= [d], then

Disagree(d)  Halt(d,d)=0  d  Disagree(d)

But this means that Disagree contradicts its own
existence. Since every step we took was constructive,
except for the original assumption, we must presume
that the original assumption was in error. Thus, the
Halting Problem is not solvable.

Now if Halt exist, then so does Disagree, where

0 if Halt(x,x)=0, i.e., if x

Disagree(x) =

my (y=y+1) if Halt(x,x)=1, i.e., if x

Since Disagree is a program from  into , Disagree can
be reasoned about by Halt. Let d be such that Disagree
= [d], then

Disagree(d)  Halt(d,d)=0  d  Disagree(d)

But this means that Disagree contradicts its own
existence. Since every step we took was constructive,
except for the original assumption, we must presume
that the original assumption was in error. Thus, the
Halting Problem is not solvable.

Halting ProblemHalting Problem

While the Halting Problem is not solvable, it is re, or
semi-decidable.

To see this, consider the following semi-decision
procedure. Let P be an arbitrary procedure and let x be
an arbitrary natural number. Run the procedure P on
input x until it stops. If it stops, say “yes.” If P does not
stop, we will provide no answer. This semi-decides the
Halting Problem. Here is a procedural description.

Semi_Decide_Halting() {

Read P, x;

P(x);

Print “yes”;

}

While the Halting Problem is not solvable, it is re, or
semi-decidable.

To see this, consider the following semi-decision
procedure. Let P be an arbitrary procedure and let x be
an arbitrary natural number. Run the procedure P on
input x until it stops. If it stops, say “yes.” If P does not
stop, we will provide no answer. This semi-decides the
Halting Problem. Here is a procedural description.

Semi_Decide_Halting() {

Read P, x;

P(x);

Print “yes”;

}

Why not just algorithms?Why not just algorithms?

A question that might come to mind is why we could not
just have a model of computation that involves only
programs that halt for all input. Assume you have such a
model – our claim is that this model must be incomplete!

Here’s the logic. Any programming language needs to
have an associated grammar that can be used to
generate all legitimate programs. By ordering the rules of
the grammar in a way that generates programs in some
lexical or syntactic order, we have a means to
recursively enumerate the set of all programs. Thus, the
set of procedures (programs) is re. using this fact, we
will employ the notation that x is the x-th procedure
and x(y) is the x-th procedure with input y. We also
refer to x as the procedure’s index.

A question that might come to mind is why we could not
just have a model of computation that involves only
programs that halt for all input. Assume you have such a
model – our claim is that this model must be incomplete!

Here’s the logic. Any programming language needs to
have an associated grammar that can be used to
generate all legitimate programs. By ordering the rules of
the grammar in a way that generates programs in some
lexical or syntactic order, we have a means to
recursively enumerate the set of all programs. Thus, the
set of procedures (programs) is re. using this fact, we
will employ the notation that x is the x-th procedure
and x(y) is the x-th procedure with input y. We also
refer to x as the procedure’s index.

The universal machineThe universal machine

First, we can all agree that any complete model of
computation must be able to simulate programs in its
own language. We refer to such a simulator (interpreter)
as the Universal machine, denote Univ. This program
gets two inputs. The first is a description of the program
to be simulated and the second of the input to that
program. Since the set of programs in a model is re, we
will assume both arguments are natural numbers; the
first being the index of the program. Thus,

Univ(x,y) = x(y)

First, we can all agree that any complete model of
computation must be able to simulate programs in its
own language. We refer to such a simulator (interpreter)
as the Universal machine, denote Univ. This program
gets two inputs. The first is a description of the program
to be simulated and the second of the input to that
program. Since the set of programs in a model is re, we
will assume both arguments are natural numbers; the
first being the index of the program. Thus,

Univ(x,y) = x(y)

Assume algorithms are reAssume algorithms are re

• Assume that the set of algorithms, TOTAL, can be
enumerated, and that F accomplishes this. Then

F(x) = Fx

where F0, F1, F2, … is a list of the indices of all the
algorithms (a subset of the indices of the procedures)

• Assuming the existence of F, we can use our universal
procedure to simulate the x-th algorithm on input y by
Univ(F(x),y) = Fx(y)

• Since each procedure enumerated by F is an algorithm,
then the universal procedure will always halt when its
first argument is an element of the range of F.

• Assume that the set of algorithms, TOTAL, can be
enumerated, and that F accomplishes this. Then

F(x) = Fx

where F0, F1, F2, … is a list of the indices of all the
algorithms (a subset of the indices of the procedures)

• Assuming the existence of F, we can use our universal
procedure to simulate the x-th algorithm on input y by
Univ(F(x),y) = Fx(y)

• Since each procedure enumerated by F is an algorithm,
then the universal procedure will always halt when its
first argument is an element of the range of F.

Algorithms are not reAlgorithms are not re

• Define G(x) = Univ(F(x),x) + 1 = F(x)(x) + 1= Fx(x) + 1

• But then G is itself an algorithm. Assume it is the g-th

F(g) = Fg = G

Then, G(g) = Fg(g) + 1 = G(g) + 1

• But then G contradicts its own existence since an algorithm
must produce a unique value for each input.

• This cannot be used to show that the effective procedures
are non-enumerable, since the above is not a contradiction
if G(g) is undefined. In fact, we already have shown how to
enumerate the procedures.

• Define G(x) = Univ(F(x),x) + 1 = F(x)(x) + 1= Fx(x) + 1

• But then G is itself an algorithm. Assume it is the g-th

F(g) = Fg = G

Then, G(g) = Fg(g) + 1 = G(g) + 1

• But then G contradicts its own existence since an algorithm
must produce a unique value for each input.

• This cannot be used to show that the effective procedures
are non-enumerable, since the above is not a contradiction
if G(g) is undefined. In fact, we already have shown how to
enumerate the procedures.

ConsequencesConsequences

• To capture all the algorithms, any model of computation
must include some procedures that are not algorithms.

• Since the potential for non-termination is required,
every complete model must have some for form of
iteration that is potentially unbounded.

• This means that simple, well-behaved for-loops (the kind
where you can predict the number of iterations on entry
to the loop) are not sufficient. While type loops are
needed, even if implicit rather than explicit.

• To capture all the algorithms, any model of computation
must include some procedures that are not algorithms.

• Since the potential for non-termination is required,
every complete model must have some for form of
iteration that is potentially unbounded.

• This means that simple, well-behaved for-loops (the kind
where you can predict the number of iterations on entry
to the loop) are not sufficient. While type loops are
needed, even if implicit rather than explicit.

Models of computationModels of computation

We have already looked at one model of computation,
the Turing Machine, and discussed variations, such as
multiple tapes, noting that these do not change the
power of these devices.

We will now look at three very different models

Register Machines

Factor Replacement Systems

Recursive Functions

We will then show each of these models of computation
is equivalent. This is evidence (not proof) that these are
complete models of computation.

We have already looked at one model of computation,
the Turing Machine, and discussed variations, such as
multiple tapes, noting that these do not change the
power of these devices.

We will now look at three very different models

Register Machines

Factor Replacement Systems

Recursive Functions

We will then show each of these models of computation
is equivalent. This is evidence (not proof) that these are
complete models of computation.

Register MachinesRegister Machines

• A register machine consists of a finite length program, each of
whose instructions is chosen from a small repertoire of simple
commands (increment/decrement).

• The instructions are labeled from 1 to m, where there are m
instructions. Computation starts with instruction 1.
Termination occurs as a result of an attempt to execute the
m+1-st instruction.

• The storage medium is a finite set of registers, each capable of
storing an arbitrary natural number.

• Any given register machine has a finite, predetermined number
of registers, independent of its input.

• The arguments x1,x2,…,xn are placed in r2, .. rn+1, all other
registers zero. The result is stored in r1, with other register
contents irrelevant (although we often preserve them).

• A register machine consists of a finite length program, each of
whose instructions is chosen from a small repertoire of simple
commands (increment/decrement).

• The instructions are labeled from 1 to m, where there are m
instructions. Computation starts with instruction 1.
Termination occurs as a result of an attempt to execute the
m+1-st instruction.

• The storage medium is a finite set of registers, each capable of
storing an arbitrary natural number.

• Any given register machine has a finite, predetermined number
of registers, independent of its input.

• The arguments x1,x2,…,xn are placed in r2, .. rn+1, all other
registers zero. The result is stored in r1, with other register
contents irrelevant (although we often preserve them).

Addition ExampleAddition Example

Addition (r1  r2 + r3) // Assume all but r2, r3 are zeroed

1. DEC2[2,4] : Add r2to r1, saving original r2 in r4

2. INC1[3]

3. INC4[1]

4. DEC4[5,6] : Restore r2

5. INC2[4]

6. DEC3[7,9] : Add r3 to r1, saving original r3 in r4

7. INC1[8]

8. INC4[6]

9. DEC4[10,11] : Restore r3

10. INC3[9]

11. : Halt by branching here

Addition (r1  r2 + r3) // Assume all but r2, r3 are zeroed

1. DEC2[2,4] : Add r2to r1, saving original r2 in r4

2. INC1[3]

3. INC4[1]

4. DEC4[5,6] : Restore r2

5. INC2[4]

6. DEC3[7,9] : Add r3 to r1, saving original r3 in r4

7. INC1[8]

8. INC4[6]

9. DEC4[10,11] : Restore r3

10. INC3[9]

11. : Halt by branching here

Limited SubtractionLimited Subtraction

Subtraction (r1  r2 – r3, if r2≥r3; 0, otherwise)

1. DEC2[2,4] : Add r2 to 1 saving original r2 in r4

2. INC1[3]

3. INC4[1]

4. DEC4[5,6] : Restore r2

5. INC2[4]

6. DEC3[7,9] : Subtract r3 from r1, saving r3 in r4

7. DEC1[8,8] : Note that decrementing 0 does nothing

8. INC4[6]

9. DEC4[10,11] : Restore r3

10. INC3[9]

11. : Halt by branching here

Subtraction (r1  r2 – r3, if r2≥r3; 0, otherwise)

1. DEC2[2,4] : Add r2 to 1 saving original r2 in r4

2. INC1[3]

3. INC4[1]

4. DEC4[5,6] : Restore r2

5. INC2[4]

6. DEC3[7,9] : Subtract r3 from r1, saving r3 in r4

7. DEC1[8,8] : Note that decrementing 0 does nothing

8. INC4[6]

9. DEC4[10,11] : Restore r3

10. INC3[9]

11. : Halt by branching here

Factor Replacement SystemsFactor Replacement Systems

• A factor replacement system (FRS) consists of a finite
(ordered) sequence of fractions, and some starting
natural number x.

• A fraction a/b is applicable to some natural number x,
just in case x is divisible by b. We always chose the first
applicable fraction (a/b), multiplying it times x to
produce a new natural number x*a/b. The process is
then applied to this new number.

• Termination occurs when no fraction is applicable.

• A factor replacement system partially computing n-ary
function F typically starts with its argument encoded as
powers of the first n odd primes. Thus, arguments
x1,x2,…,xn are encoded as 3x15x2…pn

xn. The result then
appears as the power of the prime 2.

• A factor replacement system (FRS) consists of a finite
(ordered) sequence of fractions, and some starting
natural number x.

• A fraction a/b is applicable to some natural number x,
just in case x is divisible by b. We always chose the first
applicable fraction (a/b), multiplying it times x to
produce a new natural number x*a/b. The process is
then applied to this new number.

• Termination occurs when no fraction is applicable.

