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Introduction

e Many materials, natural or artificial, are found in crystalline
forms (e.g., metals, ceramics, minerals, ice, bones and drugs).

@ As such, crystalline structures are of basic interest to various
branches of science, including materials science, physics,
geophysics, chemistry, biology, pharmacy, and forensic science.

@ It is the crystal structure what governs many of the physical,
chemical, and mechanical properties of a crystalline material.
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Grains and Orientations

@ Most crystalline materials are polycrystals, i.e., they are
composed of an assemblage of crystals, called grains or
crystallites.

@ Each grain can be associated with one orientation which
describes how that grain is oriented in 3D space (relative to a
fixed coordinate system).

@ Undeformed specimen: the lattice within each grain is typically
near-perfect i.e. each element has nearly same orientation.

@ Moderately Deformed specimen: orientations within a grain
will vary within a certain orientation range around the so-called
basic orientation.
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What is Grain Map?

A labeling (coloring) of a polycrystalline specimen, where each
grain is represented by a color according to its basic orientation.
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Methods to Reconstruct Grain Maps

@ Surface probes such as optical and electron microscopy (EM).
o Drawback:

@ destructive in nature.
@ rule out any study of the dynamics of the individual grains
during typical processes such as annealing or deformation.
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Methods to Reconstruct Grain Maps

@ Surface probes such as optical and electron microscopy (EM).
o Drawback:

@ destructive in nature.
@ rule out any study of the dynamics of the individual grains
during typical processes such as annealing or deformation.

@ Three-dimensional X-ray diffraction (3DXRD) microscopy

o Developed at European Synchrotron Radiation Facility (ESRF)

o Non destructive in nature.

o Uses high-energy monochromatic X-rays and the physical
phenomenon known as diffraction
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ESRF Synchrotron

e

torage :

@ One of the three largest and most powerful synchrotrons in the
world.
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@ Nondestructive imaging technique: makes dynamic studies
feasible.

@ Uses high-energy monochromatic X-rays and the physical
phenomenon known as diffraction.

o Exceptional penetration depth (several mm's for steel and
some cm's for aluminum).

@ 3D reconstructions can be performed by imaging multiple
cross-sections.

@ It produces an image of a 2D layer of the sample in the form
of diffraction patterns called projections.

@ Projections are recorded by a detector plate while the sample
is rotated about an axis perpendicular to the X-ray beam.
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3DXRD Experimental Setup

Area detector

Figure: Sketch of the 3DXRD experimental setup. The Bragg angle 26,
the rotation angle w and the azimuthal angle 7 are indicated for a part of
the grain that gives rise to diffraction. The laboratory coordinate system

is given as (X7, ¥1,21).
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Projection Geometry

@ For every image pixel (x,y) its coordinates in laboratory
coordinates are (x/,y, z/).

e For a given point (x, yj, z/) of the grain, we can compute the
associated diffraction point on the detector (L, Ydet, Zdet) as

x; = x cos(w) — ysin(w)

y; = xsin(w) + y cos(w) (1)
Ydet = —(L — x1) tan(20) sin(n) + ys
Zder = (L — x/) tan(260) cos(n) + z

Arun Kulshreshth 3DXRD Reconstruction & NP-Completeness



Background 3DXRD

Projection Geometry
Representation of Grains and Orientations

Representation of Grains and Orientations

o Let the total number of locations in the 2D area of interest
(sample layer) be I.

@ We assign to each location /(1 < i < /) both a grain label,
(i), and an orientation, o(i).

@ Grains are labeled by / € {1,2,3,..., n}, where n, the total
number of grains, is assumed to be known a priori.

@ Orientations can be represented in various ways, most common
are representations in Euler angles, Rodrigues vectors and unit
quaternions. These representations describe rotations in
3D-space.

