y +
| ﬁUniversity of

Central
Florida

Computability &
Complexity Theory

Charles E. Hughes

COT 6410 — Fall 2010
Notes

 Instructor: Charles Hughes;
Harris Engineering 247C; 823-2762

(phone is not a good way to get me);
charles.e.hughes@knights.ucf.edu

(e-mail is a good way to get me)

Subject: COT6410

* Web Page: http://www.cs.ucf.edu/courses/cot6410/fall2010
* Meetings: TR 6:00PM-7:15PM, HEC-118;

28 periods, each 75 minutes long.
Final Exam is separate from class meetings

o Office Hours: TR 3:30PM-4:45PM

11/16/10 © UCF EECS

 This and other material linked from web site.
 References:

11/16/10

Garey & Johnson, Computers and Intractability: A guide to the
Theory of NP-Completeness, W. H. Freeman & Co., 1979.

Papadimitriou & Lewis, Elements of the Theory of Computation,
Prentice-Hall, 1997.

Hopcroft, Motwani&UIllman, Intro to Automata Theory,
Languages and Computation 2nd Ed., Addison-Wesley, 2001.

Davis, Sigal and Weyuker, Computability, Complexity and
Languages 2nd Ed., Academic Press (Morgan Kaufmann), 1994.

Sipser, Introduction to the Theory of Computation 2nd Ed.,
Course Technologies, 2005.

© UCF EECS

* Introduce Computability and Complexity Theory, including

— Simple notions in theory of computation
+ Algorithms and effective procedures
» Decision and optimization problems
* Yes versus no decision problems

— Limits of computation
« Turing Machines and other equivalent models
* Determinism and non-determinism
* Undecidable problems
* The technique of reducibility
« The ubiquity of undecidability (Rice’s Theorem)
» The notion of semi-decidable (re) and of co-re sets

— Complexity theory
* Order notation (this should be a review)
* Polynomial reducibility

« Time complexity, the sets P, NP, co-NP, NP-complete, NP-hard, etc., and the question
does P=NP? Sets in NP and NP-Complete.

11/16/10 © UCF EECS

* You will gain a solid understanding of various types of
computational models and their relations to one another.

* You will have a strong sense of the limits that are
Imposed by the very nature of computation, and the
ubiquity of unsolvable problems throughout CS.

* You will understand the notion of computational
complexity and especially of the classes of problems
known as P, NP, co-NP, NP-complete and NP-Hard.

* You will (hopefully) come away with stronger formal
proof skills and a better appreciation of the importance of
discrete mathematics to all aspects of CS.

11/16/10 © UCF EECS 5

| expect you to visit the course web site regularly
(preferably daily) to see if changes have been made or
material has been added.

« Attendance is preferred, although | do not take role.

* | do, however, ask lots of questions in class and give lots
of hints about the kinds of questions | will ask on exams.
It would be a shame to miss the hints, or to fail to
iImpress me with your insightful in-class answers.

* You are responsible for all material covered in class,
whether in the text or not.

11/16/10 © UCF EECS 6

e Do Your Own Work

— When you turn in an assignment, you are implicitly telling me
that these are the fruits of your labor. Do not copy anyone else's
homework or let anyone else copy yours. In contrast, working
together to understand lecture material and solutions to
problems not posed as assignments is encouraged.

« Late Assignments

— | will accept no late assignments, except under very unusual
conditions, and those exceptions must be arranged with me or
the GTA in advance unless associated with some tragic event.

e Exams

— No communication during exams, except with me or a
designated proctor, will be tolerated. A single offense will lead to
termination of your participation in the class, and the assignment
of a failing grade.

11/16/10 © UCF EECS 7

* Grading of Assignments

— | will grade harder than my actual expectations run. In
general, | will award everyone 110% of the grade they
are assigned on the returned papers when it comes to
final grade computation.

 Exam Weights

— The weights of exams will be adjusted to your
personal benefits, as | weigh the exam you do well in
more than one in which you do less well.

11/16/10 © UCF EECS 8

 Exam#1 — Tuesday, October 5 (tentative)
« Withdraw Deadline — Friday, October 15
* Veterans Day — Thursday, November 11
* Thanksgiving — Thursday, November 25
 Final — Tues., Dec. 7, 4:00PM-6:50PM

11/16/10 © UCF EECS

 Mid Term — 100 points ; Final — 150 points

* Assignments — Up to 100 points; Paper
and Presentation — 50 points

« Total Available: About 400

« Grading will be A >=90%, B+ >=85%, B
>= 80%, C+>=75%, C>=70%, D >=
50%, F < 50%

11/16/10 © UCF EECS 10

Assignment #0

Send an e-mail to me.

The subject must be COT6410.

Send it to charles.e.hughes@knights.ucf.edu
| will use that for all class communication.

In the message, tell me where and when you took
Discrete Structures Il or its equivalent. Also, tell me
your area(s) of strong research interests.

There is no actual credit for this, but it establishes the
lines of communication.
Due: Friday, August 27, by midnight

11/16/10 © UCF EECS 11

Computability Theory Complexity Theory

The study of what can/ The study of what can/

cannot be done via cannot be done well
purely mechanical via purely mechanical
means. means.

11/16/10 © UCF EECS 12

What is it that we are talking about?

Solving problems algorithmically!

11/16/10 © UCF EECS

13

* A set of input data items (set of input
"instances'')

* A set of rules or relationships between data
and other values

* A question to be answered or set of values to
be obtained

11/16/10 © UCF EECS 14

* Instance: A graph G = (V, E) and an integer k.
* Question: Can G be "properly colored" with at most k colors?

« Proper Coloring: a color is assigned to each vertex so that adjacent
vertices have different colors.

« Suppose we have two instances of this problem (1) is True (Yes)
and the other (2) is False (No).

« AND, you know (1) is Yes and (2) is No. (Maybe you have a secret
program that has analyzed the two instance.)

11/16/10 © UCF EECS 15

« Without showing how your program works (you may not even know), how
can you convince someone else that instance (1) is, in fact, a Yes instance?

 We can assume the output of the program was an actual coloring of G. Just
give that to a doubter. She/He can easily check that no adjacent vertices
are colored the same, and that no more than k colors were used.

« How about the No instance?

« What could the program have given that allows "verifying" (2) is a No
instance?

* No One Knowsl!!

11/16/10 © UCF EECS 16

* The only thing anyone has thought of is to have it test all
possible ways to k-color the graph — all of which fail, of
course.

* There are an exponential number of things (colorings) to
check.

* For some problems, there seems to be a big difference
between verifying Yes and No instances.

* To solve a problem efficiently, we must be able to solve
both Yes and No instances efficiently.

11/16/10 © UCF EECS 17

« True Conjecture: If a problem is easy to solve, then it is
easy to verify (just solve it and compare).

« Contrapositive: If a problem is hard to verify, then it is
(probably) hard to solve.

* There is nothing magical about Yes and No instances —
sometimes the Yes instances are hard to verify and No
iInstances are easy to verify.

* And, of course, sometimes both are hard to verify.

11/16/10 © UCF EECS

18

* Are there problems in which both Yes and No instances
are easy to verify?

* Yes. For example: Search a list L of n values for a key x.
« Question: Is x in the list L?

* Yes and No instances are both easy to verify.

In fact, the entire problem is easy to solve!!

11/16/10 © UCF EECS 19

« Conjecture: If both Yes and No instances are easy to verify, then the
problem is easy to solve.

* No one has yet proven this claim, but most researchers believe it to
be true.

* Note: It is usually relatively easy to prove something is easy — just
write an algorithm for it and prove it is correct and that it is fast
(usually, we mean polynomial).

« But, it is usually very difficult to prove something is hard — we may
not be clever enough yet. So, you will often see "appears to be
hard."

11/16/10 © UCF EECS 20

« Each instance has an ‘answer.’

— An instance’s answer is the solution of the
instance - it is not the solution of the
problem.

— A solution of the problem is a
computational procedure that finds the
answer of any instance given to it — the
procedure must halt on all instances - it
must be an ‘algorithm.’

11/16/10 © UCF EECS 21

— A finite set of operations (statements) such that

 Each statement is formed from a predetermined finite
set of symbols and is constrained by some set of
language syntax rules.

* The current state of the machine model is finitely
presentable.

 The semantic rules of the language specify the effects
of the operations on the machine’s state and the order
in which these operations are executed.

* If the procedure halts when started on some input, it
produces the correct answer to this given instance of
the problem.

11/16/10 © UCF EECS 22

* A procedure that

— Correctly solves any instance of a given
problem.

— Completes execution in a finite number of steps
no matter what input it receives.

11/16/10 © UCF EECS 23

{ Example algorithm:
Linear search of a finite list for a key;
If key is found, answer “Yes”;
If key is not found, answer “No”; }
{ Example procedure:
Linear search of a finite list for a key;
If key is found, answer “Yes”;
If key is not found, try this strategy again; }

11/16/10 © UCF EECS 24

Looking back at our approaches to “find a key in a
finite list,” we see that the algorithm always halts
and always reports the correct answer. In contrast,
the procedure does not halt in some cases, but
never lies.

What this illustrates is the essential distinction
between an algorithm and a procedure — algorithms
always halt in some finite number of steps, whereas
procedures may run on forever for certain inputs. A
particularly silly procedure that never lies is a
program that never halts for any input.

11/16/10 © UCF EECS 25

« A problem is solvable if there exists an algorithm

that solves it (provides the correct answer for each
instance).

* The fact that a problem is solvable or, equivalently,
decidable does not mean it is solved. To be solved,
someone must have actually produced a correct
algorithm. The distinction between solvable and
solved is subtle. Solvable is an innate property — an

unsolvable problem can never become solved, but a

solvable one may or may not be solved in an
individual’s lifetime.

11/16/10 © UCF EECS

26

Does there exist a set of positive whole numbers, a, b, ¢ and an
n>2 such that a"+b" = ¢c"?

In 1637, the French mathematician, Pierre de Fermat, claimed
that the answer to this question is “No”. This was called
Fermat’s Last Theorem, despite the fact that he never produced
a proof of its correctness. While this problem remained
unsolved until Fermat’s claim was verified in 1995 by Andrew
Wiles, the problem was always solvable, since it had just one
question, so the solution was either “Yes” or “No”, and an
algorithm exists for each of these candidate solutions.

11/16/10 © UCF EECS 27

Does P=NP?

There are many equivalent ways to describe P and NP. For now,
we will use the following. P is the set of decision problems
(those whose instances have “Yes”/ “No” answers) that can be
solved in polynomial time on a deterministic computer (no
concurrency allowed). NP is the set of decision problems that
can be solved in polynomial time on a non-deterministic
computer (equivalently one that can spawn parallel threads).
Again, as “Does P=NP?” has just one question, it is solvable,
we just don’t yet know which solution, “Yes” or “No”, is the
correct one.

11/16/10 © UCF EECS 28

Computability focuses on the distinction between
solvable and unsolvable problems, providing tools
that may be used to identify unsolvable problems —
ones that can never be solved by mechanical
(computational) means. Surprisingly, unsolvable
problems are everywhere as you will see.

In contrast, complexity theory focuses on how hard
it is to solve problems that are known to be solvable.
We will address complexity theory for the first part of
this course, returning to computability theory later in
the semester.

11/16/10 © UCF EECS 29

History

The Quest for Mechanizing
Mathematics

« Late 1800’s to early 1900's

* Axiomatic schemes
— Axioms plus sound rules of inference
— Much of focus on number theory

* First Order Predicate Calculus
— Vxdy [y > x]
« Second Order (Peano’s Axiom)
— VP [[P(0) && VX[P(Xx) =P (x+1)]] = VxP(x)]

11/16/10 © UCF EECS

31

* In 1900 declared there were 23 really
Important problems in mathematics.

« Belief was that the solutions to these
would help address math’s complexity.

* Hilbert’'s Tenth asks for an algorithm to
find the integral zeros of polynomial
equations with integral coefficients. This is
now known to be impossible (In 1972,
MatiyaceviC showed this undecidable).

11/16/10 © UCF EECS 32

* All mathematics could be developed within
a formal system that allowed the

mechanical creation and checking of
proofs.

11/16/10 © UCF EECS 33

* In 1931 he showed that any first order theory
that embeds elementary arithmetic is either
Incomplete or inconsistent.

* He did this by showing t

nat such a first order

theory cannot reason about itself. That is, there

IS a first order expressib
cannot be either proved

e proposition that
or disproved, or the

theory is inconsistent (some proposition and its
complement are both provable).

* (Godel also developed the general notion of
recursive functions but made no claims about

their strength.

11/16/10 © UCF EECS

34

* In 1936, each presented a formalism for computability.

— Turing and Post devised abstract machines and claimed
these represented all mechanically computable functions.

— Church developed the notion of lambda-computability from
recursive functions (as previously defined by Godel and
Kleene) and claimed completeness for this model.

« Kleene demonstrated the computational equivalence of
recursively defined functions to Post-Turing machines.

 Church’s notation was the lambda calculus, which later
gave birth to Lisp.

11/16/10 © UCF EECS 35

« Inthe 1920’s, starting with notation developed by Frege
and others in 1880s, Post devised the truth table form
we all use now for Boolean expressions (propositional
logic). This was a part of his PhD thesis in which he
showed the axiomatic completeness of the propositional
calculus.

* Inthe late 1930’s and the 1940’s, Post devised symbol
manipulation systems in the form of rewriting rules
(precursors to Chomsky’s grammars). He showed their
equivalence to Turing machines.

* In 1940s, Post showed the complexity (undecidability) of
determining what is derivable from an arbitrary set of
propositional axioms.

11/16/10 © UCF EECS 36

Computability

The study of what can/cannot be
done via purely mechanical
means

* Provide characterizations (computational models) of
the class of effective procedures / algorithms.

« Study the boundaries between complete (or so it
seems) and incomplete models of computation.

« Study the properties of classes of solvable and
unsolvable problems.

« Solve or prove unsolvable open problems.

 Determine reducibility and equivalence relations
among unsolvable problems.

« Apply results to various other areas of CS.

11/16/10 © UCF EECS 38

Basic Definitions

The Preliminaries

¢« A

process whose execution is clearly specified to the

smallest detall

« Such procedures have, among other properties, the
following:

11/16/10

Processes must be finitely describable and the language used to
describe them must be over a finite alphabet.

The current state of the machine model must be finitely
presentable.

Given the current state, the choice of actions (steps) to move to
the next state must be easily determinable from the procedure’s
description.

Each action (step) of the process must be capable of being
carried out in a finite amount of time.

The semantics associated with each step must be clear and
unambiguous.

© UCF EECS 40

* An effective procedure that halts on all
Input
* The key term here is “halts on all input”

* By contrast, an effective procedure may
halt on all, none or some of its input.

 The domain of an algorithm is its entire
domain of possible inputs.

11/16/10 © UCF EECS 41

» Set -- A collection of atoms from some
universe U. @ denotes the empty set.

* (Decision) Problem -- A set of questions,
each of which has answer “yes” or “no”.

* Predicate -- A mapping from some
universe U into the Boolean set {true,
false}. A predicate need not be defined for
all values in U.

11/16/10 © UCF EECS 42

« Let S be an arbitrary subset of some universe U. The
predicate x5 over U may be defined by:

¥g(X) =true ifandonlyif x€ S
Xg IS called the characteristic function of S.

* Let K be some arbitrary predicate defined over some
universe U. The problem P, associated with K is the
problem to decide of an arbitrary member x of U,
whether or not K(x) is true.

* Let P be an arbitrary decision problem and let U denote
the set of questions in P (usually just the set over which
a single variable part of the questions ranges). The set
Sp associated with P is

{x|x & Uand x has answer “yes” in P }

11/16/10 © UCF EECS

« Solvable or Decidable -- A problem P is said to
be solvable (decidable) if there exists an
algorithm F which, when applied to a question g
iIn P, produces the correct answer (“yes” or “no”).