• A factor replacement system partially computing n-ary
function F typically starts with its argument encoded as
powers of the first n odd primes. Thus, arguments
x1,x2,…,xn are encoded as 3x15x2…pn

xn. The result then
appears as the power of the prime 2.

Addition ExampleAddition Example

Addition is 3x15x2 becomes 2x1+x2

or, in more details, 203x15x2 becomes 2x1+x2 3050

2 / 3

2 / 5

Note that these systems are sometimes presented as
rewriting rules of the form

bx  ax

meaning that a number that has a factored as bx can
have the factor b replaced by an a.
The previous rules would then be written

3x  2x

5x  2x

Addition is 3x15x2 becomes 2x1+x2

or, in more details, 203x15x2 becomes 2x1+x2 3050

2 / 3

2 / 5

Note that these systems are sometimes presented as
rewriting rules of the form

bx  ax

meaning that a number that has a factored as bx can
have the factor b replaced by an a.
The previous rules would then be written

3x  2x

5x  2x

Subtraction ExampleSubtraction Example

Subtraction is 3x15x2 becomes 2x1-x2

or, in more details, 203x15x2 becomes 2x1-x2 3050

35x  x

3x  2x

5x  x

Note: We have not saved the original input here. That can be
done by using extra primes for “state” information. For
instance, we could start with 3x15x213, where the 13 means we
are in the first state; 17 is the second state; 7 and 11 are used
to save and restore the exponents of 3 and 5.

3513x  71113x

3x13  2713x

13x  17x

713x  3x

1113x  5x

13x  x

Subtraction is 3x15x2 becomes 2x1-x2

or, in more details, 203x15x2 becomes 2x1-x2 3050

35x  x

3x  2x

5x  x

Note: We have not saved the original input here. That can be
done by using extra primes for “state” information. For
instance, we could start with 3x15x213, where the 13 means we
are in the first state; 17 is the second state; 7 and 11 are used
to save and restore the exponents of 3 and 5.

3513x  71113x

3x13  2713x

13x  17x

713x  3x

1113x  5x

13x  x

Importance of orderImportance of order

To see why determinism makes a difference, consider

35x  x

3x  2x

5x  x

Starting with 135 = 3351, deterministically we get

135  9  6  4 = 22

Non-deterministically we get a larger, less selective set.

135  9  6  4 = 22

135  90  60  40  8 = 23

135  45  3  2 = 21

135  45  15  1 = 20

135  45  15  5  1 = 20

135  45  15  3  2 = 21

135  45  9  6  4 = 22

135  90  60  40  8 = 23

…

This computes 2z where 0 ≤ z ≤x1. Think about it.

To see why determinism makes a difference, consider

35x  x

3x  2x

5x  x

Starting with 135 = 3351, deterministically we get

135  9  6  4 = 22

Non-deterministically we get a larger, less selective set.

135  9  6  4 = 22

135  90  60  40  8 = 23

135  45  3  2 = 21

135  45  15  1 = 20

135  45  15  5  1 = 20

135  45  15  3  2 = 21

135  45  9  6  4 = 22

135  90  60  40  8 = 23

…

This computes 2z where 0 ≤ z ≤x1. Think about it.

Primitive recursive

functions

Primitive recursive

functions
• The primitive recursive functions are defined by starting

with some base set of functions and then expanding this
set via rules that create new primitive recursive
functions from old ones.

• The base functions are:

Ca(x1,…,xn) = a : constant functions

Ini(x1,…,xn) = xi : identity functions

: aka projection

S(x) = x+1 : an increment function

• The primitive recursive functions are defined by starting
with some base set of functions and then expanding this
set via rules that create new primitive recursive
functions from old ones.

• The base functions are:

Ca(x1,…,xn) = a : constant functions

Ini(x1,…,xn) = xi : identity functions

: aka projection

S(x) = x+1 : an increment function

Building new functionsBuilding new functions

• Composition:

If G, H1, … , Hk are already known to be primitive
recursive, then so is F, where

F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn))

• Iteration (aka primitive recursion):

If G, H are already known to be primitive recursive, then
so is F, where

F(0, x1,…,xn) = G(x1,…,xn)

F(y+1, x1,…,xn) = H(y, x1,…,xn, F(y, x1,…,xn))

We also allow definitions like the above, except iterating
on y as the last, rather than first argument.

• Composition:

If G, H1, … , Hk are already known to be primitive
recursive, then so is F, where

F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn))

• Iteration (aka primitive recursion):

If G, H are already known to be primitive recursive, then
so is F, where

F(0, x1,…,xn) = G(x1,…,xn)

F(y+1, x1,…,xn) = H(y, x1,…,xn, F(y, x1,…,xn))

We also allow definitions like the above, except iterating
on y as the last, rather than first argument.

Addition and MultiplicationAddition and Multiplication

Example: Addition

+(0,y) = I11(y)

+(x+1,y) = H(x,y,+(x,y))

where H(a,b,c) = S(I33(a,b,c))

= S(c) = +(x,y) + 1 = (x+y) + 1

Example: Multiplication

*(0,y) = C0(y)

(x+1,y) = H(x,y,(x,y))

where H(a,b,c) = +(I32(a,b,c), I33(a,b,c))

= b+c = y + *(x,y) = (x+1)*y

Example: Addition

+(0,y) = I11(y)

+(x+1,y) = H(x,y,+(x,y))

where H(a,b,c) = S(I33(a,b,c))

= S(c) = +(x,y) + 1 = (x+y) + 1

Example: Multiplication

*(0,y) = C0(y)

(x+1,y) = H(x,y,(x,y))

where H(a,b,c) = +(I32(a,b,c), I33(a,b,c))

= b+c = y + *(x,y) = (x+1)*y

Basic arithmeticBasic arithmetic

x + 1:

x + 1 = S(x)

x – 1:

0 - 1 = 0

(x+1) - 1 = x

x + y:

x + 0 = x

x+ (y+1) = (x+y) + 1

x – y: // limited subtraction

x – 0 = x

x – (y+1) = (x–y) – 1

x + 1:

x + 1 = S(x)

x – 1:

0 - 1 = 0

(x+1) - 1 = x

x + y:

x + 0 = x

x+ (y+1) = (x+y) + 1

x – y: // limited subtraction

x – 0 = x

x – (y+1) = (x–y) – 1

2nd grade arithmetic2nd grade arithmetic

x * y:

x * 0 = 0

x * (y+1) = x*y + x

x!:

0! = 1

(x+1)! = (x+1) * x!

x * y:

x * 0 = 0

x * (y+1) = x*y + x

x!:

0! = 1

(x+1)! = (x+1) * x!

Basic relationsBasic relations

x == 0:

0 == 0 = 1

(y+1) == 0 = 0

x == y:

x==y = ((x – y) + (y – x)) == 0

x ≤y :

x≤y = (x – y) == 0

x ≥ y:

x≥y = y≤x

x > y :

x>y = ~(x≤y) /* See ~ on next page */

x < y :

x<y = ~(x≥y)

x == 0:

0 == 0 = 1

(y+1) == 0 = 0

x == y:

x==y = ((x – y) + (y – x)) == 0

x ≤y :

x≤y = (x – y) == 0

x ≥ y:

x≥y = y≤x

x > y :

x>y = ~(x≤y) /* See ~ on next page */

x < y :

x<y = ~(x≥y)

Basic Boolean operationsBasic Boolean operations

~x:

~x = 1 – x or (x==0)

signum(x): // 1 if x>0; 0 if x==0

~(x==0)

x && y:

x&&y = signum(x*y)

x || y:

x||y = ~((x==0) && (y==0))

~x:

~x = 1 – x or (x==0)

signum(x): // 1 if x>0; 0 if x==0

~(x==0)

x && y:

x&&y = signum(x*y)

x || y:

x||y = ~((x==0) && (y==0))

Definition by casesDefinition by cases

One case

g(x) if P(x)

f(x) =

h(x) otherwise

f(x) = P(x) * g(x) + (1-P(x)) * h(x)

Can use induction to prove this is true for all k>0, where

g1(x) if P1(x)

g2(x) if P2(x) && ~P1(x)

f(x) = …

gk(x) if Pk(x) && ~(P1(x) || … ||
~Pk-1(x))

h(x) otherwise

One case

g(x) if P(x)

f(x) =

h(x) otherwise

f(x) = P(x) * g(x) + (1-P(x)) * h(x)

Can use induction to prove this is true for all k>0, where

g1(x) if P1(x)

g2(x) if P2(x) && ~P1(x)

f(x) = …

gk(x) if Pk(x) && ~(P1(x) || … ||
~Pk-1(x))

h(x) otherwise

Bounded minimizationBounded minimization

f(x) = m z (z ≤ x) [P(z)] if  such a z,

= x+1, otherwise

where P(z) is primitive recursive.

Can show f is primitive recursive by
f(0) = 1-P(0)

f(x+1) = f(x) if f(x) ≤ x

= x+2-P(x+1) otherwise

f(x) = m z (z ≤ x) [P(z)] if  such a z,

= x+1, otherwise

where P(z) is primitive recursive.

Can show f is primitive recursive by
f(0) = 1-P(0)

f(x+1) = f(x) if f(x) ≤ x

= x+2-P(x+1) otherwise

Bounded minimizationBounded minimization

f(x) = m z (z < x) [P(z)] if  such a z,

= x, otherwise

where P(z) is primitive recursive.

Can show f is primitive recursive by
f(0) = 0

f(x+1) = m z (z ≤ x) [P(z)]

f(x) = m z (z < x) [P(z)] if  such a z,

= x, otherwise

where P(z) is primitive recursive.

Can show f is primitive recursive by
f(0) = 0

f(x+1) = m z (z ≤ x) [P(z)]

Intermediate arithmeticIntermediate arithmetic

x // y:

x//0 = 0 : silly, but want a value

x//(y+1) = m z (z<x) [(z+1)*(y+1) > x]

x | y: x is a divisor of y

x|y = ((y//x) * x) == y

x // y:

x//0 = 0 : silly, but want a value

x//(y+1) = m z (z<x) [(z+1)*(y+1) > x]

x | y: x is a divisor of y

x|y = ((y//x) * x) == y

PrimalityPrimality

firstFactor(x): first non-zero, non-one factor of x.

firstfactor(x) = m z (2 ≤ z ≤ x) [z|x] ,

0 if none

isPrime(x):

isPrime(x) = firstFactor(x) == x && (x>1)

prime(i) = i-th prime:

prime(0) = 2

prime(x+1) = m z(prime(x)< z ≤prime(x)!+1)[isPrime(z)]

We will abbreviate this as pi for prime(i)

firstFactor(x): first non-zero, non-one factor of x.

firstfactor(x) = m z (2 ≤ z ≤ x) [z|x] ,

0 if none

isPrime(x):

isPrime(x) = firstFactor(x) == x && (x>1)

prime(i) = i-th prime:

prime(0) = 2

prime(x+1) = m z(prime(x)< z ≤prime(x)!+1)[isPrime(z)]

We will abbreviate this as pi for prime(i)

ExponentiationExponentiation

x^y:

x^0 = 1

x^(y+1) = x * x^y

exp(x,i): the exponent of pi in number x.

exp(x,i) = m z (z<x) [~(pi^(z+1) | x)]

x^y:

x^0 = 1

x^(y+1) = x * x^y

exp(x,i): the exponent of pi in number x.

exp(x,i) = m z (z<x) [~(pi^(z+1) | x)]

Pairing functionPairing function

• pair(x,y) = <x,y> = 2x (2y + 1) – 1

• with inverses

<z>1 = exp(z+1,0)

<z>2 = (((z + 1) // 2 <z>1) – 1) // 2

• These are very useful and can be extended to encode n-

tuples

<x,y,z> = <x, <y,z> > (note: stack analogy)

• pair(x,y) = <x,y> = 2x (2y + 1) – 1

• with inverses

<z>1 = exp(z+1,0)

<z>2 = (((z + 1) // 2 <z>1) – 1) // 2

• These are very useful and can be extended to encode n-

tuples

<x,y,z> = <x, <y,z> > (note: stack analogy)

IncompletenessIncompleteness

The primitive recursive functions are all algorithms (they
halt on all input). For this reason, we know that the
primitive recursive functions are incomplete.