@ Quaternion representation was used.
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Quaternion

Unit quaternions is a 4-tuple of the form

q = (a,b,c,d) = (cos(p/2),nsin(¢/2))

where the 3D unit vector n and the real scalar ¢ are the axis and
angle of rotation, respectively.
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Single Grain Reconstruction

@ Lets consider the subproblem of reconstructing a single grain
(with known orientation o and grain label /) and no
deformation.

o If we consider the whole image then at every pixel (x,y) , it
either belongs to grain / or not.

@ Let po = (/,0) be the assignment corresponding to the grain.

e Let p(x,y) be the density of the intersection between the grain
and the illuminated layer.

@ For all pixels except those at the boundary, we expect either
pij = po or po = 0.

@ The pixelated values are listed in the one-dimensional array X.

@ For each reflected ray, r, the normalized intensities are saved
in array b".
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Single Grain Reconstruction

There is a linear relationship between density and intensity and it
can be derived from equation (1). For each reflection, r , we may
write

A'X =b" (2)
where A" comprises the information on geometry (equation 1).
Next we pile the A" values for all the reflection into a block matrix
A and define the compound array b as follows:
Al bt
A=| A b= | b (3)
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Single Grain Reconstruction

Hence we have the following equation for the reconstruction of
single grain:

AX = b (4)

where A is a matrix of integers of size | x /, b is a matrix of
integers (since intensities on detector are integer values) of size

I x 1, X is a- vector of unknowns of size | x 1.

NOTE: Here / is the number of pixels in the 2D area of interest in
sample and it is a variable chosen based upon the application.
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NP-Complete Problem

We have the following:

A is a matrix of integers of size | x /.
b is a matrix of integers of size | x 1.
X is a vector of size | x 1.

Each element of X is either 0 or pg, where pg is a constant.

e 6 6 o o

X = p—lox, where x is a 0-1 vector. We can ignore pg for the

purpose of solving the equations.

Now problem reduces to Ax = b, where A and b are as defined
above and x is a 0-1 vector.

This is an integer programming problem.
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0-1 Integer Programming Problem

Definition
INSTANCE: Integer matrix A and integer vector b.
QUESTION: Does 3 a 0-1 vector x such that Ax < b?

@ Classical problem in combinatorial optimization.
@ NP-complete in general.
@ 3-SAT = 0-1 Integer Programming.
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Proof of NP-Completeness

@ It is easy to see that, given the value of x, it is easy to varify
its correctness in deterministic polynomial time. Hence this
problem is in the set NP.

@ Instance of 3-SAT

o Variables :U = {uy, up, u3,...,u,}

o Clauses: C ={c1,,03,...,¢cm} such that |¢;| for 1 < i < m.
We have to construct an instance of 0-1 Integer programming.
Boolean to arithmatic: (+) means true and (-) means false.
Let 0 denote false and 1 denote true.

Place OR’s between the variables.

e 6 6 o o

+Xx1 + X2 — X3 now means that

X1 is true, or x» is true, or x3 is false.
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Proof of NP-Completeness

Expressions Values
X1 0Ojo0jO0O|O|1|1|1]1
X2 oOjoj1|1|0|0|1]1
X3 Oj1]0|1|0|1|0]1
+x1+x0+x3 |0 1|12 ]1|2|2]|3
+x1+x—x3|0-1] 101 |0|2]1
+xy—x—x3|0]-1]-1|-2|10|0]-1
—-x1—X—x3|0|-1|-1|-2|-1]|-2]|-2]-3
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Proof of NP-Completeness

@ Points to remember for each expression row

e Each has exactly one column of minimum value.

e This column corresponds to a nonsatisfying truth assignment.
e Every other column satisfies the expression.

o All other columnms have higher values.

e Construction of matrix A = [a;j]

e n columns corresponding to variables in U.
e m rows corresponding to clauses in C.