« Solved -- A problem P is said to solved if P is
solvable and we have produced its solution.

 Unsolved, Unsolvable (Undecidable) --
Complements of above

11/16/10 © UCF EECS 44

A counting argument

— The number of mappings from X to X is at least as
great as the number of subsets of X. But the number
of subsets of X is uncountably infinite (X). However,
the number of programs in any model of computation
Is countably infinite (X). This latter statement is a
consequence of the fact that the descriptions must be
finite and they must be written in a language with a
finite alphabet. In fact, not only is the number of
programs countable, it is also effectively enumerable;
moreover, its membership is decidable.

A diagonalization argqument
— Will be shown later in class

11/16/10 © UCF EECS 45

* Recursively enumerable -- A set S is recursively

enumerable (re) if S is empty (S = &) or there
exists an algorithm F, over the natural numbers

X, whose range is exactly S. A problem is said
to be re if the set associated with it is re.

« Semi-Decidable -- A problem is said to be semi-
decidable if there is an effective procedure F
which, when applied to a question q in P,
produces the answer “yes” if and only if g has
answer “yes”. F need not halt if g has answer

“nO”.

11/16/10 © UCF EECS

46

Computability

The study of what can/cannot be
done via purely mechanical
means

* P solved implies P solvable implies P
semi-decidable (re).

* P non-re implies P unsolvable implies P
unsolved.

P finite implies P solvable.

11/16/10 © UCF EECS

48

* P enumerable iff P semi-decidable.

» P solvable iff both S; and (U — Sp) are re
(semi-decidable).

* \We will prove these later.

11/16/10 © UCF EECS

49

Diophantine Equations are
Unsolvable

One Variable Diophantine
Equations are Solvable

« Consider over one variable: P(x) =0
« Can semi-decide by plugging in
0,1,-1,2,-2,3,-3, ...

* This terminates and says “yes” if P(x)
evaluates to 0, eventually. Unfortunately, it
never terminates if there is no x such that
P(x) =O0.

» Can easily extend to P(x4,X,,..,X,) = 0.

11/16/10 © UCF EECS 51

eCc, X"+cCc X"+ . +c,x+c,=0

° Xn

° Xn
° Xn
o X‘

11/16/10

=-(C4 X"+ ... +Ccy X+ Cyc,
< Cona(IX™1] + ...+ [X] + 1])|c,|
< C.,(N [X"1)/|c,|, since |x|=1
< NxC../|C,|

© UCF EECS

52

« Can bound the search to values of x in range [+
Nn*(Cuha! Ch)l, Where
n = highest order exponent in polynomial
Crax — largest absolute value coefficient
c,, = coefficient of highest order term

* Once we have a search bound and we are
dealing with a countable set, we have an
algorithm to decide if there is an x.

 Cannot find bound when more than one variable,
so cannot extend to P(x,,X,,..,X,) = 0.

11/16/10 © UCF EECS 53

11/16/10

ORDER ANALYSIS

© UCF EECS

54

Throughout the complexity portion of this
course, we will be interested in how long an
algorithm takes on the instances of some
arbitrary "size" n. Recognizing that different
times can be recorded for two instance of
size n, we only ask about the worst case.

We also understand that different languages,
computers, and even skill of the implementer
can alter the "running time."

11/16/10 © UCF EECS 55

As a result, we really can never know
"exactly” how long anything takes.

So, we usually settle for a substitute
function, and say the function we are trying
to measure is "of the order of" this new
substitute function.

11/16/10 © UCF EECS 56

"Order” is something we use to describe an upper
bound upon something else (in our case, time, but it
can apply to almost anything).

For example, let f(n) and g(n) be two functions. We
say "f(n) is order g(n)" when there exists constants c
and N such that f(n) < cg(n) for all n 2 N.

What this is saying is that when n is 'large enough,’
f(n) is bounded above by a constant multiple of g(n).

11/16/10 © UCF EECS 57

This is particularly useful when f(n) is not known
precisely, is complicated to compute, and/or difficult
to use. We can, by this, replace f(n) by g(n) and know
we aren't "off too far."

We say f(n) is "in the order of g(n)" or, simply, f(n) €
O(g(n)).

Usually, g(n) is a simple function, like nlog(n), n3, 2",
etc., that's easy to understand and use.

11/16/10 © UCF EECS 58

Order of an Algorithm: The maximum
number of steps required to find the answer
to any instance of size n, for any arbitrary
value of n.

For example, if an algorithm requires at
most 6n’+3n—6 steps on any instance of size
n, we say it is "order n?" or, simply, O(n?).

11/16/10 © UCF EECS 59

Let the order of algorithm X be in O(f,(n)).

Then, for algorithms A and B and their respective
order functions, f,(n) and fg(n), consider the limit of
f,(n)/fg(n) as n goes to infinity.

If this value is

0 A is faster than B
constant A and B are "equally slow/fast"
infinity A is slower than B.

11/16/10 © UCF EECS 60

Order of a Problem

The order of the fastest algorithm that can
ever solve this problem. (Also known as the
"Complexity" of the problem.)

Often difficult to determine, since this allows
for algorithms not yet discovered.

11/16/10 © UCF EECS

61

11/16/10

Two types of problems are of particular
interest:

Decision Problems (""Yes/No'" answers)

Optimization problems (''best" answers)

(there are other types)

© UCF EECS

62

« Suppose we are in charge of a large network (a graph where edges
are links between pairs of cities (vertices). Periodically, a line fails.
To mend the line, we must call in a repair crew that goes over the
line to fix it. To minimize down time, we station a repair crew at one
end of every line. How many crews must you have and where
should they be stationed?

« This is called the Vertex Cover Problem. (Yes, it sounds like it
should be called the Edge Cover problem — something else already
had that name.)

* An interesting problem — it is among the hardest problems, yet is
one of the easiest of the hard problems.

11/16/10 © UCF EECS 63

 As a Decision Problem:

« Instances: A graph G and an integer k.
* Question: Does G possess a vertex Cover with at most k vertices?

* As an Optimization Problem:

« Instances: A graph G.

* Question: What is the smallest k for which G possesses a vertex
cover?

11/16/10 © UCF EECS 64

« |f we can (easily) solve either one of these problems, we can (easily)
solve the other. (To solve the optimization version, just solve the
decision version with several different values of k. Use a binary
search on k between 1 and n. That is log(n) solutions of the
decision problem solves the optimization problem. It's simple to
solve the decision version if we can solve the optimization version.

* We say their time complexity differs by no more than a multiple of
log(n).

« If one is polynomial then so is the other.

« |f one is exponential, then so is the other.

« We say they are equally difficult (both poly. or both exponential).

11/16/10 © UCF EECS 65

« A "stranger version"

* Instances: A graph G and an integer k.

* Question: Does the smallest vertex cover of G have exactly k
vertices?

« This is a decision problem. But, notice that does not seem to be
easy to verify either Yes or No instances!! (We can easily verify No
instances for which the VC number is less than k, but not when it is
actually greater than k.)

« S0, it would seem to be in a different category than either of the
other two. Yet, it also has the property that if we can easily solve
either of the first two versions, we can easily solve this one.

11/16/10 © UCF EECS 66

11/16/10

Interestingly, these usually come in pairs
a decision problem, and
an optimization problem.
Equally easy, or equally difficult, to solve.

Both can be solved in polynomial time, or both require
exponential time.

© UCF EECS

67

An algorithm for a problem is said to be polynomial
if there exists integers k and N such that t(n), the
maximum number of steps required on any instance
of size n, is at most nk, for all n =2 N.

Otherwise, we say the algorithm is exponential.
Usually, this is interpreted to mean t(n) 2 c" for an
infinite set of size n instances, and some constant c
> 1 (often, we simply use c = 2).

11/16/10 © UCF EECS 68

Normally, when we say a problem is "easy"” we mean
that it has a polynomial algorithm.

But, when we say a problem is "hard" or “apparently
hard” we usually mean no polynomial algorithm is
known, and none seems likely.

It is possible a polynomial algorithm exists for
"hard” problems, but the evidence seems to indicate
otherwise.

11/16/10 © UCF EECS 69

Problems we will discuss are usually "abstractions”
of real problems. That is, to the extent possible, non
essential features have been removed, others have
been simplified and given variable names,
relationships have been replaced with mathematical

equations and/or inequalities, etc.

If an abstraction is hard, then the real problem is
probably even harder!!

11/16/10 © UCF EECS

70

This process, Mathematical Modeling, is a field of
study in itself, and not our interest here.

On the other hand, we sometimes conjure up
artificial problems to put a little "reality"” into our
work. This results in what some call "toy problems."

Again, if a toy problem is hard, then the real problem
is probably harder.

11/16/10 © UCF EECS 71

Some problems have no algorithm (e. g., Halting
Problem.)

No mechanical/logical procedure will ever solve all
instances of any such problem!!

Some problems have only exponential algorithms
(provably so — they must take at least order 2" steps)
So far, only a few have been proven, but there may
be many. We suspect so.

11/16/10 © UCF EECS 72

Many problems have polynomial
algorithms (Fortunately).

Why fortunately? Because, most
exponential algorithms are essentially
useless for problem instances with n much
larger than 50 or 60. We have algorithms
for them, but the best of these will take
100's of years to run, even on much faster
computers than we now envision.

11/16/10 © UCF EECS 73

Problems proven to be in these three
groups (classes) are, respectively,

Undecidable, Exponential, and Polynomial.

Theoretically, all problems belong to
exactly one of these three classes.

11/16/10 © UCF EECS 74

Practically, there are a lot of problems (maybe, most)
that have not been proven to be in any of the classes
(Yet, maybe never will be).

Most currently "lie between” polynomial and
exponential — we know of exponential algorithms,
but have been unable to prove that exponential
algorithms are necessary.

Some may have polynomial algorithms, but we have
not yet been clever enough to discover them.

11/16/10 © UCF EECS 75

If an algorithm is O(nk), increasing the size of an
instance by one gives a running time that is O((n+1)k)

That’s really not much more.

With an increase of one in an exponential algorithm,
O(2") changes to O(2"*1) = O(2*2") = 2*0O(2") — that is,
it takes about twice as long.

11/16/10 © UCF EECS 76

Technically, the size of an instance is the minimum number of
bits (information) needed to represent the instance - its
"length.”

This comes from early Formal Language researchers who
were analyzing the time needed to 'recognize' a string of
characters as a function of its length (number of
characters).

When dealing with more general problems there is usually a
parameter (number of vertices, processors, variables, etc.)
that is polynomially related to the length of the instance.
Then, we are justified in using the parameter as a measure
of the length (size), since anything polynomially related to
one will be polynomially related to the other.

11/16/10 © UCF EECS 77

But, be careful.

For instance, if the "value”™ (magnitude) of n is both
the input and the parameter, the ‘length’ of the input
(number of bits) is log,(n). So, an algorithm that
takes n time is running in n = 2°92(n) time, which is
exponential in terms of the length, log,(n), but linear
(hence, polynomial) in terms of the "value,” or
magnitude, of n.

It's a subtle, and usually unimportant difference, but
it can bite you.

11/16/10 © UCF EECS 78

Problem — Subset Sum

Instances: A list L of n integer values and an integer B.
Question: Does L have a subset which sums exactly to B?

No one knows of a polynomial (deterministic) solution to this
problem.

On the other hand, there is a very simple (dynamic programming)
algorithm that runs in O(nB) time.

Why isn't this "polynomial™?
Because, the "length" of an instance is nlog(B) and
nB > (nlog(B))*k for any fixed k.

11/16/10 © UCF EECS 79

When given a new problem to solve (design an
algorithm for), if it's undecidable, or even
exponential, you will waste a lot of time trying to
write a polynomial solution for it!!

If the problem really is polynomial, it will be

worthwhile spending some time and effort to find a
polynomial solution.

You should know something about how hard a
problem is before you try to solve it.

11/16/10 © UCF EECS

80

Decidable — vs — Undecidable
(area of Computability Theory)

Exponential — vs — polynomial
(area of Computational Complexity)

Algorithms for any of these
(area of Algorithm Design/Analysis)

11/16/10 © UCF EECS 81

Turing Machines

1t Model
A Linear Memory Machine

« We will use a simplified form that is a variant of Post’s and Turing’s
models.

« Here, each machine is represented by a finite set of states of states
Q, the simple alphabet {0,1}, where 0 is the blank symbol, and each
state transition is defined by a 4-tuple of form

gaXs

where q a is the discriminant based on current state g, scanned
symbol a; X can be one of {R, L, 0, 1}, signifying move right, move
left, print O, or print 1; and s is the new state.

« Limiting the alphabet to {0,1} is not really a limitation. We can
represent a k-letter alphabet by encoding the j-th letter viaj 1’s in
succession. A 0 ends each letter, and two 0’s ends a word.

« We rarely write quads. Rather, we typically will build machines from
simple forms.

11/16/10 © UCF EECS 83

R -- move right over any scanned symbol
* L -- move left over any scanned symbol
0 --write a 0 in current scanned square
1 --write a 1 in current scanned square

* We can then string these machines together with
optionally labeled arc.

* A labeled arc signifies a transition from one part of the
composite machine to another, if the scanned square’s
content matches the label. Unlabeled arcs are
unconditional. We will put machines together without
arcs, when the arcs are unlabeled.

11/16/10 © UCF EECS 84

R -- move right to next 0 (not including current square)
..211...10... = ...711...10...

£ -- move left to next 0 (not including current square)
L.011...12... = ...011...12...

R -- move right to next 00 (not including current square)
...?211...1011...10...11...100... = ...?11...1011...10...

11...100... S——
= 1
L -- move left to next 00 (not includingrr@h 1 L
...0011...1011...10...11..1?... = ...0011...1011...10...

11...17. ..
|:£L_I1 0 R

11/16/10 © UCF EECS 85

 These machines can be used to move
over encodings of letters or encodings of
unary based natural numbers.

* In fact, any effective computation can
easily be viewed as being over natural
numbers. We can get the negative
integers by pairing two natural numbers.
The first is the sign (O for +, 1 for -). The
second is the magnitude.

11/16/10 © UCF EECS

86

A reasonably standard definition of a Turing
computation of some n-ary function F is to
assume that the machine starts with a tape
containing the n inputs, x1, ... , xn in the form

...01¥101%20...01xQ...
and ends with

...01¥101%20...01x01Y0...
where y = F(x1, ..., xn).

11/16/10 © UCF EECS

87

Need the copy family of useful
submachines, where C, copies k-th

preceding value.
1

KR

0 7€k+1 1 £k+1 1

|
The add machine Is then
C,C,1R®LO

11/16/10 © UCF EECS

88

* Two tracks

* N tracks

* Non-deterministic (\We will return to this)
* Two-dimensional

K dimensional

* Two stack machines

 Two counter machines

11/16/10 © UCF EECS 89

Undecidability

We Can't Do It All

Given an arbitrary program P, in some language L, and
an input x to P, will P eventually stop when run with input
X7

The above problem is called the “Halting Problem.” It is
clearly an important and practical one — wouldn't it be
nice to not be embarrassed by having your program run
“forever” when you try to do a demo for the boss or
professor? Unfortunately, there’s a fly in the ointment as
one can prove that no algorithm can be written in L that
solves the halting problem for L.

11/16/10 © UCF EECS 91

We will say that a procedure, f, converges on input x if it eventually
halts when it receives x as input. We denote this as f(x)| .

We will say that a procedure, f, diverges on input x if it never halts
when it receives x as input. We denote this as f(x)1.

Of course, if f(x)| then fdefines a value for x. In fact we also say
that f(x) is defined if f(x)| and undefined if f(x)?.

Finally, we define the domain of fas {x | f(x)|}.
The range of fis {y | f(x)| and f(x) =y }.