To create a complete model, we need some form of
potentially unbounded iteration. That will be provided
by an operation called minimization, in which we do not
set a bound. This extends the primitive recursive
functions to the (partial) recursive functions. Partial just
means that these functions might diverge on some
inputs. We contrast that with total recursive, the subset
of recursive functions that converge everywhere (are
algorithms).

The primitive recursive functions are all algorithms (they
halt on all input). For this reason, we know that the
primitive recursive functions are incomplete.

To create a complete model, we need some form of
potentially unbounded iteration. That will be provided
by an operation called minimization, in which we do not
set a bound. This extends the primitive recursive
functions to the (partial) recursive functions. Partial just
means that these functions might diverge on some
inputs. We contrast that with total recursive, the subset
of recursive functions that converge everywhere (are
algorithms).

Unbounded minimizationUnbounded minimization

• Minimization:

If G is already known to be recursive, then so is F, where

F(x1,…,xn) = my (G(y,x1,…,xn) == 1)

• We also allow other predicates besides testing for one.

In fact any predicate that is recursive can be used as the

stopping condition.

• Minimization:

If G is already known to be recursive, then so is F, where

F(x1,…,xn) = my (G(y,x1,…,xn) == 1)

• We also allow other predicates besides testing for one.

In fact any predicate that is recursive can be used as the

stopping condition.

Equivalence of modelsEquivalence of models

• We will now show

TURING ≤ REGISTER ≤ FACTOR ≤ RECURSIVE ≤ TURING

where by A ≤ B, we mean that every instance of A can be

replaced by an equivalent instance of B.

• The transitive closure will then get us the desired result.

• We will actually omit much of the details, focusing on

the encodings, and just sketching the needed

constructions. If you wish to see the detailed

constructions, they can be found in …

• We will now show

TURING ≤ REGISTER ≤ FACTOR ≤ RECURSIVE ≤ TURING

where by A ≤ B, we mean that every instance of A can be

replaced by an equivalent instance of B.

• The transitive closure will then get us the desired result.

• We will actually omit much of the details, focusing on

the encodings, and just sketching the needed

constructions. If you wish to see the detailed

constructions, they can be found in …

TURING ≤ REGISTER TURING ≤ REGISTER

Standard Turing Computable Standard Turing Computable

• We will assume from here on out, wlog, that the tape alphabet

is {0,1}, with 0 denoting a blank square.

• We will assume that computation starts with the Turing

machine in state 0, the argument(s) to the left of the scanned

square and the scanned square and all to its right being blank.

• Further, we will assume that the argument values are in unary

notation, e.g., …0110111q00… would represent input

arguments of (2,3).

• Finally, we assume that the machine halts with the arguments

unchanged and the answer to the right of the scanned square,

e.g., …0110111qh011111 would be the result of adding the

input and terminating in state h.

• We will assume from here on out, wlog, that the tape alphabet

is {0,1}, with 0 denoting a blank square.

• We will assume that computation starts with the Turing

machine in state 0, the argument(s) to the left of the scanned

square and the scanned square and all to its right being blank.

• Further, we will assume that the argument values are in unary

notation, e.g., …0110111q00… would represent input

arguments of (2,3).

• Finally, we assume that the machine halts with the arguments

unchanged and the answer to the right of the scanned square,

e.g., …0110111qh011111 would be the result of adding the

input and terminating in state h.

Finite marking of TM tapeFinite marking of TM tape

• Recall that a Turing tape, while unbounded, is finitely
marked. The key reason is that the tape starts with just
a finite number of non-blank squares and can only
expand the number of marked squares by one at each
steps, so at any finite future time, the tape is still
finitely marked.

• Recall that a Turing tape, while unbounded, is finitely
marked. The key reason is that the tape starts with just
a finite number of non-blank squares and can only
expand the number of marked squares by one at each
steps, so at any finite future time, the tape is still
finitely marked.

Encoding a Turing MachineEncoding a Turing Machine

• For any model of computation, we require a finite
representation of the machine’s current status, called an
instantaneous description (id). For a Turing Machine, we
need to represent the squares to the left of the scanned
square; the scanned square and all those to its right; and
the current state.

• To see how this can be done, consider a machine that is
in state 7, with its tape containing
… 0 0 1 0 1 0 0 1 1 q7 0 1 0 …

• The underscore indicates the square being read. We
denote this by the finite id
1 0 1 0 0 1 1 q7 0 1

• In this notation, we always write down the scanned
square, even if it and all symbols to its right are blank.

• For any model of computation, we require a finite
representation of the machine’s current status, called an
instantaneous description (id). For a Turing Machine, we
need to represent the squares to the left of the scanned
square; the scanned square and all those to its right; and
the current state.

• To see how this can be done, consider a machine that is
in state 7, with its tape containing
… 0 0 1 0 1 0 0 1 1 q7 0 1 0 …

• The underscore indicates the square being read. We
denote this by the finite id
1 0 1 0 0 1 1 q7 0 1

• In this notation, we always write down the scanned
square, even if it and all symbols to its right are blank.

Encoding a Turing MachineEncoding a Turing Machine

• An id can be represented by a triple of natural numbers,
(L,R,i), where L is the number denoted by the binary
sequence to the left, R is the number denoted by the
reversal of the binary sequence to the right of the qi,
and i is the state index (assume n states, 0..n-1).

• So,
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 …
is just (83, 0, 7).
… 0 0 1 0 q5 1 0 1 1 0 0 …
is represented as (2, 13, 5).

• We can store the R part in register 1, the L part in
register 2, and the state index in register 3 of a Register
Machine.

• An id can be represented by a triple of natural numbers,
(L,R,i), where L is the number denoted by the binary
sequence to the left, R is the number denoted by the
reversal of the binary sequence to the right of the qi,
and i is the state index (assume n states, 0..n-1).

• So,
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 …
is just (83, 0, 7).
… 0 0 1 0 q5 1 0 1 1 0 0 …
is represented as (2, 13, 5).

• We can store the R part in register 1, the L part in
register 2, and the state index in register 3 of a Register
Machine.

Useful RM routinesUseful RM routines

• Assume w,x are available work registers, initialized to 0.

• JUMP(label)
• 1. DECw[label,label]

• ZEROr
• 1. DECr[1,2]

• COPY(r,s) : copy r to s, using w as a work register
• 1. ZEROs

• 2. DECr[3,5]

• 3. INCs[4]

• 4. INCw[2]

• 5. DECw[6,7]

• 6. INCr[5]

• Assume w,x are available work registers, initialized to 0.

• JUMP(label)
• 1. DECw[label,label]

• ZEROr
• 1. DECr[1,2]

• COPY(r,s) : copy r to s, using w as a work register
• 1. ZEROs

• 2. DECr[3,5]

• 3. INCs[4]

• 4. INCw[2]

• 5. DECw[6,7]

• 6. INCr[5]

Useful RM routinesUseful RM routines

• Move(r,s) : move r to s; set r to zero
• 1. ZEROs

• 2. DECr[3,5]

• 3. INCs[4]

• IF_r_Odd(label)
• 1. COPY(r,x)

• 2. DECx(3,5)

• 3. DECx(2,4)

• 4. JUMP(label)

• Move(r,s) : move r to s; set r to zero
• 1. ZEROs

• 2. DECr[3,5]

• 3. INCs[4]

• IF_r_Odd(label)
• 1. COPY(r,x)

• 2. DECx(3,5)

• 3. DECx(2,4)

• 4. JUMP(label)

Useful RM routinesUseful RM routines

• MULTIPLY_r_BY_2
• 1. COPY(r,x)

• 2. ZEROr

• 3. DECx[4,6]

• 4. INCr[5]

• 5. INCr[3]

• DIVIDE_r_BY_2
• 1. COPY(r,x)

• 2. ZEROr

• 3. DECx[4,6]

• 4. DECx[5,6]

• 5. INCr[3]

• MULTIPLY_r_BY_2
• 1. COPY(r,x)

• 2. ZEROr

• 3. DECx[4,6]

• 4. INCr[5]

• 5. INCr[3]

• DIVIDE_r_BY_2
• 1. COPY(r,x)

• 2. ZEROr

• 3. DECx[4,6]

• 4. DECx[5,6]

• 5. INCr[3]

Simulating TM by RMSimulating TM by RM

1. DEC3[2,q0] : Go to simulate actions in state 0

2. DEC3[3,q1] : Go to simulate actions in state 1

…

n. DEC3[ERR,qn-1] : Go to simulate actions in state n-1

…

qj. IF_r2_ODD[qj+2] : Jump if scanning a 1

qj+1. JUMP[set_k] : If (qj 0 0 qk) is rule in TM

qj+1. INC2[set_k] : If (qj 0 1 qk) is rule in TM

qj+1. DIV_r2_BY_2 : If (qj 0 R qk) is rule in TM

MUL_r1_BY_2

JUMP[set_k]

qj+1. MUL_r2_BY_2 : If (qj 0 L qk) is rule in TM

IF_r1_ODD then INC2

DIV_r1_BY_2[set_k]

…

set_n-1. INC3[set_n-2] : Set r3 to index n-1 for simulating state n-1

set_n-2. INC3[set_n-3] : Set r3 to index n-2 for simulating state n-2

…

set_0. JUMP[1] : Set r3 to index 0 for simulating state 0

1. DEC3[2,q0] : Go to simulate actions in state 0

2. DEC3[3,q1] : Go to simulate actions in state 1

…

n. DEC3[ERR,qn-1] : Go to simulate actions in state n-1

…

qj. IF_r2_ODD[qj+2] : Jump if scanning a 1

qj+1. JUMP[set_k] : If (qj 0 0 qk) is rule in TM

qj+1. INC2[set_k] : If (qj 0 1 qk) is rule in TM

qj+1. DIV_r2_BY_2 : If (qj 0 R qk) is rule in TM

MUL_r1_BY_2

JUMP[set_k]

qj+1. MUL_r2_BY_2 : If (qj 0 L qk) is rule in TM

IF_r1_ODD then INC2

DIV_r1_BY_2[set_k]

…

set_n-1. INC3[set_n-2] : Set r3 to index n-1 for simulating state n-1

set_n-2. INC3[set_n-3] : Set r3 to index n-2 for simulating state n-2

…

set_0. JUMP[1] : Set r3 to index 0 for simulating state 0

Simulating TM by RMSimulating TM by RM

• Need epilog so action for missing quad (halting) jumps
beyond end of simulation to clean things up, placing
result in r1.

• Can also have a prolog that starts with arguments in n
registers r2 to rn+1 and stores values in r1, r2 and r3 to
represent Turing machines starting configuration.

• Need epilog so action for missing quad (halting) jumps
beyond end of simulation to clean things up, placing
result in r1.

