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Introduction

Many materials, natural or artificial, are found in crystalline
forms (e.g., metals, ceramics, minerals, ice, bones and drugs).
As such, crystalline structures are of basic interest to various
branches of science, including materials science, physics,
geophysics, chemistry, biology, pharmacy, and forensic science.
It is the crystal structure what governs many of the physical,
chemical, and mechanical properties of a crystalline material.
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Grains and Orientations

Most crystalline materials are polycrystals, i.e., they are
composed of an assemblage of crystals, called grains or
crystallites.
Each grain can be associated with one orientation which
describes how that grain is oriented in 3D space (relative to a
fixed coordinate system).
Undeformed specimen: the lattice within each grain is typically
near-perfect i.e. each element has nearly same orientation.
Moderately Deformed specimen: orientations within a grain
will vary within a certain orientation range around the so-called
basic orientation.
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What is Grain Map?

Definition
A labeling (coloring) of a polycrystalline specimen, where each
grain is represented by a color according to its basic orientation.

Example
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Methods to Reconstruct Grain Maps

Surface probes such as optical and electron microscopy (EM).

Drawback:

destructive in nature.
rule out any study of the dynamics of the individual grains
during typical processes such as annealing or deformation.

Three-dimensional X-ray diffraction (3DXRD) microscopy

Developed at European Synchrotron Radiation Facility (ESRF)
Non destructive in nature.
Uses high-energy monochromatic X-rays and the physical
phenomenon known as diffraction
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ESRF Synchrotron

One of the three largest and most powerful synchrotrons in the
world.
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3DXRD

Nondestructive imaging technique: makes dynamic studies
feasible.
Uses high-energy monochromatic X-rays and the physical
phenomenon known as diffraction.
Exceptional penetration depth (several mm’s for steel and
some cm’s for aluminum).
3D reconstructions can be performed by imaging multiple
cross-sections.
It produces an image of a 2D layer of the sample in the form
of diffraction patterns called projections.
Projections are recorded by a detector plate while the sample
is rotated about an axis perpendicular to the X-ray beam.
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3DXRD Experimental Setup

Figure: Sketch of the 3DXRD experimental setup. The Bragg angle 2θ,
the rotation angle ω and the azimuthal angle η are indicated for a part of
the grain that gives rise to diffraction. The laboratory coordinate system
is given as (x̂l , ŷl , ẑl).
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Projection Geometry

For every image pixel (x , y) its coordinates in laboratory
coordinates are (xl , yl , zl ).
For a given point (xl , yl , zl ) of the grain, we can compute the
associated diffraction point on the detector (L, ydet , zdet) as

xl = x cos(ω)− y sin(ω)
yl = x sin(ω) + y cos(ω)

ydet = −(L− xl ) tan(2θ) sin(η) + yl
zdet = (L− xl ) tan(2θ) cos(η) + zl

(1)
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Representation of Grains and Orientations

Let the total number of locations in the 2D area of interest
(sample layer) be I .
We assign to each location i(1 ≤ i ≤ I ) both a grain label,
f (i), and an orientation, o(i).
Grains are labeled by l ∈ {1, 2, 3, . . . , n}, where n, the total
number of grains, is assumed to be known a priori.
Orientations can be represented in various ways, most common
are representations in Euler angles, Rodrigues vectors and unit
quaternions. These representations describe rotations in
3D-space.
Quaternion representation was used.
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Quaternion

Definition
Unit quaternions is a 4-tuple of the form

q = (a, b, c , d) = (cos (ϕ/2) ,n sin (ϕ/2))

where the 3D unit vector n and the real scalar ϕ are the axis and
angle of rotation, respectively.
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Single Grain Reconstruction

Lets consider the subproblem of reconstructing a single grain
(with known orientation o and grain label l) and no
deformation.
If we consider the whole image then at every pixel (x , y) , it
either belongs to grain l or not.
Let ρ0 = (l , o) be the assignment corresponding to the grain.
Let ρ(x , y) be the density of the intersection between the grain
and the illuminated layer.
For all pixels except those at the boundary, we expect either
ρij = ρ0 or ρ0 = 0.
The pixelated values are listed in the one-dimensional array X .
For each reflected ray, r , the normalized intensities are saved
in array br .
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Single Grain Reconstruction

There is a linear relationship between density and intensity and it
can be derived from equation (1). For each reflection, r , we may
write

ArX = br (2)

where Ar comprises the information on geometry (equation 1).
Next we pile the Ar values for all the reflection into a block matrix
A and define the compound array b as follows:

A =

 A1

A2

...

 b =

 b1

b2

...