11/16/10 © UCF EECS 92

Assume we can decide the halting problem. Then there exists some total
function Halt such that

1 if [X] (y) is defined
Halt(x,y) =

0 if [X] (y) is not defined

Here, we have numbered all programs and [x] refers to the x-th program in
this ordering. Now we can view Halt as a mapping from X into X by
treating its input as a single number representing the pairing of two numbers
via the one-one onto function

pair(x,y) = <x,y>=2* (2y +1) -1

with inverses
<z>, = exp(z+1,1)

<z>,=(((z+1)112<21 Y=1)//2

11/16/10 © UCF EECS 93

Now if Halt exist, then so does Disagree, where

0 if Halt(x,x) = 0, i.e, if [x] (x) is not defined
Disagree(x) =

uy (y ==y+1) if Halt(x,x) = 1, i.e, if [x] (x) is defined

Since Disagree is a program from X into X , Disagree can be
reasoned about by Halt. Let d be such that Disagree = [d], then
Disagree(d) is defined < Halt(d,d) =0

< d is undefined
<> Disagree(d) is undefined
But this means that Disagree contradicts its own existence. Since

every step we took was constructive, except for the original
assumption, we must presume that the original assumption was in

error. Thus, the Halting Problem is not solvable.

11/16/10 © UCF EECS 94

While the Halting Problem is not solvable, it is re, recognizable or
semi-decidable.

To see this, consider the following semi-decision procedure. Let P
be an arbitrary procedure and let x be an arbitrary natural number.
Run the procedure P on input x until it stops. If it stops, say “yes.” If
P does not stop, we will provide no answer. This semi-decides the
Halting Problem. Here is a procedural description.

Semi_Decide Halting() {
Read P, x;
P(x);
Print “yes”;

11/16/10 © UCF EECS 95

A question that might come to mind is why we could not just have a
model of computation that involves only programs that halt for all
input. Assume you have such a model — our claim is that this model

must be incomplete!

Here's the logic. Any programming language needs to have an
associated grammar that can be used to generate all legitimate
programs. By ordering the rules of the grammar in a way that
generates programs in some lexical or syntactic order, we have a
means to recursively enumerate the set of all programs. Thus, the
set of procedures (programs) is re. using this fact, we will employ
the notation that o, is the x-th procedure and ¢,(y) is the x-th
procedure with input y. We also refer to x as the procedure’s index.

11/16/10 © UCF EECS 96

First, we can all agree that any complete model of
computation must be able to simulate programs in its
own language. We refer to such a simulator (interpreter)
as the Universal machine, denote Univ. This program
gets two inputs. The first is a description of the program
to be simulated and the second of the input to that
program. Since the set of programs in a model is re, we
will assume both arguments are natural numbers; the
first being the index of the program. Thus,

Univ(x,y) = g,(y)

11/16/10 © UCF EECS 97

There are even “practical” problems that are worse than
unsolvable -- they’'re not even semi-decidable.

The classic non-re problem is the Uniform Halting
Problem, that is, the problem to decide of an arbitrary
effective procedure P, whether or not P is an algorithm.

Assume that the algorithms can be enumerated, and that
F accomplishes this. Then

where F,, F,, F,, ... is a list of indexes of all and only the
algorithms

11/16/10 © UCF EECS 98

Define G(x)=Univ (F(x),X)+1=@g(X)=Fx)+1

But then G is itself an algorithm. Assume it is the g-th one
F(g)=Fy=G
Then, G(g) =F4(g) +1=G(g) + 1

But then G contradicts its own existence since G would need to be
an algorithm.

This cannot be used to show that the effective procedures are non-
enumerable, since the above is not a contradiction when G(g) is
undefined. In fact, we already have shown how to enumerate the
(partial) recursive functions.

11/16/10 © UCF EECS 99

* The listing of all algorithms can be viewed
as
TOTAL={fe X | VX ¢ (X)| }

 \We can also note that
TOTAL={fe X | W, =X }, where W; s the
domain of o;

e Theorem: TOTAL is not re.

11/16/10 © UCF EECS 100

* To capture all the algorithms, any model of computation
must include some procedures that are not algorithms.

« Since the potential for non-termination is required, every
complete model must have some for form of iteration that
IS potentially unbounded.

« This means that simple, well-behaved for-loops (the kind
where you can predict the number of iterations on entry
to the loop) are not sufficient. While type loops are
needed, even if implicit rather than explicit.

11/16/10 © UCF EECS 101

Insights

* No generative system (e.g., grammar) can produce
descriptions of all and only algorithms

« No parsing system (even one that rejects by
divergence) can accept all and only algorithms

« Of course, if you buy Church’s Theorem, the set of all
procedures can be generated. In fact, we can build an
algorithmic acceptor of such programs.

11/16/10 © UCF EECS 103

 How do you achieve divergence, i.e., what are the
various means of unbounded computation in each of
our models?

« GOTO: Turing Machines and Register Machines

* Minimization: Recursive Functions
— Why not primitive recursion/iteration?

Fixed Point: Ordered Petri Nets,
(Ordered) Factor Replacement Systems

11/16/10 © UCF EECS 104

|t sometimes doesn’t matter

— Turing Machines, Finite State Automata,
Linear Bounded Automata

* |t sometimes helps
— Push Down Automata

|t sometimes hinders
— Factor Replacement Systems, Petri Nets

11/16/10 © UCF EECS 105

Models of Computation

Turing Machines (already discussed)
Register Machines
Factor Replacement Systems
Recursive Functions

Register Machines

2" Model
Feels Like Assembly Language

A register machine consists of a finite length program,
each of whose instructions is chosen from a small
repertoire of simple commands.

The instructions are labeled from 1 to m, where there are
m instructions. Termination occurs as a result of an
attempt to execute the m+1-st instruction.

The storage medium of a register machine is a finite set
of registers, each capable of storing an arbitrary natural
number.

Any given register machine has a finite, predetermined
number of registers, independent of its input.

11/16/10 © UCF EECS 108

* A register machine partially computing some n-
ary function F typically starts with its argument
values in the first n registers and ends with the
result in the n+1-st register.

* We extend this slightly to allow the computation

to start with values in its
register, with the result a
th register, for any k, suc
K+n+1 registers.

K+1-st through k+n-th
ppearing in the k+n+1-

N that there are at least

« Sometimes, we use the notation of finishing with
the results in the first register, and the
arguments appearing in 2 to n+1.

11/16/10 © UCF EECS 109

« Each instruction of a register machine is of
one of two forms:

INC[i] -- increment r and jump to i.
DEClp, 2] -

if register r > 0, decrement r and jump to p
else jump to z
* Note, we do not use subscripts if obvious.

11/16/10 © UCF EECS 110

Addition (r3 <= r1 +r2)

1. DEC3[1,2] . Zero result (r3) and work (r4) registers
2. DECA4[2,3]

3. DEC1[4,6] : Add r1 to r3, saving original r1 in r4
4. INC3[9]

5. INC4[3]

6. DECA4[7,8] . Restore r1

7. INC1[6]

8. DECZ2[9,11] :Addr2tor3, saving original r2 in r4
9. INC3[10]

10.INC4[8]

11.DEC4[12,13] : Restore r2

12.INC2[11]

13. . Halt by branching here

11/16/10 © UCF EECS

111

Subtraction (r3 <— r1 - r2, if r12r2; 0, otherwise)

DEC3][1,2] . Zero result (r3) and work (r4) registers
DEC4[2,3]

DEC1[4,6] : Add r1 to r3, saving original r1 in r4
INC3[5]

INC4[3]

DECA4[7,8] . Restore r1

INC1[6]

DEC2[9,11] : Subtract r2 from r3, saving original r2 in r4
. DEC3[10,10] : Note that decrementing O does nothing
10.INC4[8]

11.DEC4[12,13] : Restore r2

12.INC2[11]

13. . Halt by branching here

©CoOoNIO AWM=

11/16/10 © UCF EECS

112

Factor Replacement
Systems

3" Model
Deceptively Simple

A factor replacement system (FRS) consists of a finite
(ordered) sequence of fractions, and some starting
natural number Xx.

A fraction a/b is applicable to some natural number X,
just in case x is divisible by b. We always chose the first
applicable fraction (a/b), multiplying it times x to produce
a new natural number x*a/b. The process is then
applied to this new number.

Termination occurs when no fraction is applicable.

A factor replacement system partially computing n-ary
function F typically starts with its argument encoded as
powers of the first n odd primes. Thus, arguments x1,x2,
...,Xn are encoded as 3*'5%?,..p *". The result then
appears as the power of the prime 2.

11/16/10 © UCF EECS 114

Addition is 3*x15*%2 becomes 2x1+x2

or, in more details, 2°93x15%2 becomes 2x1+x2 3050
2/3
215

Note that these systems are sometimes presented as
rewriting rules of the form

bx — ax

meaning that a number that has a factored as bx can
have the factor b replaced by an a.
The previous rules would then be written

33X — 2X
5x — 2x

11/16/10 © UCF EECS 115

Limited Subtraction by FRS

Subtraction is 3¥15%? becomes 2max(0.x1-x2)

35x — X
33X — 2X
5 — X

11/16/10 © UCF EECS 116

* The ordering of rules are immaterial for the
addition example, but are critical to the workings
of limited subtraction.

 |n fact, if we ignore the order and just allow any
applicable rule to be used we get a form of non-
determinism that makes these systems
equivalent to Petri nets.

 The ordered kind are deterministic and are
equivalent to a Petri net in which the transitions
are prioritized.

11/16/10 © UCF EECS 117

To see why determinism makes a difference, consider

35x — X
3Xx — 2x
5x — x

Starting with 135 = 3351, deterministically we get
135= 9=6=4=22
Non-deterministically we get a larger, less selective set.
135= 9=6=4=22
135= 90=60=40=8=28
135= 45=3=2=21
135= 45=15=1=20
135= 45=15=5=1=20
135= 45=15=3=2=21
135= 45=9=06=4=22
135= 90=60=40=8=23

This compu’ié.s 22 where 0 < z=x,. Think about it.

11/16/10 © UCF EECS 118

In general, we might get an infinite set
using non-determinism, whereas
determinism might produce a finite set. To
see this consider a system

2X — X
2X — 4x
starting with the number 2.

11/16/10 © UCF EECS 119

Systems Related to FRS

Petri Nets:

— Unordered

— Ordered

— Negated Arcs

Vector Addition Systems:

— Unordered

— Ordered

Factors with Residues:

—ax+c — bx+d

Finitely Presented Abelian Semi-Groups

11/16/10 © UCF EECS 120

« Finite number of places, each of which can hold zero of more
markers.

* Finite number of transitions, each of which has a finite number of
input and output arcs, starting and ending, respectively, at places.

« A transition is enabled if all the nodes on its input arcs have at least
as many markers as arcs leading from them to this transition.

* Progress is made whenever at least one transition is enabled.
Among all enabled, one is chosen randomly to fire.

« Firing a transition removes one marker per arc from the incoming
nodes and adds one marker per arc to the outgoing nodes.

11/16/10 © UCF EECS 121

A Petri Net starts with some finite number of markers distributed
throughout its n nodes.

The state of the net is a vector of n natural numbers, with the i-th
component’s number indicating the contents of the i-th node. E.g.,
<0,1,4,0,6> could be the state of a Petri Net with 5 places, the 2nd,
3rd and 5th, having 1, 4, and 6 markers, resp., and the 1st and 4th
being empty.

Computation progresses by selecting and firing enabled transitions.
Non-determinism is typical as many transitions can be
simultaneously enabled.

Petri nets are often used to model coordination algorithms,
especially for computer networks.

11/16/10 © UCF EECS 122

* A Petri Net is not computationally complete. In fact, its halting and
word problems are decidable. However, its containment problem
(are the markings of one net contained in those of another?) is not
decidable.

« A Petri net with prioritized transitions, such that the highest priority

transitions is fired when multiple are enabled is equivalent to an
FRS. (Think about it).

« A Petri Net with negated input arcs is one where any arc with a
slash through it contributes to enabling its associated transition only
if the node is empty. These are computationally complete. They can
simulate register machines. (Think about this also).

11/16/10 © UCF EECS 123

\
Want @ @ %)

want S
Ieas Q w Marker

Place

Transition
Arc

11/16/10 © UCF EECS

124

« Start with a finite set of vectors in integer n-space.

« Start with a single point with non-negative integral
coefficients.

« Can apply a vector only if the resultant point has non-
negative coefficients.

« Choose randomly among acceptable vectors.

* This generates the set of reachable points.

* Vector addition systems are equivalent to Petri Nets.
 If order vectors, these are equivalent to FRS.

11/16/10 © UCF EECS 125

« Each component of a point in n-space
represents the quantity of a particular
resource.

* The vectors represent processes that
consume and produce resources.

* The issues are safety (do we avoid bad
states) and liveness (do we attain a
desired state).

e |ssues are deadlock, starvation, etc.

11/16/10 © UCF EECS 126

 Rules are of form
— There are n such rules

— Can apply if number is such that you get a residue
(remainder) ¢, when you divide by a

— Take quotient x and produce a new number
b, x +d
— Can apply any applicable one (no order)

* These systems are equivalent to Register
Machines.

11/16/10 © UCF EECS 127

S = (G,) is a semi-group Iif
G is a set, is a binary operator, and
1. Closure: Ifx,ye Gthenxye G
2. Associativity: x e (y*z)=(X*y)*z
S is a monoid if
3. ldentity:dece GVxeGle*x=x°e=X]
S is a group if
4. Inverse:VxeGIXTeG[xTex=xx1=¢]
S is Abelian if *« is commutative

11/16/10 © UCF EECS 128

« S =(G,), asemi-group (monoid, group), is finitely presented if there
is a finite set of symbols, X, called the alphabet or generators, and a
finite set of equalities (o; = f,), the reflexive transitive closure of
which determines equivalence classes over G.

* Note, the set G is the closure of the generators under the semi-
group’s operator -.

* The problem of determining membership in equivalence classes for
finitely presented Abelian semi-groups is equivalent to that of
determining mutual derivability in an unordered FRS or Vector
Addition System with inverses for each rule.

11/16/10 © UCF EECS 129

Recursive Functions

Primitive and u-Recursive

Primitive Recursive

An Incomplete Model

* The primitive recursive functions are defined by
starting with some base set of functions and
then expanding this set via rules that create new
primitive recursive functions from old ones.

* The base functions are:

C,(Xq,...,X,) =@ : constant functions
(Xq,--5X,) = X : identity functions

k - aka projection

S(X) = x+1 . an increment function

11/16/10 © UCF EECS 132

« Composition:
If G, H,, ..., H,are already known to be primitive
recursive, then so is F, where
F(Xq,...,X,) = G(H{(Xq,-- %),y --- , He(Xq,..0,X4))
* lteration (aka primitive recursion):

If G, H are already known to be primitive recursive, then
so is F, where

F(O, X4,...,X,) = G(Xq,...,X,)
F(y+1, Xq,...,X,) = H(Y, Xq,..., X, F(Y, Xq,...,X,))

We also allow definitions like the above, except iterating
on y as the last, rather than first argument.

11/16/10 © UCF EECS 133

Example: Addition
+(0,y) =1 1(y)
Hx+1,y) = H(X,y, +(x y))
where H(a,b,c) = S(| 3a,b,c))
Example: Multiplication
*(0,y) = Cqly)
“(x+1y) = H(x,y,*(x,y))
where H(a,b,c) = +({a,b,c), gabc
=btc=y +I xy) = (x+1)

11/16/10 © UCF EECS 134

X+ 1=3(x)
X—1

0-1=0

(x+1)-1=x
X +y:

X+ 0=x

x+ (y+1) = (x+y) + 1

x —y: /] limited subtraction
X—0=x
X—(y+1) = (x=y) -1

11/16/10 © UCF EECS 135

*

Xy.
x*0=0
X*(y+1) = X"y + X
x!:
O!'=1

(x+1)! = (x+1) * x!