• Can also have a prolog that starts with arguments in n
registers r2 to rn+1 and stores values in r1, r2 and r3 to
represent Turing machines starting configuration.

PROLOGPROLOG

Example assuming n arguments (fix as needed)

1. MUL_r1_BY_2[2] : Set r1 = 11…102, where, #1's = r2

2. DEC2[3,4] : r2 will be set to 0

3. INC1[1] :

4. MUL_r1_BY_2[5] : Set r1 = 11…1011…102; #1's = r2, then r3

5. DEC3[6,7] : r3 will be set to 0

6. INC1[4] :

…

3n-2. DECn+1[3n-1,3n+1] : Set r1 = 11…1011…1011…12; #1's = r1, r2,…

3n-1. MUL_r1_BY_2[3n] : rn+1 will be set to 0

3n. INC1[3n-2] :

3n+1. : r1 = left tape, r2 = 0 (right), r3 = 0 (initial state)

Example assuming n arguments (fix as needed)

1. MUL_r1_BY_2[2] : Set r1 = 11…102, where, #1's = r2

2. DEC2[3,4] : r2 will be set to 0

3. INC1[1] :

4. MUL_r1_BY_2[5] : Set r1 = 11…1011…102; #1's = r2, then r3

5. DEC3[6,7] : r3 will be set to 0

6. INC1[4] :

…

3n-2. DECn+1[3n-1,3n+1] : Set r1 = 11…1011…1011…12; #1's = r1, r2,…

3n-1. MUL_r1_BY_2[3n] : rn+1 will be set to 0

3n. INC1[3n-2] :

3n+1. : r1 = left tape, r2 = 0 (right), r3 = 0 (initial state)

REGISTER ≤ FACTOR REGISTER ≤ FACTOR

Encoding an RM’s idEncoding an RM’s id

• This is a really easy one based on the fact that every member of Z+ (the
positive integers) has a unique prime factorization. Thus all such
numbers can be uniquely written in the form

where the pi's are distinct primes and the ki's are non-zero values,
except that the number 1 would be represented by 20.

• Let R be an arbitrary n-register machine, having m instructions.

Encode the contents of registers r1,…,rn by the powers of p1,…pn .

Encode rule number's 1…m by primes pn+1 ,…, pn+m

Use pn+m+1 as prime factor that indicates simulation is done.

• This is in essence the Gödel number of the RM’s state.

• This is a really easy one based on the fact that every member of Z+ (the
positive integers) has a unique prime factorization. Thus all such
numbers can be uniquely written in the form

where the pi's are distinct primes and the ki's are non-zero values,
except that the number 1 would be represented by 20.

• Let R be an arbitrary n-register machine, having m instructions.

Encode the contents of registers r1,…,rn by the powers of p1,…pn .

Encode rule number's 1…m by primes pn+1 ,…, pn+m

Use pn+m+1 as prime factor that indicates simulation is done.

• This is in essence the Gödel number of the RM’s state.

Simulation by FRSSimulation by FRS

• Now, the j-th instruction (1≤j≤m) of R has associated
factor replacement rules as follows:

j. INCr[i]
pn+jx  pn+iprx

j. DECr[s, f]
pn+jprx  pn+sx

pn+jx  pn+fx

• We also add the halting rule associated with m+1 of

pn+m+1x  x

• Now, the j-th instruction (1≤j≤m) of R has associated
factor replacement rules as follows:

j. INCr[i]
pn+jx  pn+iprx

j. DECr[s, f]
pn+jprx  pn+sx

pn+jx  pn+fx

• We also add the halting rule associated with m+1 of

pn+m+1x  x

Importance of orderImportance of order

• The relative order of the two rules to simulate a DEC are
critical.

• To test if register r has a zero in it, we, in effect, make
sure that we cannot execute the rule that is enabled
when the r-th prime is a factor.

• If the rules were placed in the wrong order, or if they
weren't prioritized, we would be non-deterministic

• The relative order of the two rules to simulate a DEC are
critical.

• To test if register r has a zero in it, we, in effect, make
sure that we cannot execute the rule that is enabled
when the r-th prime is a factor.

• If the rules were placed in the wrong order, or if they
weren't prioritized, we would be non-deterministic

Example of orderExample of order

Consider the simple machine to compute r1:=r2 – r3

(limited)

1. DEC3[2,3]

2. DEC2[1,1]

3. DEC2[4,5]

4. INC1[3]

5.

Consider the simple machine to compute r1:=r2 – r3

(limited)

1. DEC3[2,3]

2. DEC2[1,1]

3. DEC2[4,5]

4. INC1[3]

5.

Subtraction encodingSubtraction encoding

Start with 3x5y7
7 • 5 x  11 x

7 x  13 x

11 • 3 x  7 x

11 x  7 x

13 • 3 x  17 x

13 x  19 x

17 x  13 • 2 x

19 x  x

Start with 3x5y7
7 • 5 x  11 x

7 x  13 x

11 • 3 x  7 x

11 x  7 x

13 • 3 x  17 x

13 x  19 x

17 x  13 • 2 x

19 x  x

Analysis of problemAnalysis of problem

• If we don't obey the ordering here, we could
take an input like 35527 and immediately apply
the second rule (the one that mimics a failed
decrement).

• We then have 355213, signifying that we will
mimic instruction number 3, never having
subtracted the 2 from 5.

• Now, we mimic copying r2 to r1 and get 255219
.

• We then remove the 19 and have the wrong
answer.

• If we don't obey the ordering here, we could
take an input like 35527 and immediately apply
the second rule (the one that mimics a failed
decrement).

• We then have 355213, signifying that we will
mimic instruction number 3, never having
subtracted the 2 from 5.

• Now, we mimic copying r2 to r1 and get 255219
.

• We then remove the 19 and have the wrong
answer.

FACTOR ≤ RECURSIVEFACTOR ≤ RECURSIVE

Universal machineUniversal machine

• In the process of doing this reduction, we will

build a Universal Machine.

• This is a single recursive function with two

arguments. The first specifies the factor

system (encoded) and the second the argument

to this factor system.

• The Universal Machine will then simulate the

given machine on the selected input.

• In the process of doing this reduction, we will

build a Universal Machine.

• This is a single recursive function with two

arguments. The first specifies the factor

system (encoded) and the second the argument

to this factor system.

• The Universal Machine will then simulate the

given machine on the selected input.

Encoding FRSEncoding FRS

• Let (n, ((a1,b1), (a2,b2), … ,(an,bn)) be some

factor replacement system, where (ai,bi) means

that the i-th rule is

aix  bix

• Encode this machine by the number F,

• Let (n, ((a1,b1), (a2,b2), … ,(an,bn)) be some

factor replacement system, where (ai,bi) means

that the i-th rule is

aix  bix

• Encode this machine by the number F,

pppp
nnnn

n bababa nn

2212212117532
2211




SimulationSimulation

• We can determine the rule of F that applies to x by

RULE(F, x) = m z (1 ≤ z ≤ exp(F, 0)+1) [exp(F, 2*z-1) | x]

• Note: if x is divisible by ai, and i is the least integer for which
this is true, then exp(F,2*i-1) = ai where ai is the number of
prime factors of F involving p2i-1. Thus, RULE(F,x) = i.

If x is not divisible by any ai, 1≤i≤n, then x is divisible by 1, and
RULE(F,x) returns n+1. That’s why we added p2n+1 p2n+2.

• Given the function RULE(F,x), we can determine NEXT(F,x),
the number that follows x, when using F, by

NEXT(F, x) = (x // exp(F,2*RULE(F,x)-1)) * exp(F,2*RULE(F,x))

• We can determine the rule of F that applies to x by

RULE(F, x) = m z (1 ≤ z ≤ exp(F, 0)+1) [exp(F, 2*z-1) | x]

• Note: if x is divisible by ai, and i is the least integer for which
this is true, then exp(F,2*i-1) = ai where ai is the number of
prime factors of F involving p2i-1. Thus, RULE(F,x) = i.

If x is not divisible by any ai, 1≤i≤n, then x is divisible by 1, and
RULE(F,x) returns n+1. That’s why we added p2n+1 p2n+2.

• Given the function RULE(F,x), we can determine NEXT(F,x),
the number that follows x, when using F, by

NEXT(F, x) = (x // exp(F,2*RULE(F,x)-1)) * exp(F,2*RULE(F,x))

SimulationSimulation

• The configurations listed by F, when started on

x, are
CONFIG(F, x, 0) = x

CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))

• The number of the configuration on which F

halts is
HALT(F, x) = m y [CONFIG(F, x, y) == CONFIG(F, x, y+1)]

This assumes we converge to a fixed point only if we stop.

• The configurations listed by F, when started on

x, are
CONFIG(F, x, 0) = x

CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))

• The number of the configuration on which F

halts is
HALT(F, x) = m y [CONFIG(F, x, y) == CONFIG(F, x, y+1)]

This assumes we converge to a fixed point only if we stop.

SimulationSimulation

• A Universal Machine that simulates an arbitrary
Factor System, Turing Machine, Register
Machine, Recursive Function can then be
defined by

Univ(F, x) = exp (CONFIG (F, x, HALT (F, x)), 0)

• This assumes that the answer will be returned
as the exponent of the only even prime, 2. We
can fix F for any given Factor System that we
wish to simulate.

• A Universal Machine that simulates an arbitrary
Factor System, Turing Machine, Register
Machine, Recursive Function can then be
defined by

Univ(F, x) = exp (CONFIG (F, x, HALT (F, x)), 0)

• This assumes that the answer will be returned
as the exponent of the only even prime, 2. We
can fix F for any given Factor System that we
wish to simulate.

Simplicity of UniversalSimplicity of Universal

• A side result is that every computable

(recursive) function can be expressed in the

form

F(x) = G(m y H(x, y))

where G and H are primitive recursive.

• A side result is that every computable

(recursive) function can be expressed in the

form

F(x) = G(m y H(x, y))

where G and H are primitive recursive.

Universal Machine NotationUniversal Machine Notation

• (n)(x1,…,xn, f) = Univ (f,)

• We will sometimes adopt the above and also its

common shorthand

f
(n)(x1,…,xn) = (n)(x1,…,xn, f)

and the even shorter version

f(x1,…,xn) = (n)(x1,…,xn, f)

• We even omit the (n) when n=1, as in

f(x) = (x, f)

• (n)(x1,…,xn, f) = Univ (f,)

• We will sometimes adopt the above and also its

common shorthand

f
(n)(x1,…,xn) = (n)(x1,…,xn, f)

and the even shorter version

f(x1,…,xn) = (n)(x1,…,xn, f)

• We even omit the (n) when n=1, as in

f(x) = (x, f)

 

n

i

x

i
p

i

1

SNAP and TERMSNAP and TERM

• Our CONFIG is essentially a SNAP (snapshot)

SNAP(x, f, t) = CONFIG(f, x, t)

• Termination in our notation occurs when we
reach a fixed point, so

TERM(x, f) = (NEXT(f, x) == x)

• Here, we used a single argument but that can be
extended as we have already shown using a
pairing function.

• Our CONFIG is essentially a SNAP (snapshot)

SNAP(x, f, t) = CONFIG(f, x, t)

• Termination in our notation occurs when we
reach a fixed point, so

TERM(x, f) = (NEXT(f, x) == x)

• Here, we used a single argument but that can be
extended as we have already shown using a
pairing function.