 (3)
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Single Grain Reconstruction

Hence we have the following equation for the reconstruction of
single grain:

AX = b (4)

where A is a matrix of integers of size I × I , b is a matrix of
integers (since intensities on detector are integer values) of size
I × 1, X is a- vector of unknowns of size I × 1.
NOTE: Here I is the number of pixels in the 2D area of interest in
sample and it is a variable chosen based upon the application.
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NP-Complete Problem

We have the following:
A is a matrix of integers of size I × I .
b is a matrix of integers of size I × 1.
X is a vector of size I × 1.
Each element of X is either 0 or ρ0, where ρ0 is a constant.
X = 1

ρ0
x , where x is a 0-1 vector. We can ignore ρ0 for the

purpose of solving the equations.
Now problem reduces to Ax = b, where A and b are as defined
above and x is a 0-1 vector.
This is an integer programming problem.
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0-1 Integer Programming Problem

Definition
INSTANCE: Integer matrix A and integer vector b.
QUESTION: Does ∃ a 0-1 vector x such that Ax ≤ b?

Classical problem in combinatorial optimization.
NP-complete in general.
3-SAT ⇒ 0-1 Integer Programming.
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Proof of NP-Completeness

It is easy to see that, given the value of x , it is easy to varify
its correctness in deterministic polynomial time. Hence this
problem is in the set NP.
Instance of 3-SAT

Variables :U = {u1, u2, u3, . . . , un}
Clauses: C = {c1, c2, c3, . . . , cm} such that |ci | for 1 ≤ i ≤ m.

We have to construct an instance of 0-1 Integer programming.
Boolean to arithmatic: (+) means true and (-) means false.
Let 0 denote false and 1 denote true.
Place OR’s between the variables.
+x1 + x2 − x3 now means that

x1 is true, or x2 is true, or x3 is false.
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Proof of NP-Completeness

Expressions Values
x1 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1
x3 0 1 0 1 0 1 0 1

+x1 + x2 + x3 0 1 1 2 1 2 2 3
+x1 + x2 − x3 0 -1 1 0 1 0 2 1
+x1 − x2 − x3 0 -1 -1 -2 1 0 0 -1
−x1 − x2 − x3 0 -1 -1 -2 -1 -2 -2 -3
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Proof of NP-Completeness

Points to remember for each expression row

Each has exactly one column of minimum value.
This column corresponds to a nonsatisfying truth assignment.
Every other column satisfies the expression.
All other columnms have higher values.

Construction of matrix A = [ai ,j ]m×n :

n columns corresponding to variables in U.
m rows corresponding to clauses in C .

ai,j =


1 if uj ∈ ci

−1 if uj ∈ ci

0 otherwise
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Proof of NP-Completeness

The vector b = [bi ]n×1 is merely made up of the appropriate
minimum values plus one from the chart, where the elements are
defined as follows:

bi = 1− (the number of complemented variables in ci )
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Proof of NP-Completeness

(⇒) Assume that 3-SAT is satisfiable and let t : U → {T ,F} be
the satisfying truth assignment for C , where T means true and F
means false. We can construct matrix A and vector b as described
in the above construction. Let us construct a vector x = [xi ]n×1
such that

xi=

{
1 if t(ui ) = T
0 if t(ui ) = F

Now if we multiply A and x then we will get a vector of size n
where element i (corresponding to clause ci ) is of the form
±xi1 ± xi2 ± xi3 which is always less than bi because of the choice
of bi as described above. Hence x is a solution to the 0-1 Integer
Programming problem.

Arun Kulshreshth 3DXRD Reconstruction & NP-Completeness



Introduction
Background

Reconstruction Problem
NP-Completeness

Summary
References

0-1 Integer Programming
Proof of NP-Completeness

Proof of NP-Completeness

(⇐) Assume that there does exists a 0-1 valued vector x such that
Ax ≤ b. Now construct the truth assignment t of 3-SAT as follows:

t (ui ) =

{
T if xi = 1
F if xi = 0

The construction of A and b will force that each clause is satisfied.
If not, then one of the values of the vector Ax will be greater that
the corresponding value in vector b which will contradict the
assumption that Ax ≤ b. Hence t is the satisfying assignment for
3-SAT.
Hence, 3-SAT and 0-1 Integer Programming are equivalent
problems. Since 3-SAT is known to be NP-Complete, 0-1 Integer
programming must be NP-Complete.

Arun Kulshreshth 3DXRD Reconstruction & NP-Completeness



Introduction
Background

Reconstruction Problem
NP-Completeness

Summary
References

Outline

1 Introduction
Grain and Orientations
Methods to Reconstruct Grain Maps

2 Background
3DXRD
Projection Geometry
Representation of Grains and Orientations

3 Reconstruction Problem
Single Grain reconstruction

4 NP-Completeness
0-1 Integer Programming
Proof of NP-Completeness

5 Summary

Arun Kulshreshth 3DXRD Reconstruction & NP-Completeness



Introduction
Background

Reconstruction Problem
NP-Completeness

Summary
References

Summary

Crystalline substances are made up of grains governs many of
the physical, chemical, and mechanical properties.
3DXRD is a technique which uses high energy monochrmatic
X-rays and phenomena known as diffraction to determine the
grain map of a polycrystal.
Subproblem of reconstructing a single grain (with known
orientation) leads to 0-1 Integer Programming problem.
0-1 Integer programming is a NP-complete problem.
Reconstruction of grain maps is NP-Complete.
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