11/16/10 © UCF EECS 136

x == 0:

0==0=1

(y+1) ==(0=0
X ==Yy:

x==y =((x-y)+(y—x)) ==
XSy

Xsy = (x—y) ==
X2Y:

X2y = ys=X
X>y:

x>y = ~(x<y) /* See ~ on next page */
X<Yy:

X<y = ~(x2y)

11/16/10 © UCF EECS 137

~X:
~Xx=1-x or (x==0)

signum(x): // 1 if x>0; 0 if x==
~(x==0)

X && y:
x&&y = signum(x*y)

x||y:
X|ly = ~((x==0) && (y==0))

11/16/10 © UCF EECS

138

One case

g(x) if P(x)
f(x) =
h(x) otherwise

f(x) = P(x) " g(x) + (1-P(x)) * h(x)

Can use induction to prove this is true for all k>0, where

g4(x) if P4(x)
d2(X) If Py(X) && ~P4(x)
f(x) =
gk(X) if P(X) && ~(P4(x) || ... || ~Py.1(x))
h(x) otherwise

11/16/10 © UCF EECS 139

f(x)=uz(z=sx)[P(z)]if d such a z,
= x+1, otherwise
where P(z) is primitive recursive.

Can show f is primitive recursive by
f(0) 1-P(0)

f(x+1) f(x) if f(X) < x
x+2-P(x+1) otherwise

11/16/10 © UCF EECS 140

f(x)=uz(z<x)[P(z)]if dsucha z,
= X, otherwise
where P(z) is primitive recursive.

Can show f is primitive recursive by
f(0)=0
f(x+1)=uz(z=x)[P()]

11/16/10 © UCF EECS 141

X /ly:
x//0=0 . silly, but want a value
xI(y+1) = wz (z<x) [(z+1)*(y+1) > X]

X | y: X is a divisor of y
Xly = ((y//x) " x) ==y

11/16/10 © UCF EECS 142

firstFactor(x): first non-zero, non-one factor of x.
firstfactor(x) = wz (2<z=<x)[z|x],
0 if none

IsSPrime(x):
IsSPrime(x) = firstFactor(x) == x && (x>1)

prime(i) = i-th prime:

prime(0) = 2

prime(x+1) = u z(prime(x)< z <prime(x)!+1)[isPrime(z)]
We will abbreviate this as p; for prime(i)

11/16/10 © UCF EECS 143

xMy:
X0 = 1
xMy+1) =x7" x"y

exp(x,i): the exponent of p, in number x.
exp(x,i) =uz (z<x) [~(p"(z+1) [X)]

11/16/10 © UCF EECS 144

* pair(x,y) = <x,y>=2* (2y + 1) -1

 with inverses
<z>, = exp(z+1,0)
<z>,=(((z+1)/12~=1)-1)//2

* These are very useful and can be extended to
encode n-tuples

<X,y,z> = <X, <y,z> > (note: stack analogy)

11/16/10 © UCF EECS 145

u Recursive

4t Model

A Simple Extension to Primitive
Recursive

 All primitive recursive functions are algorithms

since the only iterator is bounded. That's a clear
limitation.

* There are algorithms like Ackerman’s function
that cannot be represented by the class of
primitive recursive functions.

 The class of recursive functions adds one more

iterator, the minimization operator (u), read “the
least value such that.”

11/16/10 © UCF EECS 147

 A(1,j)=2jforj=1

* A(i, 1)=A(i-1, 2) fori= 2

o A,))=A(-1, A(i, j-1)) for i, j= 2

* Wilhelm Ackermann observed in 1928 that this is
not a primitive recursive function.

* Ackermann’s function grows too fast to have a
for-loop implementation.

* The inverse of Ackermann’s function is important
to analyze Union/Find algorithm.

11/16/10 © UCF EECS 148

o Start with a collection S of unrelated elements —
singleton equivalence classes

* Union(x,y), x and y are in S, merges the class
containing x ([x]) with that containing y ([y])

* Find(x) returns the canonical element of [X]
* Can see if x=y, by seeing if Find(x)==Find(y)
 How do we represent the classes?

11/16/10 © UCF EECS 149

* Minimization:
If G is already known to be recursive, then
so is F, where
F(x1,...,xn) = uy (G(y,x1,...,xn) == 1)

* We also allow other predicates besides
testing for one. In fact any predicate that
IS recursive can be used as the stopping
condition.

11/16/10 © UCF EECS 150

Equivalence of Models

Equivalency of computation by
Turing machines,

register machines,
factor replacement systems,
recursive functions

« Constructions do not, by themselves,
prove equivalence.

* To do so, we need to develop a notion of
an “instantaneous description” (id) of each
model of computation (well, almost as
recursive functions are a bit different).

* We then show a mapping of id’s between
the models.

11/16/10 © UCF EECS 152

* An instantaneous description (id) is a finite description of
a state achievable by a computational machine, M.

« Each machine starts in some initial id, id,.

« The semantics of the instructions of M define a relation
=, such that, id. =,,id.,,, i=0, if the execution of a single
instruction of M would alter M’s state from id. to id,,, or if
M halts in state id, and id,, ,=id;.

« =% is the transitive closure of =,
« =7, is the reflexive transitive closure of =,

11/16/10 © UCF EECS 153

For a register machine, M, an id is an s+1 tuple of the form (i, r,,
...,Fs)u specifying the number of the next instruction to be executed
and the values of all registers prior to its execution.

For a factor replacement system, an id is just a natural number.

For a Turing machine, M, an id is some finite representation of the
tape, the position of the read/write head and the current state. This
is usually represented as a string agxp, where a (p) is the shortest
string representing all non-blank squares to the left (right) of the
scanned square, x is the symbol at the scanned square and q is the
current state.

Recursive functions do not have id’s, so we will handle their
simulation by an inductive argument, using the primitive functions
are the basis and composition, induction and minimization in the
inductive step.

11/16/10 © UCF EECS 154

« Assume we have a machine M in one model of computation and a
mapping of M into a machine M’ in a second model.

« Assume the initial configuration of M is id, and that of M’ is id’,

« Define a mapping, h, from id’s of M into those of M’, such that, R, =
{h(d) | d is an instance of an id of M}, and

— id’p="), h(id,), and h(id,) is the only member of R;, in the
configurations encountered in this derivation.

— h(id,)=*,, h(id,,,), i=0, and h(id,,) is the only member of R, in
this derivation.

* The above, in effect, provides an inductive proof that
— idy=%,, id implies id’;=*,, h(id), and
— Ifid’;=*,, id’ then either id,=*,, id, where id’ = h(id), or id’ & Ry,

11/16/10 © UCF EECS 155

All Models are Equivalent

Equivalency of computation by
Turing machines, register machines,
factor replacement systems,
recursive functions

 We will now show
TURING <= REGISTER = FACTOR <
RECURSIVE < TURING
where by A < B, we mean that every
instance of A can be replaced by an
equivalent instance of B.

* The transitive closure will then get us the
desired result.

11/16/10 © UCF EECS 157

TURING = REGISTER

 Assume that we have an n state Turing machine. Let
the states be numbered 0O,..., n-1.

« Assume our machine is in state 7, with its tape

containing
...00101001197000...

* The underscore indicates the square being read. We
denote this by the finite id
1010011q9q70

* In this notation, we always write down the scanned
square, even if it and all symbols to its right are blank.

11/16/10 © UCF EECS 159

* An id can be represented by a triple of natural numbers,
(R,L,i), where R is the number denoted by the reversal of
the binary sequence to the right of the qi, L is the
number denoted by the binary sequence to the left, and i
IS the state index.

¢ So,
...00101001197000...
is just (0, 83, 7).
...00109095101100...
Is represented as (13, 2, 5).

« We can store the R part in register 1, the L part in
register 2, and the state index in register 3.

11/16/10 © UCF EECS 160

N —

Q.

q+1.
qj+1.
qj+1.

qj+1.

set n-1.
set _n-2.

set 0.

11/16/10

DEC3[2,q0]
DEC3[3,91]

DEC3[ERR,qn-1]

IF _r1_ODDI[qj+2]
JUMP[set K]
INC1[set_kK]

DIV r1_ BY 2

MUL r2 BY 2
JUMP[set K]

MUL r1_BY 2
IF_r2_ODD then INC1
DIV_r2_ BY _2[set K]

INC3[set_n-2]
INC3[set_n-3]

JUMP[1]

: Go to simulate actions in state O
: Go to simulate actions in state 1

: Go to simulate actions in state n-1
: Jump if scanning a 1
:1f (g0 0 gk)isrulein TM

:1f(qj0 1 gk)isrulein TM
:If (g0 Rgk)isrulein TM

:If (qj O L gk) is rule in TM

: Set r3 to index n-1 for simulating state n-1
: Set r3 to index n-2 for simulating state n-2

: Set r3 to index 0 for simulating state O

© UCF EECS

161

* Need epilog so action for missing quad
(halting) jumps beyond end of simulation
to clean things up, placing result in r1.

« Can also have a prolog that starts with
arguments in first n registers and stores
values in r1, r2 and r3 to represent Turing

machines starting configuration.

11/16/10 © UCF EECS 162

Example assuming n arguments (fix as needed)

2 o

3n+1
3n+2.
3n+3.

11/16/10

MUL_rn+1_BY_2[2] : Set rn+1 = 11...10,, where, #1's = r1

DEC1[3,4] 1 will be setto 0

INCn+1[1] ;

MUL_rn+1_BY_2[5] : Setrn+1 =11...1011...10,, where, #1's = r1, then r2
DECZ2[6,7] : r2 will be setto 0

INCn+1[4] ;

DECn[3n-1,3n+1] :Setrn+1=11...1011...1011...1,, where, #1's =r1, r2,...
MUL_rn+1_BY_2[3n]: rn will be set to O

INCn+1[3n-2] ;

DECn+1[3n+2,3n+3] : Copy rn+1tor1, rn+1issetto 0

INC2[3n+1] ;
. 12 = left tape, r1 = 0 (right), r3 = 0 (initial state)

© UCF EECS 163

©NOOAE 0N =

11/16/10

DEC3[1,2] :Setr3to 0 (just cleaning up)
IF r1_ODDI3,5] : Are we done with answer?
INC2[4] . putting answer in r2
DIV_r1_BY_ 2[2]: strip a 1 from r1
DEC1[5,6] : Setr1to 0 (prepare for answer)
DEC2[6,7] :Copyr2tor1
INC1[6]

: Answer is now in r1

© UCF EECS

164

REGISTER < FACTOR

This is a really easy one based on the fact that every member of Z*
(the positive integers) has a unique prime factorization. Thus all
such numbers can be uniquely written in the form

ko k
b, P; - P;

where the p;'s are distinct primes and the k;'s are non-zero values,
except that the number 1 would be represented by 29.

Let R be an arbitrary n-register machine, having m instructions.

Encode the contents of registers r1,...,rn by the powers of p,,...p, -
Encode rule number's 1...m by primes p,,4 ,---; Pr+m

Use pn+m+1 as prime factor that indicates simulation is done.
This is in essence the Godel number of the RM’s state.

11/16/10 © UCF EECS 166

* Now, the j-th instruction (1sj=m) of R has
associated factor replacement rules as follows:

i. INCH[i

pn+jX > Pn+iPrX
j. DECr]s, f]

pn+jprx — pn+sX

Pr+X = Pp+X

* We also add the halting rule associated with m
+1 of

pn+m+1X — X

11/16/10 © UCF EECS 167

 The relative order of the two rules to
simulate a DEC are critical.

* To test if register r has a zero in it, we, In
effect, make sure that we cannot execute
the rule that is enabled when the r-th
prime is a factor.

* If the rules were placed in the wrong order,
or if they weren't prioritized, we would be
non-deterministic.

11/16/10 © UCF EECS 168

Consider the simple machine to compute
r1:=r2 — r3 (limited)

DEC3[2,3
DEC2[1,1
DEC2[4,5
INC1[3]

ok~ wbdh =

11/16/10 © UCF EECS 169

Start with 3x5Y7
7T*5x — 11 x

7 X — 13X
11¢3x—> T7X

11 x — 7T X
13¢3x — 17x
13 X — 19x
17 X — 132X
19 x —- X

11/16/10 © UCF EECS 170

 |If we don't obey the ordering here, we could take
an input like 3°527 and immediately apply the
second rule (the one that mimics a failed
decrement).

« We then have 3°52%13, signifying that we will
mimic instruction number 3, never having
subtracted the 2 from 5.

« Now, we mimic copying r2 to r1 and get 2°5219 .

* We then remove the 19 and have the wrong
answer.

11/16/10 © UCF EECS 171

FACTOR < RECURSIVE

* |n the process of doing this reduction, we will
build a Universal Machine.

* This is a single recursive function with two
arguments. The first specifies the factor system
(encoded) and the second the argument to this

factor system.

 The Universal Machine will then simulate the
given machine on the selected input.

11/16/10 © UCF EECS 173

* Let (n, ((@,bq), (a5,b5), ... ,(a,,b,)) be some
factor replacement system, where (a;,b;)
means that the i-th rule is

ax — Dbx

* Encode this machine by the number F,

2395274117 p* pp. D, .

11/16/10 © UCF EECS 174

 We can determine the rule of F that applies to x by

RULE(F, x)=uz(1<z<exp(F, 0)+1)[exp(F, 2*z-1) | x]

* Note: if x is divisible by a;,, and i is the least integer for which this is
true, then exp(F,2%i-1) = a, where a, is the number of prime factors of
F involving p,;4. Thus, RULE(F,x) =1i.

If x is not divisible by any a,, 1<i<n, then x is divisible by 1, and
RULE(F,x) returns n+1. That's why we added p,,,,1 Ponso-

« Given the function RULE(F,x), we can determine NEXT(F,x), the
number that follows x, when using F, by

NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))

11/16/10 © UCF EECS 175

* The configurations listed by F, when
started on x, are

CONFIG(F, x, 0) = x

CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))

* The number of the configuration on which

F halts is
HALT(F, x) = u'y [CONFIG(F, x, y) == CONFIG(F, X, y+1)]

This assumes we converge to a fixed point only if we
stop.

11/16/10 © UCF EECS 176

* A Universal Machine that simulates an arbitrary
Factor System, Turing Machine, Register
Machine, Recursive Function can then be

defined by

Univ(F, x) = exp (CONFIG (F, x, HALT (F, x)), 0)

* This assumes that the answer will be returned as
the exponent of the only even prime, 2. We can
fix F for any given Factor System that we wish to

simulate.

11/16/10 © UCF EECS 177

* A side result is that every computable
(recursive) function can be expressed Iin
the form

F(x) = G(uy H(x, y))

where G and H are primitive recursive.

11/16/10 © UCF EECS 178

RECURSIVE =< TURING

* QOur notion of standard Turing computability of
some n-ary function F assumes that the machine

starts with a tape containing the n inputs, x1, ...,
xn in the form

...01¥101%20...01*"0...

and ends with

...01¥101%20...01x01v0...
where y = F(x1, ..., xn).

11/16/10 © UCF EECS 180

 To build our simulation we need to construct some useful
submachines, in addition to the ®, £, R, L, and C, machines already
defined.

- T --translate moves a value left one tape square
...201%0... = ...21%00... R1%LO0

« Shift -- shift a rightmost value left, destroying value to its left
...01¥101%2Q... = ...01*20...