STEP PredicateSTEP Predicate

• STP(x1,…,xn, f, t) is a predicate defined to be

true iff [f](x1,…,xn) converges in at most t steps.

• STP is primitive recursive since it can be defined

by

STP(x, f, s) = TERM(CONFIG(f, x, s), f)

Extending to many arguments is easily done as

before.

• STP(x1,…,xn, f, t) is a predicate defined to be

true iff [f](x1,…,xn) converges in at most t steps.

• STP is primitive recursive since it can be defined

by

STP(x, f, s) = TERM(CONFIG(f, x, s), f)

Extending to many arguments is easily done as

before.

RECURSIVE ≤ TURINGRECURSIVE ≤ TURING

Recall standard TuringRecall standard Turing

• Our notion of standard Turing computability of
some n-ary function F assumes that the
machine starts with a tape containing the n
inputs, x1, … , xn in the form (underscore is
scanned symbol)

…01x101x20…01xn0…

and ends with

…01x101x20…01xn01y0…

where y = F(x1, … , xn).

• Our notion of standard Turing computability of
some n-ary function F assumes that the
machine starts with a tape containing the n
inputs, x1, … , xn in the form (underscore is
scanned symbol)

…01x101x20…01xn0…

and ends with

…01x101x20…01xn01y0…

where y = F(x1, … , xn).

The Key IdeasThe Key Ideas

• Every base function is Standard Turing
Computable (STC)

• The STC functions are closed under

• Composition

• Iteration

• Minimization

• The above then implies that every recursive
function is STC, thereby completing the
equivalence proof.

• Every base function is Standard Turing
Computable (STC)

• The STC functions are closed under

• Composition

• Iteration

• Minimization

• The above then implies that every recursive
function is STC, thereby completing the
equivalence proof.

Detailed ProofDetailed Proof

• We actually do not intend to provide the
details.

• The key is developing a useful set of Turing
machine components that do such tasks as scan
left or right over ones looking for the first zero
(blank) on the tape, make copies of values
(sequences of ones), circular shift and erase
values.

• These details can be found as part of the notes
for the COT5310 course.

• We actually do not intend to provide the
details.

• The key is developing a useful set of Turing
machine components that do such tasks as scan
left or right over ones looking for the first zero
(blank) on the tape, make copies of values
(sequences of ones), circular shift and erase
values.

• These details can be found as part of the notes
for the COT5310 course.

ConsequencesConsequences

• Theorem: The computational power of S-
Programs, Recursive Functions, Turing Machines,
Register Machine, and Factor Replacement
Systems are all equivalent.

• Theorem: Every Recursive Function (Turing
Computable Function, etc.) can be performed
with just one unbounded type of iteration.

• Theorem: Universal machines can be constructed
for each of our formal models of computation.

• Theorem: The computational power of S-
Programs, Recursive Functions, Turing Machines,
Register Machine, and Factor Replacement
Systems are all equivalent.

• Theorem: Every Recursive Function (Turing
Computable Function, etc.) can be performed
with just one unbounded type of iteration.

• Theorem: Universal machines can be constructed
for each of our formal models of computation.

UNDECIDABILITYUNDECIDABILITY

Halting Problem (again)Halting Problem (again)

Assume we can decide the Halting Problem. Then there exists
some total function Halt such that

1 if [x] (y) 

Halt(x,y) =

0 if [x] (y) 

Here, we have numbered all programs and [x] refers to the x-
th program in this ordering. Now we can view Halt as a
mapping from  into  by treating its input as a single
number representing the pairing of two numbers via the one-
one onto function

pair(x,y) = <x,y> = 2x (2y + 1) – 1, with inverses

x = <z>1 = exp(z+1,1)
y = <z>2 = (((z + 1) // 2 <z>1) – 1) // 2

Assume we can decide the Halting Problem. Then there exists
some total function Halt such that

1 if [x] (y) 

Halt(x,y) =

0 if [x] (y) 

Here, we have numbered all programs and [x] refers to the x-
th program in this ordering. Now we can view Halt as a
mapping from  into  by treating its input as a single
number representing the pairing of two numbers via the one-
one onto function

pair(x,y) = <x,y> = 2x (2y + 1) – 1, with inverses

x = <z>1 = exp(z+1,1)
y = <z>2 = (((z + 1) // 2 <z>1) – 1) // 2

The ContradictionThe Contradiction

Now if Halt exist, then so does Disagree, where

0 if Halt(x,x) = 0, i.e, if [x] (x) 

Disagree(x) =

my (y == y+1) if Halt(x,x) = 1, i.e, if [x] (x) 

Since Disagree is a program from into , Disagree can be reasoned
about by Halt. Let d be such that Disagree = [d], then

Disagree(d) is defined  Halt(d,d) = 0
 d is undefined

 Disagree(d) is undefined

But this means that Disagree contradicts its own existence. Since
every step we took was constructive, except for the original
assumption, we must presume that the original assumption was in
error. Thus, the Halting Problem is not solvable.

Now if Halt exist, then so does Disagree, where

0 if Halt(x,x) = 0, i.e, if [x] (x) 

Disagree(x) =

my (y == y+1) if Halt(x,x) = 1, i.e, if [x] (x) 

Since Disagree is a program from into , Disagree can be reasoned
about by Halt. Let d be such that Disagree = [d], then

Disagree(d) is defined  Halt(d,d) = 0
 d is undefined

 Disagree(d) is undefined

But this means that Disagree contradicts its own existence. Since
every step we took was constructive, except for the original
assumption, we must presume that the original assumption was in
error. Thus, the Halting Problem is not solvable.

RECURSIVELY ENUMERABLE

AND SEMI-DECIDABLE SETS

RECURSIVELY ENUMERABLE

AND SEMI-DECIDABLE SETS

Definition of reDefinition of re

• S   is re iff S =  or there exists a totally
computable function f where

S = { y | x f(x) == y }

• S   is semi-decidable iff there exists a
partially computable function g where

S = { x   | g(x) }

• We will prove these equivalent. Actually, f can
be a primitive recursive function.

• S   is re iff S =  or there exists a totally
computable function f where

S = { y | x f(x) == y }

• S   is semi-decidable iff there exists a
partially computable function g where

S = { x   | g(x) }

• We will prove these equivalent. Actually, f can
be a primitive recursive function.

semi-decidable implies resemi-decidable implies re

Theorem:
Let S be semi-decided by GS. Assume GS is the gS

function in our enumeration of effective
procedures. If S = Ø then S is re by definition, so
we will assume wlog that there is some a  S.
Define the enumerating algorithm FS by

FS(<x,t>) = x * STP(x, gs, t)

+ a * (1-STP(x, gs, t))

Note: FS is primitive recursive and it enumerates
every value in S infinitely often.

Theorem:
Let S be semi-decided by GS. Assume GS is the gS

function in our enumeration of effective
procedures. If S = Ø then S is re by definition, so
we will assume wlog that there is some a  S.
Define the enumerating algorithm FS by

FS(<x,t>) = x * STP(x, gs, t)

+ a * (1-STP(x, gs, t))

Note: FS is primitive recursive and it enumerates
every value in S infinitely often.

re implies semi-decidablere implies semi-decidable

Theorem:
By definition, S is re iff S == Ø or there exists an
algorithm FS, over the natural numbers , whose
range is exactly S. Define

my [y == y+1] if S == Ø

S(x) =

signum((my[FS(y)==x])+1), otherwise

This achieves our result as the domain of S is
the range of FS, or empty if S == Ø .

Theorem:
By definition, S is re iff S == Ø or there exists an
algorithm FS, over the natural numbers , whose
range is exactly S. Define

my [y == y+1] if S == Ø

S(x) =

signum((my[FS(y)==x])+1), otherwise

This achieves our result as the domain of S is
the range of FS, or empty if S == Ø .

Domain of a procedureDomain of a procedure

Corollary: S is re/semi-decidable iff S is the domain
/ range of a partial recursive predicate FS.

Proof: The predicate S we defined earlier to semi-
decide S, given its enumerating function, can be
easily adapted to have this property.

my [y == y+1] if S == Ø

S(x) =

x*signum((my[FS(y)==x])+1), otherwise

Corollary: S is re/semi-decidable iff S is the domain
/ range of a partial recursive predicate FS.

Proof: The predicate S we defined earlier to semi-
decide S, given its enumerating function, can be
easily adapted to have this property.

my [y == y+1] if S == Ø

S(x) =

x*signum((my[FS(y)==x])+1), otherwise

Recursive implies reRecursive implies re

Theorem: Recursive implies re.

Proof: S is recursive implies there is a total

recursive function fS such that

S = { x   | fs(x) == 1 }

Define gs(x) = my (fs(x) == 1)

Clearly

dom(gs) = {x   | gs(x)}

= { x   | fs(x) == 1 }

= S

Theorem: Recursive implies re.

Proof: S is recursive implies there is a total

recursive function fS such that

S = { x   | fs(x) == 1 }

Define gs(x) = my (fs(x) == 1)

Clearly

dom(gs) = {x   | gs(x)}

= { x   | fs(x) == 1 }

= S

Related resultsRelated results

Theorem: S is re iff S is semi-decidable.

Proof: That’s what we just proved.

Theorem: S and ~S are both re (semi-decidable)
iff S (equivalently ~S) is recursive (decidable).

Proof: Let fS semi-decide S and fS’ semi-decide ~S. We
can decide S by gS

gS(x) = STP(x, fS, mt (STP(x,fS,t) || STP(x,fS’ t))

~S is decided by gS’(x) = ~gS(x) = 1- gS(x).

The other direction is immediate since, if S is
decidable then ~S is decidable (just complement gS)
and hence they are both re (semi-decidable).

Theorem: S is re iff S is semi-decidable.

Proof: That’s what we just proved.

Theorem: S and ~S are both re (semi-decidable)
iff S (equivalently ~S) is recursive (decidable).

Proof: Let fS semi-decide S and fS’ semi-decide ~S. We
can decide S by gS

gS(x) = STP(x, fS, mt (STP(x,fS,t) || STP(x,fS’ t))

~S is decided by gS’(x) = ~gS(x) = 1- gS(x).

The other direction is immediate since, if S is
decidable then ~S is decidable (just complement gS)
and hence they are both re (semi-decidable).

Enumeration theoremEnumeration theorem

• Define
Wn = { x   | (x,n) }

• Theorem: A set B is re iff there exists an n such
that
B = Wn.
Proof: Follows from definition of (x,n).

• This gives us a way to enumerate the recursively
enumerable sets.

• Note: We showed earlier (pages 216-218) that we
cannot enumerate set of the recursive sets
(TOTAL).

• Define
Wn = { x   | (x,n) }

• Theorem: A set B is re iff there exists an n such
that
B = Wn.
Proof: Follows from definition of (x,n).

• This gives us a way to enumerate the recursively
enumerable sets.

• Note: We showed earlier (pages 216-218) that we
cannot enumerate set of the recursive sets
(TOTAL).

The Set KThe Set K

• K = { n   | n  Wn }

• Note that

n  Wn  (n,n)  HALT(n,n)

• Thus, K is the set consisting of the indices of

each program that halts when given its own index

• K can be semi-decided by the HALT predicate

above, so it is re.

• K = { n   | n  Wn }

• Note that

n  Wn  (n,n)  HALT(n,n)

• Thus, K is the set consisting of the indices of

each program that halts when given its own index

• K can be semi-decided by the HALT predicate

above, so it is re.

K is not recursiveK is not recursive

Theorem: We can prove this by showing ~K is not

re.