1 if uj € ¢
@ ajj =4 —1 ifFjEC,'

0 otherwise
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Proof of NP-Completeness

The vector b = [b;],,; is merely made up of the appropriate
minimum values plus one from the chart, where the elements are
defined as follows:

b; = 1 — (the number of complemented variables in ¢;)
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Proof of NP-Completeness

(=) Assume that 3-SAT is satisfiable and let t : U — {T, F} be
the satisfying truth assignment for C, where T means true and F
means false. We can construct matrix A and vector b as described
in the above construction. Let us construct a vector x = [x;],, 4
such that

. 1 if t(u,-) =T
=0 i t(u) = F

Now if we multiply A and x then we will get a vector of size n
where element i (corresponding to clause ¢;) is of the form

+x;, £ xj, = xj; which is always less than b; because of the choice
of b; as described above. Hence x is a solution to the 0-1 Integer
Programming problem.
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Proof of NP-Completeness

(<) Assume that there does exists a 0-1 valued vector x such that
Ax < b. Now construct the truth assignment t of 3-SAT as follows:

T ifx=1
t(uj) = .
F ifx=0

The construction of A and b will force that each clause is satisfied.
If not, then one of the values of the vector Ax will be greater that
the corresponding value in vector b which will contradict the
assumption that Ax < b. Hence t is the satisfying assignment for
3-SAT.

Hence, 3-SAT and 0-1 Integer Programming are equivalent
problems. Since 3-SAT is known to be NP-Complete, 0-1 Integer
programming must be NP-Complete.
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Summary

Crystalline substances are made up of grains governs many of
the physical, chemical, and mechanical properties.

3DXRD is a technique which uses high energy monochrmatic
X-rays and phenomena known as diffraction to determine the
grain map of a polycrystal.

Subproblem of reconstructing a single grain (with known
orientation) leads to 0-1 Integer Programming problem.

(]

0-1 Integer programming is a NP-complete problem.

Reconstruction of grain maps is NP-Complete.

Arun Kulshreshth 3DXRD Reconstruction & NP-Completeness



References

References

[d H.F. Poulsen and Xiaowei Fu,"Generation of grain maps by an
algebraic reconstruction technique”, J. Appl. Cryst., 36 (2003),
1062-1068.

[§ R. Karp, Reducibility among combinatorial problems, in

“Proceedings of a Symposium on the Complexity of Computer
Computations,” Plenum Press, New York, (1972), 85-103.

[ A.K. Kulshreshth, A. Alpers, G. T. Herman, E. Knudsen, L.
Rodek and H. F. Poulsen, “A Greedy method for reconstructing
polycrystals from three dimensional X-ray diffraction data”, J.
Inverse Problems and Imaging, Volume 3, No. 1, 2009, 69-85.

Arun Kulshreshth 3DXRD Reconstruction & NP-Completeness



References

References

[§ L. Rodek, E. Knudsen,H. F. Poulsen,and G. T.
Herman,"Discrete Tomographic Reconstruction of 2D
Polycrystal Orientation Maps From X-ray Diffraction
Projections Using Gibbs Priors”, Electronic Notes in Discrete
Mathematics 20 (2005), 439-453

& A Alpers, H. F. Poulsen, E. Knudsen and G. T. Herman, A
discrete tomography algorithm for improving the quality of
three-dimensional X-ray diffraction grain maps, J. Appl. Cryst.,
39 (2006), 582-588.

[ H.F. Poulsen, “Three-Dimensional X-ray Diffraction
Microscopy,” Springer-Verlag, Berlin, 2004.

Arun Kulshreshth 3DXRD Reconstruction & NP-Completeness



References

References

[ R. J. Gardner, P. Gritzmann and D. Prangenberg, On the
computational complexity of reconstructing lattice sets from
their X-rays, Discrete Math., 202 (1999), 45-71.

[ B. E. Warren, “X-Ray Diffraction,” Dover Publications, New
York, 1990.

Arun Kulshreshth 3DXRD Reconstruction & NP-Completeness



	Introduction
	Grain and Orientations
	Methods to Reconstruct Grain Maps

	Background
	3DXRD
	Projection Geometry
	Representation of Grains and Orientations

	Reconstruction Problem
	Single Grain reconstruction

	NP-Completeness
	0-1 Integer Programming
	Proof of NP-Completeness

	Summary
	References