* Rot, -- Rotate a k value sequence one slot to the left

Q1X1O1X2001Xk0 I#‘
= ...01%20...01%01x10. . R @ Kok K

|

LT KX

0
11/16/10 © UCF EECS 181

All Basis Recursive Functions are Turing
computable:

* C"(Xq,...,X,) =@

(R1)2R
* 11X 0X,) = X

Cn-i+1
¢ S(X) = x+1

C,1R

11/16/10 © UCF EECS 182

If G, H,, ..., H, are already known to be Turing computable, then so
IS F where

F(Xq,..%p) = G(H1(Xq,....X,), .., HK(X4,...,X,))

To see this, we must first show that if E(x4,...,X,) is Turing
Computable then so is

E<m>(Xq,.. . X0 Vise-Ym) = E(Xq,--05X,)

This can be computed by the machine

MM (Rot ,)" "M E ™1 (Rot)M R
Can now define F by

H, H,<1> H;<2> ... H,<k-1> G Shiftk

11/16/10 © UCF EECS 183

If G is already known to be Turing
computable, then so is F, where

F(X1,....%) = uy (G(Xy,....%,, y) == 1)

This can be done by

11/16/10 © UCF EECS 184

 Theorem: The computational power of S-
Programs, Recursive Functions, Turing
Machines, Register Machine, and Factor
Replacement Systems are all equivalent.

* Theorem: Every Recursive Function (Turing
Computable Function, etc.) can be performed
with just one unbounded type of iteration.

* Theorem: Universal machines can be
constructed for each of our formal models of

computation.

11/16/10 © UCF EECS 185

Undecidability

We Can't Do It All

« We can see that there are undecidable functions merely by noting
that there are an uncountable number of mappings from the natural
numbers into the natural numbers. Since effective procedures are
always over a language with a finite number of primitives, and since
we restrict programs to finite length, there can be only a countable
number of effective procedures. Thus no formalism can get us all
mappings -- some must be non-computable.

« The above is a great existence proof, but is unappealing since it
doesn’t help us to understand what kinds of problems are
uncomputable. The classic unsolvable problem is called the Halting
Problem. It is the problem to decide of an arbitrary effective

procedure f: X — X, and an arbitrary n € X, whether or not f(n) is
defined.

11/16/10 © UCF EECS 187

Assume we can decide the halting problem. Then there exists some total
function Halt such that

1 if [X] (y) is defined
Halt(x,y) =

0 if [X] (y) is not defined

Here, we have numbered all programs and [x] refers to the x-th program in
this ordering. Now we can view Halt as a mapping from X into X by
treating its input as a single number representing the pairing of two numbers
via the one-one onto function

pair(x,y) = <x,y>=2* (2y +1) -1

with inverses
<z>, = exp(z+1,1)

<z>,=(((z+1)112<21 Y=1)//2

11/16/10 © UCF EECS 188

Now if Halt exist, then so does Disagree, where

0 if Halt(x,x) = 0, i.e, if [x] (x) is not defined
Disagree(x) =

uy (y ==y+1) if Halt(x,x) = 1, i.e, if [x] (x) is defined

Since Disagree is a program from X into X , Disagree can be
reasoned about by Halt. Let d be such that Disagree = [d], then
Disagree(d) is defined < Halt(d,d) =0

< d is undefined
<> Disagree(d) is undefined
But this means that Disagree contradicts its own existence. Since

every step we took was constructive, except for the original
assumption, we must presume that the original assumption was in

error. Thus, the Halting Problem is not solvable.

11/16/10 © UCF EECS 189

Includes comment on our notation
versus that of others

« Others consider functions of n arguments, whereas we
had just one. However, our input to the FRS was actually
an encoding of n arguments.

* The fact that we can focus on just a single number that is
the encoding of n arguments is easy to justify based on
the pairing function.

* Some presentations order arguments differently, starting
with the n arguments and then the Godel number of the
function, but closure under argument permutation follows
from closure under substitution.

11/16/10 © UCF EECS 191

. DO(X,,....x.,) = Univ (f, 1.7

* We will sometimes adopt the above and
also its common shorthand

®, N(x,,...,X,) = DN(X,,...,X,,)
and the even shorter version
D(X,,...,X) = DN(X,,...,x,)

11/16/10 © UCF EECS 192

* Our CONFIG is essentially the common
SNAP (snapshot) with arguments
permuted
SNAP(x, f, t) = CONFIG(T, x, t)

 Termination in our notation occurs when
we reach a fixed point, so

TERM(X, f) = (NEXT(f, x) == x)

* Again, we used a single argument but that can
be extended as we have already shown.

11/16/10 © UCF EECS 193

« STP(x1,...,xn, f, t) is a predicate defined
to be true iff [f](x1,...,xn) converges in at
most t steps.

 STP Is primitive recursive since it can be
defined by

STP(x, f, s) = TERM(CONFIG(f, X, s), f)

Extending to many arguments is easily done as
before.

11/16/10 © UCF EECS 194

Recursively Enumerable

Properties of re Sets

« Some texts define re in the same way as | have defined
semi-decidable.

S C X is semi-decidable iff there exists a partially
computable function g where

S={xEeX[g(X)|}
| prefer the definition of re that says

S C Risreiff S = O or there exists a totally computable
function f where

S={y|Ixi(x)==y}
* We will prove these equivalent. Actually, f can be a
primitive recursive function.

11/16/10 © UCF EECS 196

Theorem: Let S be semi-decided by Gg. Assume
Gg is the gq function in our enumeration of
effective procedures. If S = then Sis re by
definition, so we will assume wlog that there is
some a € S. Define the enumerating algorithm
Fg by
Fo(<x,t>) = x*STP(x,g., 1)

+a* (1-STP(x, g, t))

Note: Fg¢ is primitive recursive and it enumerates
every value in S infinitely often.

11/16/10 © UCF EECS 197

Theorem: By definition, S is re iff S == @ or there
exists an algorithm Fg, over the natural numbers
X, whose range is exactly S. Define

uy [y == y+1]if S ==

Ps(x) =
signum((uy[Fs(y)==x])*+1), otherwise

This achieves our result as the domain of Yg is
the range of Fg, or empty if S == @.

11/16/10 © UCF EECS 198

Corollary: S is re/semi-decidable iff S is the
domain / range of a partial recursive predicate
Fs.

Proof: The predicate 15 we defined earlier to semi-

decide S, given its enumerating function, cab be
easily adapted to have this property.

uy [y ==y+1]ifS==0

Ps(X) =
x*signum((wy[Fs(y)==x])+1), otherwise

11/16/10 © UCF EECS 199

Theorem: Recursive implies re.

Proof: S is recursive implies there is a total
recursive function fg such that

S={xe X [f(x)==1}

Define g¢(x) = uy (f;(x) == 1)
Clearly
dom(g,) ={x€ X |g.(x){}

11/16/10 © UCF EECS

200

Theorem: S is re iff S is semi-decidable.
Proof. That's what we proved.

Theorem: S and ~S are both re (semi-decidable)
iff S (equivalently ~S) is recursive (decidable).

Proof: Let f semi-decide S and fq. semi-decide ~S. We can
decide S by gg

gs(X) = STP(X, fg, ut (STP(x, fg, t) [| STP(X, 5 ,1))
~S is decided by gg(X) = ~gs(x) = 1- gg(x).

The other direction is immediate since, if S is decidable
then ~S is decidable (just complement g5) and hence
they are both re (semi-decidable).

11/16/10 © UCF EECS 201

 Define
W, ={x&e X |d(x,n)| }
* Theorem: A set B is re iff there exists an n

such that B = W.,..
Proof. Follows from definition of ®(x,n).

* This gives us a way to enumerate the
recursively enumerable sets.

* Note: We will later show (again) that we
cannot enumerate the recursive sets.

11/16/10 © UCF EECS 202

c K={neX|neW,_}
* Note that
neW_ < &(n,n)| < HALT(n,n)

* Thus, K is the set consisting of the indices
of each program that halts when given its
own index

* K can be semi-decided by the HALT
predicate above, so it is re.

11/16/10 © UCF EECS 203

 Theorem: We can prove this by showing
~K is not re.

* If ~K is re then ~K = W,, for some i.

« However, this is a contradiction since
icEKeieWesie~KesigEK

11/16/10 © UCF EECS 204

Theorem: Suppose S =< then the following are
equivalent:

Sisre

S Is the range of a primitive rec. function
S is the range of a recursive function

S is the range of a partial rec. function

S Is the domain of a partial rec. function

ok~ bdh-~

11/16/10 © UCF EECS 205

S-m-n Theorem

 Theorem: For each n,m>0, there is a prf
S,"(Uy,...,U.,y) such that

DXy, ., Xy UgseeesUp, Y)
— (I)(m)(X1,___, Xm, Smn(u1""’un’y))
 The proof of this is highly dependent on

the system in which you proved
universality and the encoding you chose.

11/16/10 © UCF EECS 207

We would need to create a new FRS, from an existing one F, that
fixes the value of u; as the exponent of the prime p,...

Sketch of proof:

Assume we normally start with p, X! ... p, ™ pY! ... Pt O

Here the first m are variable; the next n are fixed; o denotes prime
factors used to trigger first phase of computatlon

Assume that we use fixed point as convergence.

We start with just p,X! ... p,™, with q the first unused prime.

qax—qgpXx replaces a x— B xin F
gXx—(qgx ensures we loop at end
X —> q pm+1 u pm+nun O X

adds fixed input, start state and q
this is selected once and never again

Note: q = prime(S(max(n+m, lastFactor(Product[i=1 to r] o; £;))))
where r is the number of rules in F.

11/16/10 © UCF EECS

208

The number of F (called F, also) is 273215b1...p,, 43P, Pr

— b
Sin(Uq,.. Uy, F) = 2r230@15%01, p, @, POrpy 1P,

uq . u
p2r+3p2r+4 g Pm+1 Pm+n"N O

This represents the rules we just talked about. The first
added rule pair means that if the algorithm does not use
fixed point, we force it to do so. The last rule pair is the
only one Iinitially enabled and it adds the prime q, the
fixed arguments u,,...u,, the enabling prime g, and the o
needed to kick start computation. Note that o could be a
1, if no kick start is required.

S, n=Sy," is clearly primitive recursive. I'll leave the
precise proof of that as a challenge to you.

11/16/10 © UCF EECS 209

» S is decidabile iff there exists an algorithm xs (called S’s
characteristic function) such that
XE S < ys(X)
This is just the definition of decidable.

« Sis re iff there exists an algorithm Ag where
X €S <« It Ag(x,t)
This is clear since, if g4 is the index of the procedure g
defined earlier that semi-decides S then
XE S < It STP(x, gg, t)
So, Ag(x,t) = STPgg(X, t), where STPgyg is the STP
function with its second argument fixecf.

« Creating new functions by setting some one or more
arguments to constants is an application of S_".

11/16/10 © UCF EECS 210

« Sisre iff there exists an algorithm Ag such that
X &S < VtAg(x,t)
This is clear since, if gq is the index of the procedure 14
that semi-decides S, then
X & S < ~3t STP(x, gs, t) & Vi ~STP(x, gg, 1)
S0, Ag(X,t) = ~STPgg(X, t), where STPgq is the STP
function with its second argument fixed.

* Note that this works even if S is recursive (decidable).
The important thing there is that if S is recursive then it

may be viewed in two normal forms, one with existential
guantification and the other with universal quantification.

« The complement of an re set is co-re. A set is recursive
(decidable) iff it is both re and co-re.

11/16/10 © UCF EECS 211

Diagonalization and
Reducibility

* There are even “practical” problems that are worse than
unsolvable -- they’'re not even semi-decidable.

* The classic non-re problem is the Uniform Halting

Problem, that is, the problem to decide of an arbitrary
effective procedure P, whether or not P is an algorithm.

* Assume that the algorithms can be enumerated, and that
F accomplishes this. Then

where F,, F,, F,, ... is a list of all the algorithms

11/16/10 © UCF EECS 213

Define G(x)=Univ(F(x),x)+1=d(x, F(x))=F(x)+1

But then G is itself an algorithm. Assume it is the g-th one
F(g)=Fy=G
Then, G(g) =F4(g) +1=G(g) + 1

But then G contradicts its own existence since G would need to be
an algorithm.

This cannot be used to show that the effective procedures are non-
enumerable, since the above is not a contradiction when G(g) is
undefined. In fact, we already have shown how to enumerate the
(partial) recursive functions.

11/16/10 © UCF EECS 214

* The listing of all algorithms can be viewed
as

TOT ={fe X | VX D(x,1)| }
 \WWe can also note that

OT={fe R |W,=X}
e Theorem: TOT is not re.

11/16/10 © UCF EECS 215

* The Uniform Halting Problem was already shown
to be non-re. It turns out its complement is also
not re. We'll cover that later. In fact, we will show

that TOT requires an alternation of quantifiers.
Specifically,

feETOT< Vxdt (STP(x,f,t))
and this is the minimum quantification we can

use, given that the quantified predicate is
recursive.

11/16/10 © UCF EECS 216

Reducibility

* Proofs by contradiction are tedious after you've
seen a few. We really would like proofs that
build on known unsolvable problems to show
other, open problems are unsolvable. The
technique commonly used is called reduction. |t
starts with some known unsolvable problem and
then shows that this problem is no harder than
some open problem in which we are interested.

11/16/10 © UCF EECS 218

* The issues with diagonalization are that it is tedious and
is applicable as a proof of undecidability or non-re-ness
for only a small subset of the problems that interest us.

 Thus, we will now seek to use reduction wherever
possible.

 To show a set, S, is undecidable, we can show it is as
least as hard as the set K,. That is, K, = S. Here the
mapping used in the reduction does not need to run in
polynomial time, it just needs to be an algorithm.

« Toshow a set, S, is not re, we can show it is as least as
hard as the set TOTAL (the set of algorithms). That is,
TOTAL < S.

11/16/10 © UCF EECS 219

We can show that the set K, (Halting) is no harder than
the set TOTAL (Uniform Ha?tlng Since we already
know that K, is unsolvable, we would now know that
TOTAL is also unsolvable. We cannot reduce in the
other direction since TOTAL is in fact harder than K,.

Let & be some arbitrary effective procedure and let x be
some arbitrary natural number.

Define F (y) = ®(x), for all y € R
Then F, is an algorithm if and only if ®¢ halts on x.

Thus, K < TOTAL, and so a solution to membership in
TOTAL would provide a solution to Ko, Which we know is
not possible.

11/16/10 © UCF EECS 220

We can show that the set TOTAL is no harder
than the set ZERO = { f | Vx ®(x) =0 }. Since
we already know that TOTAL is non-re, we
would now know that ZERO is also non-re.

Let & be some arbitrary effective procedure.
Define f(y) = ®e(y) — De(y), forall y € X

Then f¢ is an algorithm that produces 0 for all
iInput (|s in the set ZERO) if and only if ¢ halts
on all input y. Thus, TOTAL < ZERO.

Thus a semi-decision procedure for ZERO would
provide one for TOTAL, a set already known to
be non-re.

11/16/10 © UCF EECS 221

* The universal language
Ko =L, ={<f, x>|[f] (x)is defined }

» Membership problem for L is the Halting Problem.
« Thesets L andL, where

NON-EMPTY =L, = {f| 3 x [f] (x) is defined }

EMPTY =L, = {f|V x[f] (x) is undefined }

are the next ones we will study.

11/16/10 © UCF EECS 222

* L. Is enumerated by

F(<f,x,t>)=1*STP(x,f, 1)

* Thisassumes that Oisin L, since O probably
encodes some trivial machine. If this isn’t SO,
we’ll just slightly vary our enumeration of the
recursive functions so it is true.

* Thus, the range of this total function F is exactly
the indices of functions that converge for some
input, and that's L ...

11/16/10 © UCF EECS 223

Note in the previous enumeration that F is a function of
just one argument, as we are using an extended pairing
function <x,y,z> = <x,<y,z>>.

* Now L, cannot be recursive, for if it were then L is
recursive by the reduction we showed before.