Proof: If ~K is re then ~K = Wi, for some i.

However, this is a contradiction since

i  K  i  Wi  i  ~K  i  K

Theorem: We can prove this by showing ~K is not

re.

Proof: If ~K is re then ~K = Wi, for some i.

However, this is a contradiction since

i  K  i  Wi  i  ~K  i  K

The set K0The set K0

• K0 = { <n,i>   | n  Wi }

• Note that

n  Wi  (n,i)  HALT(n,i)

• Thus, membership in K0 is just the Halting

Problem.

• As we noted earlier, K0 is undecidable, but can

be semi-decided by the HALT predicate.

• K0 = { <n,i>   | n  Wi }

• Note that

n  Wi  (n,i)  HALT(n,i)

• Thus, membership in K0 is just the Halting

Problem.

• As we noted earlier, K0 is undecidable, but can

be semi-decided by the HALT predicate.

re characterizationsre characterizations

Theorem: Suppose S  then the following are

equivalent:

1. S is re

2. S is the range of a primitive rec. function

3. S is the range of a recursive function

4. S is the range of a partial rec. function

5. S is the domain of a partial rec. function

Theorem: Suppose S  then the following are

equivalent:

1. S is re

2. S is the range of a primitive rec. function

3. S is the range of a recursive function

4. S is the range of a partial rec. function

5. S is the domain of a partial rec. function

INSIGHTSINSIGHTS

Non-re nature of algorithmsNon-re nature of algorithms

• No generative system (e.g., grammar) can

produce descriptions of all and only algorithms

• No parsing system (even one that rejects by

divergence) can accept all and only algorithms

• Of course, if you buy Church’s Theorem, the

set of all procedures can be generated. In fact,

we can build an algorithmic acceptor of such

programs.

• No generative system (e.g., grammar) can

produce descriptions of all and only algorithms

• No parsing system (even one that rejects by

divergence) can accept all and only algorithms

• Of course, if you buy Church’s Theorem, the

set of all procedures can be generated. In fact,

we can build an algorithmic acceptor of such

programs.

Many unbounded waysMany unbounded ways

• How do you achieve divergence, i.e., what are

the various means of unbounded computation

in each of our models?

• GOTO: Turing Machines and Register Machines

• Minimization: Recursive Functions

• Why not primitive recursion/iteration?

• Recursive evaluation: Factor Replacement

• Fixed Point: Ordered Petri Nets,

(Ordered) Factor Replacement Systems

• How do you achieve divergence, i.e., what are

the various means of unbounded computation

in each of our models?

• GOTO: Turing Machines and Register Machines

• Minimization: Recursive Functions

• Why not primitive recursion/iteration?

• Recursive evaluation: Factor Replacement

• Fixed Point: Ordered Petri Nets,

(Ordered) Factor Replacement Systems

Non-determinismNon-determinism

• It sometimes doesn’t matter

• Turing Machines, Finite State Automata,

Linear Bounded Automata

• It sometimes helps

• Push Down Automata

• It sometimes hinders

• Factor Replacement Systems, Petri Nets

• It sometimes doesn’t matter

• Turing Machines, Finite State Automata,

Linear Bounded Automata

• It sometimes helps

• Push Down Automata

• It sometimes hinders

• Factor Replacement Systems, Petri Nets

Testing for absenceTesting for absence

• (Unordered) Petri Nets and Unordered Factor

Replacement Systems are incomplete because

they cannot differentiate absence (zero

markers, zero value) from presence, although

they can test for presence.

• Ordered versions are complete and can

differentiate some from none.

• However, not everything about unordered

systems is decidable – e.g., equivalence of

such systems is not decidable.

• (Unordered) Petri Nets and Unordered Factor

Replacement Systems are incomplete because

they cannot differentiate absence (zero

markers, zero value) from presence, although

they can test for presence.

• Ordered versions are complete and can

differentiate some from none.

• However, not everything about unordered

systems is decidable – e.g., equivalence of

such systems is not decidable.

USING QUANTIFICATION TO SET

AN UPPER BOUND ON

COMPLEXITY OF SETS

USING QUANTIFICATION TO SET

AN UPPER BOUND ON

COMPLEXITY OF SETS

Quantification #1Quantification #1

• S is decidable iff there exists an algorithm cS
(called S’s characteristic function) such that
x  S  cS(x)
This is just the definition of decidable.

• S is re iff there exists an algorithm AS where
x  S  t AS(x,t)
This is clear since, if gS is the index of procedure
S defined earlier that semi-decides S then
x  S  t STP(x, gS, t)
So, AS(x,t) = STPgS(x, t), where STPgS is the STP
function with its second argument fixed.

• S is decidable iff there exists an algorithm cS
(called S’s characteristic function) such that
x  S  cS(x)
This is just the definition of decidable.

• S is re iff there exists an algorithm AS where
x  S  t AS(x,t)
This is clear since, if gS is the index of procedure
S defined earlier that semi-decides S then
x  S  t STP(x, gS, t)
So, AS(x,t) = STPgS(x, t), where STPgS is the STP
function with its second argument fixed.

Quantification #2Quantification #2

• S is re iff there exists an algorithm AS such that
x  S  t AS(x,t)
This is clear since, if gS is the index of procedure S
that semi-decides S, then
x  S  ~t STP(x, gS, t)  t ~STP(x, gS, t)
So, AS(x,t) = ~STPgS(x, t), where STPgS is the STP
function with its second argument fixed.

• Note that this works even if S is recursive (decidable).
The important thing there is that if S is recursive then
it may be viewed in two normal forms, one with
existential quantification and the other with universal
quantification.

• The complement of an re set is co-re. A set is
recursive (decidable) iff it is both re and co-re.

• S is re iff there exists an algorithm AS such that
x  S  t AS(x,t)
This is clear since, if gS is the index of procedure S
that semi-decides S, then
x  S  ~t STP(x, gS, t)  t ~STP(x, gS, t)
So, AS(x,t) = ~STPgS(x, t), where STPgS is the STP
function with its second argument fixed.

• Note that this works even if S is recursive (decidable).
The important thing there is that if S is recursive then
it may be viewed in two normal forms, one with
existential quantification and the other with universal
quantification.

• The complement of an re set is co-re. A set is
recursive (decidable) iff it is both re and co-re.

Quantification #3Quantification #3

• The Uniform Halting Problem (set TOTAL) was

already shown to be non-re. It turns out its

complement is also not re. We can get a clue of

this by seeing that TOTAL requires an alternation

of quantifiers. Specifically,

f  TOTAL xt (STP(x, f, t))

and this is the minimum quantification we can

use, given that the quantified predicate is

recursive.

• The Uniform Halting Problem (set TOTAL) was

already shown to be non-re. It turns out its

complement is also not re. We can get a clue of

this by seeing that TOTAL requires an alternation

of quantifiers. Specifically,

f  TOTAL xt (STP(x, f, t))

and this is the minimum quantification we can

use, given that the quantified predicate is

recursive.

REDUCIBILITYREDUCIBILITY

Diagonalization is a bummerDiagonalization is a bummer

• The issues with diagonalization are that it is tedious and
is applicable as a proof of undecidability or non-re-ness
for only a small subset of the problems that interest us.

• Thus, we will now seek to use reduction wherever
possible.

• To show a set, S, is undecidable, we can show it is as
least as hard as the set K0. That is, K0 ≤ S. Here the
mapping used in the reduction does not need to run in
polynomial time, it just needs to be an algorithm.

• To show a set, S, is not re, we can show it is as least as
hard as the set TOTAL (the set of algorithms). That is,
TOTAL ≤ S.

• The issues with diagonalization are that it is tedious and
is applicable as a proof of undecidability or non-re-ness
for only a small subset of the problems that interest us.

• Thus, we will now seek to use reduction wherever
possible.

• To show a set, S, is undecidable, we can show it is as
least as hard as the set K0. That is, K0 ≤ S. Here the
mapping used in the reduction does not need to run in
polynomial time, it just needs to be an algorithm.

• To show a set, S, is not re, we can show it is as least as
hard as the set TOTAL (the set of algorithms). That is,
TOTAL ≤ S.

Reduction example #1Reduction example #1

• We can show that the set K0 is no harder than the
set TOTAL. Since we already know that K0 is
unsolvable, we would now know that TOTAL is
also unsolvable. We cannot reduce in the other
direction since TOTAL is in fact harder than K0.

• Let F be some arbitrary effective procedure and
let x be some arbitrary natural number.

• Define Fx(y) = F(x), for all y  

• Then Fx is an algorithm if and only if F halts on x.

• Thus, K0 ≤ TOTAL, and so a solution to
membership in TOTAL would provide a solution
to K0, which we know is not possible.

• We can show that the set K0 is no harder than the
set TOTAL. Since we already know that K0 is
unsolvable, we would now know that TOTAL is
also unsolvable. We cannot reduce in the other
direction since TOTAL is in fact harder than K0.

• Let F be some arbitrary effective procedure and
let x be some arbitrary natural number.

• Define Fx(y) = F(x), for all y  

• Then Fx is an algorithm if and only if F halts on x.

• Thus, K0 ≤ TOTAL, and so a solution to
membership in TOTAL would provide a solution
to K0, which we know is not possible.

Reduction example #2Reduction example #2

• We can show that the set TOTAL is no harder
than the set ZERO = { f | x f(x) = 0 }. Since
we already know that TOTAL is non-re, we would
now know that ZERO is also non-re.

• Let F be some arbitrary effective procedure.

• Define fF(y) = F(y) – F(y), for all y  

• Then fF is an algorithm that produces 0 for all
input (is in the set ZERO) if and only if F halts on
all input y. Thus, TOTAL ≤ ZERO.

• Thus a semi-decision procedure for ZERO would
provide one for TOTAL, a set already known to
be non-re.

• We can show that the set TOTAL is no harder
than the set ZERO = { f | x f(x) = 0 }. Since
we already know that TOTAL is non-re, we would
now know that ZERO is also non-re.

• Let F be some arbitrary effective procedure.

• Define fF(y) = F(y) – F(y), for all y  

• Then fF is an algorithm that produces 0 for all
input (is in the set ZERO) if and only if F halts on
all input y. Thus, TOTAL ≤ ZERO.

• Thus a semi-decision procedure for ZERO would
provide one for TOTAL, a set already known to
be non-re.

RICE’S THEOREM:

ALL NON-TRIVIAL PROBLEMS

ABOUT THE I/O BEHAVIORS OF

FUNCTIONS ARE UNDECIDABLE

RICE’S THEOREM:

ALL NON-TRIVIAL PROBLEMS

ABOUT THE I/O BEHAVIORS OF

FUNCTIONS ARE UNDECIDABLE

Trivial problemsTrivial problems

• Let P be some set of re languages, e.g. P = { L |
L is infinite re }. We call P a property of re
languages since it divides the class of all re
languages into two subsets, those having property
P and those not having property P.

• P is said to be trivial if it is empty (this is not the
same as saying P contains the empty set) or
contains all re languages. Trivial properties are
not very discriminating in the way they divide up
the re languages (all or nothing).

• Let P be some set of re languages, e.g. P = { L |
L is infinite re }. We call P a property of re
languages since it divides the class of all re
languages into two subsets, those having property
P and those not having property P.

• P is said to be trivial if it is empty (this is not the
same as saying P contains the empty set) or
contains all re languages. Trivial properties are
not very discriminating in the way they divide up
the re languages (all or nothing).