 In particular, from any index x and input y, we created a
new function which accepts all input just in case the x-th
function accepts y. Hence, this new function’s index is in
L. justin case (x,y) isinL,.

« Thus, a decision procedure for L . (equivalently for L,)
implies one for L.

11/16/10 © UCF EECS 224

« Can do by observing that

feEL, < 3<xt>STP(x,f,t)

* By our earlier results, any set whose
membership can be described by an existentially
quantified recursive predicate is re (semi-
decidable).

11/16/10 © UCF EECS 225

 If L, were re, then L__, would be recursive
since it and its complement would be re.

» Can also observe that L, is the
complement of an re set since

feEL, < V<xt>~STP(x,f, 1)

< ~d <x,t> STP(x, f, 1)
= fe& Lo

11/16/10 © UCF EECS 226

Reduction and Equivalence

m-1, 1-1, Turing Degrees

« Let A and B be two sets.

 We say A many-one reduces to B,
A < B, if there exists a total recursive function f
suchthat
XEA<=TfX)EB

* We say that A is many-one equivalent to B,
A=_B,ifA< BandB=<_A

« Sets that are many-one equivalent are in some
sense equally hard or easy.

11/16/10 © UCF EECS 228

* The relationship A =, B is an equivalence
relationship (why?)

» If A=_B, we say A and B are of the same many-
one degree (of unsolvability).

* Decidable problems occupy three m-1 degrees:
J, X, all others.

* The hierarchy of undecidable m-1 degrees is an
infinite lattice (I'll discuss in class)

11/16/10 © UCF EECS 229

« Let A and B be two sets.

* We say A one-one reduces to B, A <, B,
If there exists a total recursive 1-1 function f such
that
XEA<=TfX)EB

 We say that A is one-one equivalent to B,
A=,B,ifA<,BandB =<, A

» Sets that are one-one equivalent are in a strong
sense equally hard or easy.

11/16/10 © UCF EECS 230

* The relationship A =, B is an equivalence
relationship (why?)

 If A=, B, we say A and B are of the same one-
one degree (of unsolvability).

» Decidable problems occupy infinitely many 1-1
degrees: each cardinality defines another 1-1
degree (think about it).

* The hierarchy of undecidable 1-1 degrees is an
infinite lattice.

11/16/10 © UCF EECS 231

« Let A and B be two sets.

* We say A Turing reduces to B, A <, B, if the
existence of an oracle for B would provide us
with a decision procedure for A.

 We say that A is Turing equivalent to B,
A=B,ifA<,BandB < A

« Sets that are Turing equivalent are in a very
loose sense equally hard or easy.

11/16/10 © UCF EECS 232

* The relationship A =, B is an equivalence
relationship (why?)

 If A = B, we say A and B are of the same Turing
degree (of unsolvability).

* Decidable problems occupy one Turing degree.
We really don't even need the oracle.

* The hierarchy of undecidable Turing degrees is
an infinite lattice.

11/16/10 © UCF EECS 233

« AsetCisre 1-1 (m-1, Turing) complete if, for
anyresetA, A=<, (<,,=)C.

 The set HALT is an re complete set (in regard to
1-1, m-1 and Turing reducibility).

* The re complete degree (in each sense of
degree) sits at the top of the lattice of re
degrees.

11/16/10 © UCF EECS 234

« Halt=K,=L,={<f, x>|[f](x) is defined }
* Let A be an arbitrary re set. By definition, there exists an

effective procedure ¢, such that dom(¢,) = A. Put
equivalently, there exists an index, a, such that A = W..

« X E Aiff x € dom(¢,) iff p,(x)| iff <a,x> €K,
« The above provides a 1-1 function that reduces A to K,
(A =4 Ko)

* Thus the universal set, Halt =K, =L, isanre
(1-1, m-1, Turing) complete set.

11/16/10 © UCF EECS 235

o K ={f]) is defined }

 Define f (y) = ¢«x). That is, f,(y) = ¢«(x). The index for f,
can be computed from f and x using S, 4, where we add

a dummy argument, y, to ¢. Let that index be f,. (Yeah,
that's overloading.)

« <fx> € K, iff x € dom(¢;) iff Vy[q)fx(y)u iff f, € K.
« The above provides a 1-1 function that reduces K, to K.

» Since K, is an re (1-1, m-1, Turing) complete set and K is
re, then Kis also re (1-1, m-1, Turing) complete.

11/16/10 © UCF EECS 236

Reduction and Rice’s

« Let P be some set of re languages, e.g. P = { L | L is infinite re }.

« We call P a property of re languages since it divides the class of all
re languages into two subsets, those having property P and those
not having property P.

« P is said to be trivial if it is empty (this is not the same as saying P
contains the empty set) or contains all re languages.

« Trivial properties are not very discriminating in the way they divide
up the re languages (all or nothing).

11/16/10 © UCF EECS 238

Rice’s Theorem: Let P be some non-trivial
property of the re languages. Then

L, ={x | dom [x] is in P (has property P) }
Is undecidable. Note that membership in Lp is

based purely on the domain of a function, not on
any aspect of its implementation.

11/16/10 © UCF EECS 239

Proof. We will assume, wlog, that P does not
contain @. If it does we switch our attention to
the complement of P. Now, since P is non-
trivial, there exists some language L with
property P. Let [r] be a recursive function whose
domain is L (r is the index of a semi-decision
procedure for L). Suppose P were decidable.
We will use this decision procedure and the
existence of r to decide K,.

11/16/10 © UCF EECS 240

First we define a function F,, , for r and each

function [x] and input y as follows.

Fr,x,y(z)=HALT(x,y)+HALT(r,z)
The domain of this function is L if [x](y)
converges, otherwise it's @. Now if we can
determine membership in Ly , we can use this
algorithm to decide K, merely by applying it to
F.«y- An answer as to whether or not F,, , has
property P is also the correct answer as to
whether or not [x](y) converges.

11/16/10 © UCF EECS 241

Thus, there can be no decision procedure for P.
And consequently, there can be no decision

procedure for any non-trivial property of re
languages.

Note: This does not apply if P is trivial, nor does
it apply if P can differentiate indices that
converge for precisely the same values.

11/16/10 © UCF EECS 242

* An |/O property, P, of indices of recursive function is one
that cannot differentiate indices of functions that produce
precisely the same value for each input.

« This means that if two indices, f and g, are such that g
and @, converge on the same inputs and, when they
converge produce precisely the same result then both f
and g must have property P, or neither one has this
property.

* Note that any I/O property of recursive function indices
also defines a property of re languages, since the
domains of functions with the same |I/O behavior are
equal. However, not all properties of re languages are |/
O properties.

11/16/10 © UCF EECS 243

Rice’s Theorem: Let P be some non-trivial

/O property of the indices of recursive
functions. Then

Sp = { x| D, has property P) }
IS undecidable. Note that membership In
Sp Is based purely on the input/output

behavior of a function, not on any aspect
of its implementation.

11/16/10 © UCF EECS 244

* Given X, y, r, where ris in the set Sp.= {f |
@ has property P}, define the function

fiyr(Z) = oY) - @,ly) + 0 (2).

xyr(Z) = 0l2) if o (y)l ; = o if g (y)T .
Thus o, (y)| Iff £, . has property P, and so

X,Y,r
Ko = Sp.

11/16/10 © UCF EECS 245

X

v cpx(y) |-
Vz f (z)=9 (z) If @ (Y)!

ny’r r X
rng(fx ; r)=rng(cpr) If CPX(YN
., dom(f ")=dom(p) If ¢ (y)}
Z o ©@ y XoYoT rx
dom(f)=¢ If ¢ (¥)1
X r X

’y’
rng(f)=¢If ¢ ()1
X,Y,r X

Black is for standard Rice’s Theorem; 1z fx y ;(Z)wr(Z) If cpx(y)T
Black and Red are needed for Strong Version i
Blue is just another version based on range

11/16/10 © UCF EECS 246

Corollary: The following properties of re
sets are undecidable

a) L=0O
b) L is finite
C) L is a regular set

d) L is a context-free set

11/16/10 © UCF EECS 247

Constant time:
Not amenable to Rice’s

« CTime ={M|3JK[M halts in at most K steps
independent of its starting configuration] }

 RT cannot be shown undecidable by Rice’s Theorem
as it breaks property 2

— Choose M1 and M2 to each Standard Turing Compute (STC)
ZERO

— M1 is R (move right to end on a zero)
— M2is £ ® R (time is dependent on argument)

— M1is in CTime; M2 is not , but they have same I/O behavior,
so CTime does not adhere to property 2

11/16/10 © UCF EECS 249

« CTime={M|3dKVC[STP(C,M, K)]}

* This would appear to imply that CTime is not
even re. However, a TM that only runs for K
steps can only scan at most K distinct tape
symbols. Thus, if we use unary notation,
CTime can be expressed

« CTime={M| 3K ‘v’CICISK [STP(C, M, K)]}
« We can dovetail over the set of all TMs, M,

and all K, listing those M that halt in constant

time.
11/16/10 © UCF EECS 250

« Can show it is equivalent to the Halting
Problem for TM’s with Infinite Tapes (not
unbounded but truly infinite)

 This was shown in 1966 to be
undecidable.

* |t was also shown to be re, just as we
have done so for CTime.

11/16/10 © UCF EECS 251

Exam#1 Review

1. Prove that the following are equivalent
a) S is an infinite recursive (decidable) set.

b) S is the range of a monotonically
increasing total recursive function.
Note: f is monotonically increasing
means that Vx f(x+1) > f(x).

11/16/10 © UCF EECS 253

2. Let A and B be re sets. For each of the
following, either prove that the set is re,
or give a counterexample that results in
some known non-re set.

a) AUB
b) ANB
c) ~A

11/16/10 © UCF EECS 254

3. Present a demonstration that the even
function is primitive recursive.
even(x) =1 if x is even
even(x) = 0 if x is odd
You may assume only that the base
functions are prf and that prf's are closed
under a finite number of applications of
composition and primitive recursion.

11/16/10 © UCF EECS 255

4. Given that the predicate STP and the
function VALUE are prf's, show that we
can semi-decide

{f| ®; evaluates to O for some input}

Note: STP(1, x, s) is true iff ®«(x)
converges in s or fewer steps and, if so,
VALUE(f,x,s) = ©«(X).

11/16/10 © UCF EECS 256

5. Let S be an re (recursively enumerable), non-
recursive set, and T be an re, possibly
recursive set. Let

E={z|z=x+y,wherexeSandyeT}.
Answer with proofs, algorithms or

counterexamples, as appropriate, each of the
following questions:

(a)
(b)
()

11/16/10

Can E
Can E
Can E

he non re?
he re non-recursive”?

he recursive?

© UCF EECS 257

6. Assuming that the Uniform Halting
Problem (TOTAL) is undecidable (it's

actually not even re), use reduction to
show the undecidability of

CF | WX f(x+1) > f(x))

11/16/10 © UCF EECS 258

/. Let S be a recursive (decidable set),
what can we say about the complexity
(recursive, re non-recursive, non-re) of T,

where T C S?

11/16/10 © UCF EECS 259

8. Define the pairing function <x,y> and its
two inverses <z>, and <z>,, where if z =
<x,y>, then x = <z>, and y = <z>,,.

11/16/10 © UCF EECS 260

9. Assume A< _BandB < C.
Prove A <, C.

11/16/10 © UCF EECS 261

10.Let Incr = { | VX, ¢p{X+1)>d«(X) }.
Let TOT = {f| VX, ¢p(Xx)| }.
Prove that Incr = TOT.

11/16/10 © UCF EECS 262

12.Let Incr = { f | VX ¢p«(x+1)>9«(X) }. Use
Rice’s theorem to show Incr is not
recursive.

11/16/10 © UCF EECS 263

12.LetP={f|dx [STP(f, x,x)] }. Why does
Rice’s theorem not tell us anything about
the undecidability of P?

11/16/10 © UCF EECS 264

Post Systems

* Devised by Axel Thue

 Just a string rewriting view of finitely
presented monoids

 T=(Z, R), where X is a finite alphabet and
R is a finite set of bi-directional rules of
form o; < B, o, B;EX"

 We define <™ as the reflexive, transitive
closure of <, where w < X iff w=yaz and
X=ypz, where o <= f

11/16/10 © UCF EECS 266

* Devised by Emil Post
* A one-directional version of Thue systems

« S = (2, R), where X is a finite alphabet and
R is a finite set of rules of form
o = By, oy BEZ

 We define =* as the reflexive, transitive
closure of =, where w = x iff w=yoaz and
X=ypz, where o — f3

11/16/10 © UCF EECS 267

 Let S =(Z, R) be some Thue (Semi-Thue)
system, then the word problem for S is the
problem to determine of arbitrary words w and x
over S, whether or notw < x (W =" x)

* The Thue system word problem is the problem
of determining membership in equivalence
classes. This is not true for Semi-Thue systems.

» We can always consider just the relation =~
since the symmetric property of <* comes
directly from the rules of Thue systems.

11/16/10 © UCF EECS 268

These are a generalization of Semi-Thue systems.

P=(%,V, R), where X is a finite alphabet, V is a finite set of
“variables”, and R is a finite set of rules.

Here the premise part (left side) of a rule can have many premise
forms, e.g, a rule appears as

Pjq0y1 Pyon..ay n1P1 nyF1ng+1

P21051 Pao... 0 n2P2 ny02,n +1 5

Pkg d<2 - Qien knkaknk+17

Bnk nk+1 Nk+ 1+1
In the above the P’s and Q’s are variables, the a’s and p’s are
strings over 2 and each Q must appear in at least one premise.

We can extend the notion of =* to these systems considering sets
of words that derive conclusions. Think of the original set as axioms,
the rules as inferences and the final word as a theorem to be
proved.

11/16/10 © UCF EECS 269

* Propositional rules

oh,ohanNn(bnNc)=an (b

o

CO

&)

CO

algal -
g 11 Sc
e%PQmeQQ
oSt 1=20 11
Ng ca®Croao
0 -cct2loc
a1l inn

0,U,N}

~
])

« Some proofs over {a,b,(,)

{fauc,bD~c,b}={auUc,bD~c,b,~c}=

{auc,bD~c,b,~c,cUa}=

{aUc,bD~c, b, ~c, cU a, a} which proves “a”

270

© UCF EECS

11/16/10

Each rule of a Semi-Thue system is a canonical rule of
the form

PaQ — PpQ

Fach rule of a Thue system is a canonical rule of the
orm

PaQ < PBQ

Each rule of a Post Normal system is a canonical rule of
the form

oP — Pf

Tag systems are just Normal systems where all premises
are of the same length (the deletion number), and at
most one can begin with any given letter in 2. That
makes Tag systems deterministic.

11/16/10 © UCF EECS 271

« Alphabet 2 = {a,b,#}. Semi-Thue rules:
aba — b
#Ho#t — A
For above, #a"ba™# =* A iff n=m

« Alphabet 2 = {0,1,c,#}. Normal rules:
Oc — 1
1c — c0
#c — #1
0—=0
1 — 1
H—#
For above, binaryc# =" binary+1# where binary is some
binary number.

11/16/10 © UCF EECS 272

« Basically, we need at least one rule for each 4-
tuple in the Turing machine’s description.

* The rules lead from one instantaneous
description to another.

* The Turing ID aqgap is represented by the string
hagaph, a being the scanned symbol.

 The tuple ga b sleadsto
ga — sb

* Moving right and left can be harder due to
blanks.

11/16/10 © UCF EECS 273

« LetM=(Q,{0,1}, T), T is Turing table.

 |fgabs & T, add rule ga — sb
 |fgaRs & T, add rules

gab — asb if a=0 Yb&{0,1}
gah — asOh if a=0

cqab — casb if a=0 Vb,c&{0,1}
hqgab — hsb if a=0 Vb&{0,1}
cqah — casOh if a=0 Vc&{0,1}
— hgah — hsOh if a=0

 |fgaLs €T, add rules

11/16/10

bgac — sbac Va,b,c&{0,1}
hgac — hsOac if Va,c&{0,1}
bgah — sbah if a=0 Vc&{0,1}
bgah — sbh if a=0 Vb&{0,1}
hgah — hsOah if a=0

hgah — hsOh if a=0

© UCF EECS

274

« Construction from TM, M, gets:

* h1*q,0h =5 * hqgh iff x€L(M).
* hqoh =p0" h1*q,0h iff x€L(M).
* hqph <5 ™ h1*q,0h iff x€L(M).

 Can recast both Semi-Thue and Thue
Systems to ones over alphabet {a,b} or

10,1}

11/16/10 © UCF EECS 275

Formal Language Review

Pretty Basic Stuff

* Regular (Finite State) Languages

— Union, intersection, complement, substitution,
quotient (with anything), max, min, cycle, reversal

— Use of Pumping Lemma and Myhill-Nerode

 Context Free

— Union, intersection with regular, substitution, quotient
with regular, cycle, reversal

— Use of Pumping and Ogden’s Lemma

« Context Sensitive Languages

— Union, intersection, complement, Epsilon-free
substitution, cycle, reversal

11/16/10 © UCF EECS 277

 CFLs not closed under
— Intersection, complement, max, min

« CSLs not closed under

— Homomorphism (or substitution with empty
string), max (similar to homomorphism)

11/16/10 © UCF EECS 278

* Every grammar lists an re set.

« Some grammars (regular, CFL and CSG)
produce recursive sets.

* Type 0 grammars are as powerful at listing
re sets as Turing machines are at
enumerating re sets (Proof later).

11/16/10 © UCF EECS 279

Undecidability Continued
PCP and Traces

 Many problems related to grammars can be shown to be
no more complex than the Post Correspondence
Problem (PCP).

« Each instance of PCP is denoted: Given n>0, X a finite
alphabet, and two n-tuples of words

(Xqy oo s Xy) (Ygs -y Y,)OVEr S, |
does there exist a sequence iy, ..., I, , k>0,1<i;=n,
such that

Xij o X = Yig - Vi ?
« Example of PCP:

n=3,2={a,b},(aba,bb,a), (bab,b,baa).
Solution2, 3,1, 2

bb a aba bb b baa bab b

11/16/10 © UCF EECS 281

« Start with Semi-Thue System
—aba—ab;a—aa;b—a
— Instance of word problem: bbbb =*? aa
* Convert to PCP

— [bbbb*ab ab aa aa a a]
[aba aba a a b b *aa]
—And * * a a b b
* * a a b b

11/16/10 © UCF EECS 282

* Using underscored letters avoids solutions
that don't relate to word problem instance.
E.g.,

aba a
ab aa

* Top row insures start with [W,*
» Bottom row insures end with *W]

» Bottom row matches W., while top
matches W.,,, (one is underscored)

11/16/10 © UCF EECS 283

* Problem to determine if an arbitrary CFG
IS ambiguous

S—»A | B

A—x Al | x [i] 1<isn
B—y,B[i]l | yi[l 1sisn
A=* X o X i - i) k>0
B=*y, ... Vi [i] -- [is] k>0

« Ambiguous if and only if there is a solution
to this PCP instance.

11/16/10 © UCF EECS 284

* Problem to determine if arbitrary CFG’s
define overlapping languages

» Just take the grammar consisting of all the
A-rules from previous, and a second
grammar consisting of all the B-rules. Call
the languages generated by these
grammars, L, and L.

L, N Lg # O, if and only there is a solution
to this PCP instance.

11/16/10 © UCF EECS 285

* Q) (N
X
o))
<
A
X
—
<
A
—
IA
IA
-

a %* *
a —-a*
a”~ — * 3
T — ¥

* QOur only terminal is *. We get strings of
form «4*1, for some j’s if and only if there is
a solution to this PCP instance.

11/16/10 © UCF EECS 286

A trace of a machine M, is a word of the form
HX B X #X EXGH L BEX HXH

where X, = X;,; 0 =i <Kk, X, is a starting configuration and X, is a
terminating configuration.

We allow some laxness, where the configurations might be encoded
in a convenient manner. Many texts show that a context free
grammar can be devised which approximates traces by either
getting the even-odd pairs right, or the odd-even pairs right. The
goal is to then to intersect the two languages, so the result is a
trace. This then allows us to create CFLs L1 and L2, where L1 N L2
@, just in case the machine has an element in its domain. Since
this is undecidable, the non-emptiness of the intersection problem is
also undecidable. This is an alternate proof to one we already
showed based on PCP.

11/16/10 © UCF EECS 287

* | have chosen, once again to use the Factor Replacement Systems,
but this time, Factor Systems with Residues.
The rules are unordered and each is of the form
ax+b —cx+d
« These systems need to overcome the lack of ordering when
simulating Register Machines. This is done by
I INC [i] Pnsj X — P+ Py X
J- DEér[S’ f] pn+j pr X — pn+s X
pn+j er+kpn+j 9pn+f er+kpn+f’1Sk< pr
We also add the halting rule associated with m+1 of
pn+m+1 x—=0
* Thus, halting is equivalent to producing 0. We can also add one

more rule that guarantees we can reach 0 on both odd and even
numbers of moves

0—-0

11/16/10 © UCF EECS 288

« Let(n, ((a1,b1,c1,d1), ... ,(ak,bk,ck,dk)) be some factor replacement
system with residues. Define grammars G1 and G2 by using the 4k+2 rules

G:F, — 13iFAcl | qaitbigqcitdi 1sisk
S, — #F.S, | #F, # 1<i<k
S, — # 1x0S5,120# Z,is 0 for us

G1 starts with S, and G2 with S,
« Thus, using the notation of writing Y in place of 1Y,
L1= L(G1) ={#Y #Y H#Y , # Y # ... #Y,# Y, #}
where Y, = Y,,,,0=i5].
This checks the even/odd steps of an even length computation.
But,L2= L(G2)={#X,# X, #X, # X # X, # ... # X H# X\ HZ, # }
where X, = X,,,1si<k.
This checks the odd/steps of an even length computation.

11/16/10 © UCF EECS 289

Now, X, is chosen as some selected input value to the
Factor %ystem with Residues, and Z, is the unique value
(0 in our case) on which the machlne halts. But,

L1NL2 =#X #X EXEXGHEX B HEXy X H L H#

where X, = X, , 0 =i <2k, and X,, = Z, . This checks
all steps of an even length computatlon But our original
system halts if and only if it produces 0 (Z,) in an even
(also odd) number of steps. Thus the intersection is non-
empty just in case the Factor System with residue
eventually produces 0 when started on X, just in case
the Register Machine halts when started on the register
contents encoded by X,.

11/16/10 © UCF EECS 290

L1=L(G1)={SHY #Y, #Y, #Y; # . . #YX;# Yy #}

where Y,, = Y,,,,05i <.

This checks the even/odd steps of an even length computation.
But,L2= L(G2)={Xy$ #X # X, # X, # X # X, # ... # X, 1 # X, # Z, #}
where X,,, = X, , 1 Si sk and Z is a unique halting configuration.

This checks the odd/steps of an even length computation, and includes an
extra copy of the starting number prior to its $.

Now, consider the quotient of L2 /L1 . The only ways a member of L1 can

match a final substring in L2 is to line up the $ signs. But then they serve to

check out the validity and termination of the computation. Moreover, the

_?_lﬁotient leaves only the starting point (the one on which the machine halts.)
us,

L2 /L1 ={X, | the system halts}.

Since deciding the members of an re set is in general undecidable, we have
shown that membership in the quotient of two CFLs is also undecidable.

11/16/10 © UCF EECS 291

« Let(n, ((a1,b1,c1,d1), ... ,(ak,bk,ck,dk)) be some factor replacement system with
residues. Define grammars G1 and G2 by using the 4k+4 rules

G:F, — 13iF qci | qaitbijgqcitdi 1sisk
T, — #F T, | #F # 1sisk
A — 1A1|$#
S - 5T,
S, — AT #120# Z,is 0 for us

G1 starts with S, and G2 with S,
« Thus, using the notation of writing Y in place of 1Y,
L1=L(G1)={SHY, #Y, #Y, #Y, # ... BY #Yy.#}
where Y,, = Y,,,,0si <.
This checks the even/odd steps of an even length computation.
But,L2= L(G2)={XS$ #X # X, #X,# X, # X, # ... # X 1 # Xy HZ)#}
where X, = X, ,1siskand X=X,
This checks the odd/steps of an even length computation, and includes
an extra copy of the starting number prior to its $.

11/16/10 © UCF EECS 292

Now, consider the quotientof L2 /L1 . The only
ways a member of L1 can match a final
substring in L2 is to line up the $ signs. But then
they serve to check out the validity and
termination of the computation. Moreover, the
quotient leaves only the starting number (the
one on which the machine halts.) Thus,

L2 /L1 ={ X | the system F halts on zero }.

Since deciding the members of an re set is in
general undecidable, we have shown that
membership in the quotient of two CFLs is also
undecidable.

11/16/10 © UCF EECS 293

Here, it is actually easier to show a simulation of a Turing machine than of a Factor

System.

Assume we are given some machine M, with Turing table T (using Post notation). We
assume a tape alphabet of X that includes a blank symbol B.

Consider a starting configuration CO. Our rules will be

S

qa
bgax
bga#
#qax
#ga#
#qax
#qga#
bgax
#qax
bga#
#qga#
bga#
#ga#
f

#

11/16/10

R EEEEEEEEE

#CO#
sb
basx
basB#
#asx
#asB#
#sx#
#sB#
sbax
#sBax
sbha#
#sBa#
sbh#
#sB#
A

A

where C0 = Yq0aX is initial ID
ifqgabseT
ifgaRs€ET,abxeX
ifgaRsET,abeX
ifgaRs€ET,axeEZ, a¥B
ifgaRs&ET,aez, a¥B
ifgaRseT, xez, a=B
ifgaRs&T, a=B
ifgaLseT,abxe
ifgaLseT,axe
ifgaLseT,abez, a#B
ifgaLseT,acZ, a¥B
ifgaLseT,bez a=B
ifgaLseT,a=B

if f is a final state

just cleaning up the dirty linen

© UCF EECS 294

We can almost do anything with a CSG that can be done with a Type 0
grammar. The only thing lacking is the ability to reduce lengths, but we can
throw in a character that we think of as meaning “deleted”. Let’'s use the
Iettedr d as a deleted character, and use the letter e to mark both ends of a
word.
LetG=(V,T,P,S)be an arbitrary Type 0 grammar.
Define the CSG G’ = (VU {S’, D}, TU{d, e}, S’, P’), where P’ is

S - eSe

Dx — xD whenxeVUT

De — ed push the delete characters to far right
a — B where a — €P and |a| < ||

oa — pDk wherea—pBEPand|o]|-|B|]=k>0

Clearly, L(G')={ewed™|we& L(G)and m=0 is some integer }

For each w € L(G), we cannot, in general, determine for which values of m,
ewedmeL(G’). We would need to ask a potentially infinite number of
questions of the form

“‘does e w e d™ € L(G’)” to determine if w € L(G). That’s a semi-decision
procedure.

11/16/10 © UCF EECS 295

* CSGs are not closed under Init, Final, Mid, quotient with
regular sets and homomorphism (okay for A-free
homomorphism)

 We also have that the emptiness problem is undecidable
from this result. That gives us two proofs of this one
result.

* For Type 0, emptiness and even the membership
problems are undecidable.

11/16/10 © UCF EECS 296

Summary of Grammar
Results

* Everything about regular

 Membership in CFLs and CSLs
— CKY for CFLs

 Emptiness for CFLs

11/16/10 © UCF EECS 298

e |sL =0, for CSL, L?

« |s L=2*, for CFL (CSL), L?

» IsL,=L, for CFLs (CSLs), L,, L,?

- IsL,CL, for CFLs (CSLs), L,, L,?

« IsL,NL,=90 for CFLs (CSLs), L,, L,?
* Is L regular, for CFL (CSL), L?

« IsL,NL, a CFL for CFLs, L,, L,?
 Is~L CFL, for CFL, L?

11/16/10 © UCF EECS 299

* Is CFL, L, ambiguous?

« IsL=L?% LaCFL?

 Does there exist a finite n, L"=LN+1?

* Is L,/L, finite, L, and L, CFLs?

* Membership inL,/L,, L, and L, CFLS?

11/16/10 © UCF EECS 300

* Recast semi-Thue system making all
symbols non-terminal, adding S and V to
non-terminals and terminal set 2={a}

G: S — h1*q,0h
hgoh — V
V —aV
V— A

o xeL(M) iff £(G) # D iff £(G) infinite
iff a € £(G) iff £(G) =X~

11/16/10 © UCF EECS 301

 Unsolvables
_(G) =0
_(G) = =*
—£(G) infinite
—w € £(G), for arbitrary w
~£(G) C £(G2)
_(G) = £(G2)
« Latter two results follow when have
~G2:S—aS|A aex

11/16/10 © UCF EECS 302

A valid trace

—-C,#CR$C,#CR ...5C, #C,R$, where
k=1and C, =, C,,, for1=<i<2k. Here, =,
means derive in M, and CR means C with its
characters reversed

 An invalid trace

—C,#CRSC,#CR ... $C, #C,R %, where
k = 1 and for some |, it is false that
C. =, C...

11/16/10 © UCF EECS 303

* Given a Turing Machine M

— The set of inva
— The set of valid

— The set of valid
Sensitive

id traces of M is Context Free
traces is Context Sensitive
terminating traces is Context

— The complement of the valid traces is Context

Free

— The complement of the valid terminating
traces is Context Free

11/16/10

© UCF EECS 304

L1= L(G1) ={#Y #Y #Y, # Y # ... #Y# Y, #}

where Y, = Y,,,,0=is].

This checks the even/odd steps of an even length computation.
But, L2 = L(G2) = (#X#X X HXHX, #.. . # Xy #X, HLZH)}

where X, . = X, ,1Si=<k.

This checks the odd/steps of an even length computation.

L =L1 N L2 describes correct traces (checked even/odd and odd/
even). If Z, is chosen to be a terminal configuration, then these are
terminating traces. If we pick a fixed X, then X, is a halting
configuration iff L is non-empty. This is an independent proof of the
undecidability of the non-empty intersection problem for CFGs and
the non-emptiness problem for CSGs.

11/16/10 © UCF EECS 305

* We cannot decide if the set of valid
terminating traces of an arbitrary machine
M is non-empty.

* \We cannot decide if the complement of the
set of valid terminating traces of an

arbitrary machine M is everything. In fact,
this is not even semi-decidable.

11/16/10 © UCF EECS 306

 If L is regular, then L =2*? is decidable

— Easy — Reduce to minimal deterministic FSA,
A, accepting L. L = X* iff A| is a one-state
machine, whose only state is accepting

 If L is context free, then L =X*7 is
undecidable

— Just produce the complement of a Turing
Machine’s valid terminating traces

11/16/10 © UCF EECS 307

Undecidability of Finite
Convergence for Operators on
Formal Languages

Relation to Real-Time
(Constant Time) Execution

Let G be a context free grammar.

Consider L(G)"

Question1: Is L(G) = L(G)??

Question2: Is L(G)" = L(G)"*, for some
finite n>07?

These questions are both undecidable.

Think about why question1 is as hard as
whether or not L(G) is X*.

Question2 requires much more thought.

11/16/10 © UCF EECS 309

 The problem to determine if L = X* is Turing
reducible to the problem to decide if
LeLCL,solongaslLis selected from a
class of languages C over the alphabet X for
which we can decide if Z U {A} C L.