Rice’s TheoremRice’s Theorem

Rice’s Theorem: Let P be some non-trivial property
of the re languages. Then

LP = { x | dom [x] is in P (has property P) }

is undecidable. Note that membership in LP is
based purely on the domain of a function, not on
any aspect of its implementation.

Rice’s Theorem: Let P be some non-trivial property
of the re languages. Then

LP = { x | dom [x] is in P (has property P) }

is undecidable. Note that membership in LP is
based purely on the domain of a function, not on
any aspect of its implementation.

Rice’s Proof -1Rice’s Proof -1

Proof: We will assume, wlog, that P does not
contain Ø . If it does we switch our attention to
the complement of P. Now, since P is non-
trivial, there exists some language L with
property P. Let [r] be a recursive function whose
domain is L (r is the index of a semi-decision
procedure for L). Suppose P were decidable. We
will use this decision procedure and the existence
of r to decide K0.

Proof: We will assume, wlog, that P does not
contain Ø . If it does we switch our attention to
the complement of P. Now, since P is non-
trivial, there exists some language L with
property P. Let [r] be a recursive function whose
domain is L (r is the index of a semi-decision
procedure for L). Suppose P were decidable. We
will use this decision procedure and the existence
of r to decide K0.

Rice’s Proof -2Rice’s Proof -2

First we define a function Fr,x,y for r and each
function [x] and input y as follows.

Fr,x,y(z) = HALT(x , y) + HALT(r , z)

The domain of this function is L if [x](y)
converges, otherwise it’s Ø . Now if we can
determine membership in LP , we can use this
algorithm to decide K0 merely by applying it to
Fr,x,y. An answer as to whether or not Fr,x,y has
property P is also the correct answer as to
whether or not [x](y) converges.

First we define a function Fr,x,y for r and each
function [x] and input y as follows.

Fr,x,y(z) = HALT(x , y) + HALT(r , z)

The domain of this function is L if [x](y)
converges, otherwise it’s Ø . Now if we can
determine membership in LP , we can use this
algorithm to decide K0 merely by applying it to
Fr,x,y. An answer as to whether or not Fr,x,y has
property P is also the correct answer as to
whether or not [x](y) converges.

Rice’s Proof -3Rice’s Proof -3

Thus, there can be no decision procedure for P.
And consequently, there can be no decision
procedure for any non-trivial property of re
languages.

Note: This does not apply if P is trivial, nor does
it apply if P can differentiate indices that
converge for precisely the same values.

Thus, there can be no decision procedure for P.
And consequently, there can be no decision
procedure for any non-trivial property of re
languages.

Note: This does not apply if P is trivial, nor does
it apply if P can differentiate indices that
converge for precisely the same values.

I/O propertyI/O property

• An I/O property, P, of indices of recursive function is
one that cannot differentiate indices of functions that
produce precisely the same value for each input.

• This means that if two indices, f and g, are such that
f and g converge on the same inputs and, when
they converge, produce precisely the same result,
then both f and g must have property P, or neither
one has this property.

• Note that any I/O property of recursive function
indices also defines a property of re languages, since
the domains of functions with the same I/O behavior
are equal. However, not all properties of re languages
are I/O properties.

• An I/O property, P, of indices of recursive function is
one that cannot differentiate indices of functions that
produce precisely the same value for each input.

• This means that if two indices, f and g, are such that
f and g converge on the same inputs and, when
they converge, produce precisely the same result,
then both f and g must have property P, or neither
one has this property.

• Note that any I/O property of recursive function
indices also defines a property of re languages, since
the domains of functions with the same I/O behavior
are equal. However, not all properties of re languages
are I/O properties.

Strong Rice’s TheoremStrong Rice’s Theorem

Rice’s Theorem: Let P be some non-trivial I/O
property of the indices of recursive functions.
Then

SP = { x | x has property P) }

is undecidable. Note that membership in SP is
based purely on the input/output behavior of a
function, not on any aspect of its
implementation.

Rice’s Theorem: Let P be some non-trivial I/O
property of the indices of recursive functions.
Then

SP = { x | x has property P) }

is undecidable. Note that membership in SP is
based purely on the input/output behavior of a
function, not on any aspect of its
implementation.

Strong Rice’s ProofStrong Rice’s Proof

• Given x, y, r, where r is in the set SP.= {f | f

has property P}, define the function

fx,y,r(z) = x(y) - x(y) + r(z).

• fx,y,r(z) = r(z) if x(y) ; =  if x(y) .

Thus, x(y) iff fx,y,r has property P, and so

K0  SP.

• Given x, y, r, where r is in the set SP.= {f | f

has property P}, define the function

fx,y,r(z) = x(y) - x(y) + r(z).

• fx,y,r(z) = r(z) if x(y) ; =  if x(y) .

Thus, x(y) iff fx,y,r has property P, and so

K0  SP.

Picture ProofsPicture Proofs

x

y


x
(y)


r
(z)

z

dom(f
x,y,r

)= If 
x
(y)

rng(f
x,y,r

)= If 
x
(y)

z f
x,y,r

(z)≠
r
(z) If 

x
(y)

z f
x,y,r

(z)=
r
(z) If 

x
(y)

rng(f
x,y,r

)=rng(
r
) If 

x
(y)

dom(f
x,y,r

)=dom(
r
) If 

x
(y)

Black is for standard Rice’s Theorem;

Black and Red are needed for Strong Version

Blue is just another version based on range

ProblemsProblems

1. Let INF = { f | domain(f) is infinite } and NE = { f | there is a
y such that f(y) converges}. Show that NE ≤ INF. Present the
mapping and then explain why it works as desired. To do this,
define a total recursive function g, such that index f is in NE iff
g(f) is in INF. Be sure to address both cases (f in & f not in)

2. Is INF ≤ NE? If you say yes, show it. If you say no, give a
convincing argument that INF is more complex than NE.

3. What, if anything, does Rice’s Theorem have to say about the
following? In each case explain by either showing that all of
Rice’s conditions are met or convincingly that at least one is
not met.

a.) RANGE = { f | there is a g [range(g) = domain(f)] }

b.) PRIMITIVE = { f | f’s description uses no unbounded mu
operations }

c.) FINITE = { f | domain(f) is finite }

1. Let INF = { f | domain(f) is infinite } and NE = { f | there is a
y such that f(y) converges}. Show that NE ≤ INF. Present the
mapping and then explain why it works as desired. To do this,
define a total recursive function g, such that index f is in NE iff
g(f) is in INF. Be sure to address both cases (f in & f not in)

2. Is INF ≤ NE? If you say yes, show it. If you say no, give a
convincing argument that INF is more complex than NE.

3. What, if anything, does Rice’s Theorem have to say about the
following? In each case explain by either showing that all of
Rice’s conditions are met or convincingly that at least one is
not met.

a.) RANGE = { f | there is a g [range(g) = domain(f)] }

b.) PRIMITIVE = { f | f’s description uses no unbounded mu
operations }

c.) FINITE = { f | domain(f) is finite }

GRAMMARSGRAMMARS

Post CorrespondencePost Correspondence

• Many problems related to grammars can be shown to be no
more complex than the Post Correspondence Problem
(PCP).

• Each instance of PCP is denoted: Given n>0,  a finite
alphabet, and two n-tuples of words
(x1, … , xn), (y1, … , yn) over ,
does there exist a sequence i1, … , ik , k>0, 1 ≤ ij ≤ n, such
that xi1

… xik
= yi1

… yik
?

• Example of PCP:
n = 3,  = { a , b },
x = (a b a , b b , a), y = (b a b , b , b a a).
Solution 2 , 3, 1 , 2
b b a a b a b b = b b a a b a b b

• Many problems related to grammars can be shown to be no
more complex than the Post Correspondence Problem
(PCP).

• Each instance of PCP is denoted: Given n>0,  a finite
alphabet, and two n-tuples of words
(x1, … , xn), (y1, … , yn) over ,
does there exist a sequence i1, … , ik , k>0, 1 ≤ ij ≤ n, such
that xi1

… xik
= yi1

… yik
?

• Example of PCP:
n = 3,  = { a , b },
x = (a b a , b b , a), y = (b a b , b , b a a).
Solution 2 , 3, 1 , 2
b b a a b a b b = b b a a b a b b

PCP is undecidablePCP is undecidable

• We will not prove this here, but the essential ideas is that
we can embed computational traces in instances of PCP,
such that a solution exists if and only if the computation
terminates.

• Such a construction shows that the Halting Problem is
reducible to PCP and so PCP must also be undecidable.

• As we will see PCP can often be reduced to problems about
grammars, showing those problems to also be undecidable.

• We will not prove this here, but the essential ideas is that
we can embed computational traces in instances of PCP,
such that a solution exists if and only if the computation
terminates.

• Such a construction shows that the Halting Problem is
reducible to PCP and so PCP must also be undecidable.

• As we will see PCP can often be reduced to problems about
grammars, showing those problems to also be undecidable.

Ambiguity of CFGAmbiguity of CFG

• Problem to determine if an arbitrary CFG is
ambiguous

S  A | B

A  xi A [i] | xi [i] 1 ≤ i ≤ n

B  yi B [i] | yi [i] 1 ≤ i ≤ n

A * xi1
… xik

[ik] … [i1] k > 0

B * yi1
… yik

[ik] … [i1] k > 0

• Ambiguous if and only if there is a solution to this
PCP instance.

• Problem to determine if an arbitrary CFG is
ambiguous

S  A | B

A  xi A [i] | xi [i] 1 ≤ i ≤ n

B  yi B [i] | yi [i] 1 ≤ i ≤ n

A * xi1
… xik

[ik] … [i1] k > 0

B * yi1
… yik

[ik] … [i1] k > 0

• Ambiguous if and only if there is a solution to this
PCP instance.

Intersection of CFGsIntersection of CFGs

• Problem to determine if arbitrary CFG’s define
overlapping languages

• Just take the grammar consisting of all the A-
rules from previous, and a second grammar
consisting of all the B-rules. Call the languages
generated by these grammars, LA and LB.
LA  LB ≠ Ø, if and only there is a solution to this
PCP instance.

• Problem to determine if arbitrary CFG’s define
overlapping languages

• Just take the grammar consisting of all the A-
rules from previous, and a second grammar
consisting of all the B-rules. Call the languages
generated by these grammars, LA and LB.
LA  LB ≠ Ø, if and only there is a solution to this
PCP instance.

Non-emptiness of CSLNon-emptiness of CSL

S  xi S yi
R | xi T yi

R 1 ≤ i ≤ n

a T a  * T *

* a  a *

a *  * a

T  *

• Our only terminal is *. We get strings of form

*
2j+1, for some j’s if and only if there is a solution

to this PCP instance.

S  xi S yi
R | xi T yi

R 1 ≤ i ≤ n

a T a  * T *

* a  a *

a *  * a

T  *

• Our only terminal is *. We get strings of form

*
2j+1, for some j’s if and only if there is a solution

to this PCP instance.

TracesTraces

• A trace of a machine, M, is a word of the form

X0 # X1 # X2 # X3 # … # Xk-1 # Xk

where Xi  Xi+1 0 ≤ i < k, X0 is a starting
configuration and Xk is a terminating
configuration.

• We allow some laxness, where the configurations
might be encoded in a convenient manner. For
example we might use reversals on the odd
strings so the relation between each pair is
context free.

• A trace of a machine, M, is a word of the form

X0 # X1 # X2 # X3 # … # Xk-1 # Xk

where Xi  Xi+1 0 ≤ i < k, X0 is a starting
configuration and Xk is a terminating
configuration.

• We allow some laxness, where the configurations
might be encoded in a convenient manner. For
example we might use reversals on the odd
strings so the relation between each pair is
context free.

One step tracesOne step traces

• The set of on step traces of a machine, M, is

{ X0 # X1 }

where X0  X1

• If we are considering Turing Machines, we use
{ X0 # X1

R }

where X0  X1 and X1
R is the reversal of X1

• By using the reversal we make the language no
harder than W # WR, which is a CFL.

• The set of on step traces of a machine, M, is

{ X0 # X1 }

where X0  X1

• If we are considering Turing Machines, we use
{ X0 # X1

R }

where X0  X1 and X1
R is the reversal of X1

• By using the reversal we make the language no
harder than W # WR, which is a CFL.

Partially correct tracesPartially correct traces

L1 = L(G1) = { #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }

where Y2i  Y2i+1 , 0 ≤ i ≤ j.

This checks the even/odd steps of an even length
computation.

But, L2 = L(G2) = {#X0#X1#X2#X3#X4 #…# X2k-1#X2k#Z0#}

where X2i-1  X2i , 1 ≤ i ≤ k.

This checks the odd/steps of an even length computation.

L = L1  L2 describes correct traces (checked even/odd and
odd/even). If Z0 is chosen to be a terminal configuration, then
these are terminating traces. If we pick a fixed X0, then X0 is a
halting configuration iff L is non-empty. This is an
independent proof of the undecidability of the non-empty
intersection problem for CFGs and the non-emptiness problem
for CSGs.

L1 = L(G1) = { #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }

where Y2i  Y2i+1 , 0 ≤ i ≤ j.

This checks the even/odd steps of an even length
computation.

But, L2 = L(G2) = {#X0#X1#X2#X3#X4 #…# X2k-1#X2k#Z0#}

where X2i-1  X2i , 1 ≤ i ≤ k.

This checks the odd/steps of an even length computation.

L = L1  L2 describes correct traces (checked even/odd and
odd/even). If Z0 is chosen to be a terminal configuration, then
these are terminating traces. If we pick a fixed X0, then X0 is a
halting configuration iff L is non-empty. This is an
independent proof of the undecidability of the non-empty
intersection problem for CFGs and the non-emptiness problem
for CSGs.

Quotients of CFLsQuotients of CFLs

L1 = L(G1) = { $ #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }

where Y2i  Y2i+1 , 0 ≤ i ≤ j.

This checks the even/odd steps of an even length computation.

But, L2 = L(G2) = {X0 $ #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 #}

where X2i-1  X2i , 1 ≤ i ≤ k and Z is a unique halting configuration.

This checks the odd/steps of an even length computation, and includes
an extra copy of the starting number prior to its $.

Now, consider the quotient of L2 / L1 . The only ways a member of L1
can match a final substring in L2 is to line up the $ signs. But then
they serve to check out the validity and termination of the
computation. Moreover, the quotient leaves only the starting point
(the one on which the machine halts.) Thus,

L2 / L1 = { X0 | the system halts}.

Since deciding the members of an re set is in general undecidable, we
have shown that membership in the quotient of two CFLs is also
undecidable.

L1 = L(G1) = { $ #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }

where Y2i  Y2i+1 , 0 ≤ i ≤ j.

This checks the even/odd steps of an even length computation.

But, L2 = L(G2) = {X0 $ #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 #}

where X2i-1  X2i , 1 ≤ i ≤ k and Z is a unique halting configuration.

This checks the odd/steps of an even length computation, and includes
an extra copy of the starting number prior to its $.

Now, consider the quotient of L2 / L1 . The only ways a member of L1
can match a final substring in L2 is to line up the $ signs. But then
they serve to check out the validity and termination of the
computation. Moreover, the quotient leaves only the starting point
(the one on which the machine halts.) Thus,

L2 / L1 = { X0 | the system halts}.

Since deciding the members of an re set is in general undecidable, we
have shown that membership in the quotient of two CFLs is also
undecidable.

L = *?L = *?

• If L is regular, then L = *? is decidable

• Easy – Reduce to minimal deterministic FSA, AL

accepting L. L = * iff AL is a one-state machine,

whose only state is accepting

• If L is context free, then L = *? is undecidable

• Just produce the complement of a Turing Machine’s

valid terminating traces

• If L is regular, then L = *? is decidable

• Easy – Reduce to minimal deterministic FSA, AL

accepting L. L = * iff AL is a one-state machine,

whose only state is accepting

• If L is context free, then L = *? is undecidable

• Just produce the complement of a Turing Machine’s

valid terminating traces

Powers of CFLsPowers of CFLs

Let G be a context free grammar.

Consider L(G)n

Question1: Is L(G) = L(G)2?

Question2: Is L(G)n = L(G)n+1, for some finite n>0?

These questions are both undecidable.

Think about why question1 is as hard as whether
or not L(G) is *.

Question2 requires much more thought.

Let G be a context free grammar.

Consider L(G)n

Question1: Is L(G) = L(G)2?

Question2: Is L(G)n = L(G)n+1, for some finite n>0?

These questions are both undecidable.

Think about why question1 is as hard as whether
or not L(G) is *.

Question2 requires much more thought.

L(G) = L(G)2?L(G) = L(G)2?

• The problem to determine if L = * is Turing

reducible to the problem to decide if

L  L  L, so long as L is selected from a class of

languages C over the alphabet  for which we

can decide if   {}  L.

• Corollary 1:

The problem “is L  L = L, for L context free or

context sensitive?” is undecidable

• The problem to determine if L = * is Turing

reducible to the problem to decide if

L  L  L, so long as L is selected from a class of

languages C over the alphabet  for which we

can decide if   {}  L.

• Corollary 1:

The problem “is L  L = L, for L context free or

context sensitive?” is undecidable

L(G) = L(G)2? is undecidableL(G) = L(G)2? is undecidable

• Question: Does L  L get us anything new?

• i.e., Is L  L = L?

• Membership in a CSL is decidable.

• Claim is that L = * iff

(1)   {}  L ; and

(2) L  L = L

• Clearly, if L = * then (1) and (2) trivially hold.

• Conversely, we have *  L*=  n0 Ln  L

• first inclusion follows from (1); second from (2)

• Question: Does L  L get us anything new?

• i.e., Is L  L = L?

• Membership in a CSL is decidable.

• Claim is that L = * iff

(1)   {}  L ; and

(2) L  L = L

• Clearly, if L = * then (1) and (2) trivially hold.

• Conversely, we have *  L*=  n0 Ln  L

• first inclusion follows from (1); second from (2)

Finite Power problemFinite Power problem

• The problem to determine, for an arbitrary context free
language L, if there exist a finite n such that Ln = Ln+1 is
undecidable.

• L1 = { C1# C2
R $ |

C1, C2 are configurations },

• L2 = { C1#C2
R$C3#C4

R … $C2k-1#C2k
R$ | where k  1 and,

for some i, 1  i < 2k, Ci M Ci+1 is false },

• L = L1  L2  {}.

• The problem to determine, for an arbitrary context free
language L, if there exist a finite n such that Ln = Ln+1 is
undecidable.

• L1 = { C1# C2
R $ |

C1, C2 are configurations },

• L2 = { C1#C2
R$C3#C4

R … $C2k-1#C2k
R$ | where k  1 and,

for some i, 1  i < 2k, Ci M Ci+1 is false },

• L = L1  L2  {}.

Undecidability of n Ln = Ln+1Undecidability of n Ln = Ln+1

• L is context free.

• Any product of L1 and L2, which contains L2 at least once,
is L2. For instance, L1  L2 = L2  L1 = L2  L2 = L2.

• This shows that (L1  L2)
n = L1

n  L2.

• Thus, Ln = {}  L1  L1
2 …  L1

n  L2.

• Analyzing L1 and L2 we see that L1
n  L2  Ø just in case

there is a word C1 # C2
R $ C3 # C4

R … $ C2n-1 # C2n
R $ in

L1
n that is not also in L2.

• But then there is some valid trace of length 2n.

• L has the finite power property iff M executes in
constant time.

• L is context free.

• Any product of L1 and L2, which contains L2 at least once,
is L2. For instance, L1  L2 = L2  L1 = L2  L2 = L2.

• This shows that (L1  L2)
n = L1

n  L2.

• Thus, Ln = {}  L1  L1
2 …  L1

n  L2.

• Analyzing L1 and L2 we see that L1
n  L2  Ø just in case

there is a word C1 # C2
R $ C3 # C4

R … $ C2n-1 # C2n
R $ in

L1
n that is not also in L2.

• But then there is some valid trace of length 2n.

• L has the finite power property iff M executes in
constant time.

Constant TimeConstant Time

• CTime = { M | K [M halts in at most K steps

independent of its starting configuration] }

• RT cannot be shown undecidable by Rice’s

Theorem as it breaks property 2

• Choose M1 and M2 to each Standard Turing Compute

(STC) ZERO

• M1 is R (move right to end on a zero)

• M2 is L R R (time is dependent on argument)

• M1 is in CTime; M2 is not , but they have same I/O

behavior, so CTime does not adhere to property 2

• CTime = { M | K [M halts in at most K steps

independent of its starting configuration] }

• RT cannot be shown undecidable by Rice’s

Theorem as it breaks property 2

• Choose M1 and M2 to each Standard Turing Compute

(STC) ZERO

• M1 is R (move right to end on a zero)

• M2 is L R R (time is dependent on argument)

• M1 is in CTime; M2 is not , but they have same I/O

behavior, so CTime does not adhere to property 2

Quantifier analysisQuantifier analysis

• CTime = { M | K C [STP(C, M, K)] }

• This would appear to imply that CTime is not

even re. However, a TM that only runs for K

steps can only scan at most K distinct tape

symbols. Thus, if we use unary notation, CTime

can be expressed

• CTime = { M | K C|C|≤K [STP(C, M, K)] }

• We can dovetail over the set of all TMs, M, and

all K, listing those M that halt in constant time.

• CTime = { M | K C [STP(C, M, K)] }

• This would appear to imply that CTime is not

even re. However, a TM that only runs for K

steps can only scan at most K distinct tape

symbols. Thus, if we use unary notation, CTime

can be expressed

• CTime = { M | K C|C|≤K [STP(C, M, K)] }

• We can dovetail over the set of all TMs, M, and

all K, listing those M that halt in constant time.

Quantifier analysisQuantifier analysis

• CTime = { M | K C [STP(C, M, K)] }

• This would appear to imply that CTime is not

even re. However, a TM that only runs for K

steps can only scan at most K distinct tape

symbols. Thus, if we use unary notation, CTime

can be expressed

• CTime = { M | K C|C|≤K [STP(C, M, K)] }

• We can dovetail over the set of all TMs, M, and

all K, listing those M that halt in constant time.

• CTime = { M | K C [STP(C, M, K)] }

• This would appear to imply that CTime is not

even re. However, a TM that only runs for K

steps can only scan at most K distinct tape

symbols. Thus, if we use unary notation, CTime

can be expressed

• CTime = { M | K C|C|≤K [STP(C, M, K)] }

• We can dovetail over the set of all TMs, M, and

all K, listing those M that halt in constant time.

Complexity of CTimeComplexity of CTime

• CTime is re, non-recursive.

• BUT, that’s a proof for another moment as we

are out of time, and you are long out of

patience.

• CTime is re, non-recursive.

• BUT, that’s a proof for another moment as we

are out of time, and you are long out of

patience.