* Corollary 1:
The problem “is L * L =L, for L context free
or context sensitive?” is undecidable

11/16/10 © UCF EECS 310

Question: Does L ¢ L get us anything new?
—j.e,IsLeL=L7?

Membership in a CSL is decidable.

Claim is that L = Z* iff

(1)XU{A}CL;and

(2)LeL=L

Clearly, if L = 3* then (1) and (2) trivially hold.
Conversely, we have 2*C L*=U _,L"CL

— first inclusion follows from (1); second
from (2)

11/16/10 © UCF EECS 311

The problem to determine, for an arbitrary
context free language L, if there exist a finite
n such that L" = L"1 is undecidable.
L, ={C#CR$|

C,, C, are configurations },
L, ={C#C,R$C#C R ... $C,, #C,R$ | where
k=1and, forsomei,1<i<2k,C;, =, C,,is
false },

L=L,UL,U{A.

11/16/10 © UCF EECS 312

L is context free.

* Any product of L, and L,, which contains L, at least
once, is L,. Forinstance, L, L, =L, L, =L, L,=
L,.

« This shows that (L, UL,)"=L,"UL,.

 Thus,L"={A}UL,UL?... UL,"UL,.

« AnalyzingL,and L, we seethatL,"NL,= @ justin
case thereisawordC,#CR$SC,#C,R ...$C, #
C, R$inL,"thatis not also in L,.

« But then there is some valid trace of length 2n.

* L has the finite power property iff M executes in
constant time.

11/16/10 © UCF EECS 313

 Concatenation
—A*B={xy|xeA&yeB}

* Insertion
~-ADB={xyz| yEA XxZEB, Xx,y, Zz€ =%}
— Clearly, since xcanbe AL, A*BCAD> B

11/16/10 © UCF EECS 314

* AD IKIB = {x1y1X5 « .. XYiXiet |

Yi¥2 .- Yk E A,
X4X5 ... X X1 € B,
X, ¥; € Z7}

« Clearly, A« BCAD [kKIB, for all k>0

11/16/10 © UCF EECS 315

«c A1 DIl B=ADI"I B

¢ A (k+1)>In1B = A1 (A (k) > B)

11/16/10 © UCF EECS 316

» Shuffle (product and bounded product)
-ACB=U,, ADUIB
~AOIKIB=U,_ ADUIB=ADIKB

* One is tempted to define shuffle product as
A <& B = A DLKIB where
k=uy[ADUIB=ADI#IB]
but such a k may not exist — in fact, we will show
the undecidability of determining whether or not

k exists

11/16/10 © UCF EECS 317

More Shuffles

* lterated shuffle
—~AOIB=A
—A Ok+1B = (A OlKIB) & B

 Shuffle closure
~AO'B=U, ., (A OIKIB)

11/16/10 © UCF EECS 318

* Unconstrained crossover is defined by
A ®, B ={wz, yx | wx&€A and yzEB}

« Constrained crossover is defined by
A ®,B ={wz, yx | wx&A and yzEB,

w| =1y, x| = |z| }

11/16/10 © UCF EECS

319

* People with no real life (me?)

 |nsertion and a related deletion operation are
used in biomolecular computing and
dynamical systems

« Shuffle is used in analyzing concurrency as
the arbitrary interleaving of parallel events

» Crossover is used in genetic algorithms

11/16/10 © UCF EECS 320

* Regular languages, A and B
— A ¢ Bis regular
— A > kI B is regular, for all k>0
— A & Bisregular

— A <&* B is not necessarily regular

« Deciding whether or not A &* B is regular is an
open problem

11/16/10 © UCF EECS 321

 CFLs, Aand B
— A*BisaCFL
— AD> BisaCFL

— A D> kI B is not necessarily a CFL, for k>1
 Consider A=a"b™; B = c™d™ and k=2
« Trick is to consider (A > [21 B) N a*c*b*d*

— A & Bis not necessarily a CFL

— A &* B is not necessarily a CFL
« Deciding whether or not A &* B is a CFL is an open problem

11/16/10 © UCF EECS 322

. L=127

« L=LD>L?
cL=LOL?
« L=LO*L?
+L=L®,L?
+L=L®,L?

11/16/10 © UCF EECS

323

. 3k>0 Lk = Lk

+ Fk=0L(K)D>L=L(Kk+1)D>L
+ Tk=0L DIKIL =L >IkIL

+ Tk=0L OkL=L Ok*L

+ 3k=0L (k) ®,L =L (k+1) ®, L
+ 3k=0L (k) ®,L=L (k+1)®, L

.+ 3k=0A(K)>B=A(k+1)> B
. 3k=0 ADIKIB=ADIKIB

.« Jk=0A OkB=A KB

.+ Jk=0A (k) ®, B =A (k+1) ®, B
. 3k=0A (k) ® B =A (k+1) ®, L

11/16/10 © UCF EECS

324

* Let G be a context free grammar.

« Consider L(G)"

« Question1: Is L(G) = L(G)??

* Question2: Is L(G)" = L(G)"*, for some finite
n>0?

* These questions are both undecidable.

* Think about why question1 is as hard as
whether or not L(G) is X*.

* Question2 requires much more thought.

11/16/10 © UCF EECS 325

 Theorem 1:
The problem to determine if L = 2* is Turing
reducible to the problem to decide if
LeLCL, solongasLis selected from a class
of languages C over the alphabet X for which we
can decide if Z U {A} C L.

» Corollary 1:
The problem “isL * L =L, for L context free or
context sensitive?” is undecidable

11/16/10 © UCF EECS 326

Question: Does L ¢ L get us anything new?
—je.,IlsLeL=L7?

Membership in a CSL is decidable.

Claim is that L = Z* iff

(1)U {}CL;and

(2)LeL=L

Clearly, if L = £* then (1) and (2) trivially hold.
Conversely, we have Z*C L*=U _,L"CL

— first inclusion follows from (1); second from (2)

11/16/10 © UCF EECS 327

* Let ® be any operation that subsumes
concatenation, thatisA* B C A ® B.

« Simple insertion is such an operation,
since A* BCA[D B.

 Unconstrained crossover also subsumes

A ®. B ={wz, yx | wx&A and yzeB}

11/16/10 © UCF EECS 328

* Theorem 2.
The problem to determine if L = 2% is
Turing reducible to the problem to decide if
L®LCL, solong as
LeLCL®L andL is selected from a
class of languages C over X for which we
can decide if
> U{\CL.

11/16/10 © UCF EECS 329

Question: Does L @ L get us anything new?
—je,IsLe®L=L7?

Membership in a CSL is decidable.

Claimis that L = Z* iff

()= U{}CL;and

2)L®L=L

Clearly, if L = Z* then (1) and (2) trivially hold.
Conversely, we have Z* C L*™=U _,L"CL

— first inclusion follows from (1); second from (1), (2)
and the factthatL* LC L ® L

11/16/10 © UCF EECS 330

Summary of Grammar
Results

* Everything about regular

 Membership in CFLs and CSLs
— CKY for CFLs

 Emptiness for CFLs

11/16/10 © UCF EECS 332

e |sL =0, for CSL, L?

« |s L=2*, for CFL (CSL), L?

» IsL,=L, for CFLs (CSLs), L,, L,?

- IsL,CL, for CFLs (CSLs), L,, L,?

« IsL,NL,=90 for CFLs (CSLs), L,, L,?
* Is L regular, for CFL (CSL), L?

« IsL,NL, a CFL for CFLs, L,, L,?
 Is~L CFL, for CFL, L?

11/16/10 © UCF EECS 333

* Is CFL, L, ambiguous?

« IsL=L?% LaCFL?

 Does there exist a finite n, L"=LN+1?

* Is L,/L, finite, L, and L, CFLs?

* Membership inL,/L,, L, and L, CFLS?

11/16/10 © UCF EECS 334

Propositional Calculus

Axiomatizable Fragments

« Mathematical of unquantified logical
expressions

* Essentially Boolean algebra
» Goal is to reason about propositions

» Often interested in determining
— Is a well-formed formula (wff) a tautology?
— |Is a wiff refutable (unsatisfiable)?
— |Is a wff satisfiable? (classic NP-complete)

11/16/10 © UCF EECS 336

* The classic approaches are:
— Truth Table

— Axiomatic System (axioms and inferences)

* Truth Table
— Clearly exponential in number of variables

« Axiomatic Systems Rules of Inference

— Substitution and Modus Ponens
— Resolution / Unification

11/16/10 © UCF EECS 337

« Start with a set of axioms (all tautologies)

» Using substitution and MP
(P, PDOQ=Q)
derive consequences of axioms (also
tautologies, but just a fragment of all)

« Can create complete sets of axioms

* Need 3 variables for associativity, e.g.,
(p1vp2)vpd DO plv(p2v p3)

11/16/10 © UCF EECS 338

* Given a set of axioms,
— Is this set complete?
— Given a tautology T, is T a consequent?
* The above are even undecidable with one

axiom and with only 2 variables. | will
show this result shortly.

11/16/10 © UCF EECS 339

* If we wish to prove that some wff, F, is a
tautology, we could negate it and try to
prove that the new formula is refutable
(cannot be satisfied; contains a logical
contradiction).

* This is often done using resolution.

11/16/10 © UCF EECS 340

« Put formula in Conjunctive Normal Form
(CNF)

* If have terms of conjunction
(Pv Q)R v~Q)
then can determine that (P v R)

* |f we ever get a null conclusion, we have
refuted the proposition

* Resolution is not complete for derivation,
but it is for refutation

11/16/10 © UCF EECS 341

* Must be tautologies
« Can be incomplete
* Might have limitations on them and on
WEFFs, e.qg.,
— Just implication
— Only n variables
— Single axiom

11/16/10 © UCF EECS 342

* Linear representations require
associativity, unless all operations can be
performed on prefix only (or suffix only)

* Prefix and suffix based operations are
single stacks and limit us to CFLs

« Can simulate Post normal Forms with just
3 variables.

11/16/10 © UCF EECS 343

e Diadic limits us to two variables

* PIPC means Partial Implicational
Propositional Calculus, and limits us to
Implication as only connective

 Partial just means we get a fragment

 Problems

— Is fragment complete?
— Can F be derived by substitution and MP?

11/16/10 © UCF EECS 344

 Consider a two-stack model ofa TM

 Could somehow use one variable for left
stack and other for right

* Must find a way to encode a sequence as
a composition of forms — that's the key to
this simulation

11/16/10 © UCF EECS 345

* Consider (p D p), (PD(PDOP)),
PO2PDMP2P))), -

— No form is a substitution instance of any of the
other, so they can’t be confused

— All are tautologies

* Consider (X2Y)DY)
—Thisisjust X v Y

11/16/10 © UCF EECS 346

« Use (p D p) as form of bottom of stack

« Use (p D (p D p)) as form for letter O

« Use(pD(pD(pDp))) as form for 1

» Etc.

« String 01 (reading top to bottom of stack) is

- (((P2P)2((P2P)D((PDP)D(PDP))))
((P2P)D2((P22P)D((P2P)D(PDOP))))
(POP)D2((PD2P)D((P2P)2(PDP))))

»
»
))

11/16/10 © UCF EECS

347

Encoding

Np) is defined to abbreviste the wif [p > p)
eipslp=>Nplic. lp=p 2l
Ap)slp > 04

L) sp = 00

{dp) nlp = £40)

£4p) ulp = 640

Yip)slp = &40

74’”‘[’ = ¥ipl

"-b)is [p =Y. dp)

11/16/10 © UCF EECS 348

Creating Terminal IDs

[£:14(p1) V I(py)).

£:0(py) V I(p1)] 2 [6(py) vV O I(py)]

[£11(p1) V @(p2)] 2 [E4(p1) V ©,;Q(po)], Vi, j€{0, 1}.

£(p1) V p2l @ [€2P11(p1) V pal.

£:1(p1) V p2] @ [63Pud(py) V pol, Vie{0, 1}.

£20:(p1) V po] 2 [£:9;9(p1) V pol, Vi, j€{0, 1}.

£2Q:(p1) V pal 2 [63P;Q4(py) V pol, Vi, j€{0, 1}.

£.D(py) V pso] 2 [Yi®i(p,) V ps), whenever g.a; is a terminal discriminant
of M. :

11/16/10 © UCF EECS 349

Reversing Print and Left

9. [V®@(p1) V pol @ [Y0r®y(p1) V p2l, whenever g,a;a,9,. € T.
V' @ol(py) V 1(p1)] @ [YrPol(py) Vv I(p1)],

V@, 1(py) v 1(p1)] = [V @ol(py) V Py(p1)],

V@ I(py) vV Oi(p2)] @ [VrPol(py) vV ©,D,(po)],
V@@ Di(py) V I(p2)] @ [V @o®@i(py) V 1(ps)],
V@, 0, Qi(py) V I(p2)] = [V @eDi(py) V O1(po)],

10a.

11a.
b.

C.

11/16/10

-0 Qo0 o

V@, QoP,(p1) V Pp(p2)]

V@ D1(py) V I(pg)] 2

2 [V, 00Dy(py) vV D, (p2)],

Vi, j, m €{0, 1} whenever ¢,0Lg, € T.

W, ®,(py) V I(p2)],

Ve ®,Q1(py) V I(py)] 2
V@, 01(p1) V Di(py)] @

¥, ®,(py) v ©1(py)],
[V, @1(p1) vV O, Q4(po)],

Vi, j€{0, 1} whenever g, 1Lg, € T.

© UCF

EECS

350

Reversing Right

12a. [V @ol(py) vV I(p1)] = [Yr@ol(py) V I(p1)],
Ve @ol(p1) V O P@i(p2)] = [V @ol(py) V O po)],
V' @1(p1) V I(po)] @ [Y0r®o®@i(py) Vv I(ps)],
V. Qo @i(p1) V I(p2)] @ [V @D Di(p1) vV I(po)],
VDo @i(py) V Ou®y(po)] 2 [V @D D@i(p1) vV Pp2)],
Ve @1(p1) V Po@i(ps)] @ [V ®e@yi(py) vV Pi(p2)],
Vi, j € {0, 1} whenever ¢,0Rq, € T.
13a. [Y.Qol(py) V ©1(p2)] = [V ®:1(py) V pal,

b. [Yi®:(p1) vV Pi(po)] 2 [V @, Dy(py) V p2l,

C. [Yi@®@i(p1) vV Py(p2)] = [V @19,Qi(py) V pol

Vie {0, 1} whenever g,1Rq, € T.

-0 a0 o

11/16/10 © UCF EECS 351

Complexity Theory

Second Half of Course

NonDeterminism

Since we can't seem to find a model of
computation that is more powerful than a TM,
can we find one that is 'faster'?

In particular, we want one that takes us from
exponential time to polynomial time. |

Our candidate will be the NonDeterm nisti
Turing Machine (NDTM) : |

In the basic Deterministic Turing Machine (DTM) we make
one major alteration (and take care of a few
repercussions):

The 'transition functon' in DTM's is allowed to become a
‘transition mapping’ in NDTM's.

This means that rather than the next action being totally
specified (deterministic) by the current state and input
character, we now can have many next actions -
SImultaneously That is, a NDTM can be in many states at
once. (That raises some interesting problems with writing
on the tape, just where the tape head is, etc., butf»those
little things can be explained away).

We also require that there be only one halt
state - the 'accept’ state. That also raises an
interesting question - what if we give it an

instance that is not 'acceptable'? The answer -
it blows up (or goes into an infinite loop).

We want to determine how long it takes to get to the
accept state - that's our only motive!!

So, what is a NDTM doing?

In a normal (deterministic) algorithm, we often havea
loop where each time through the loop we are testinga
different option to see if that "choice" leads to a correct
solution. If one does, fine, we go on to another part
the problem. If one doesn t, we return to the*"s"ame

and make a different chorce and test it, etc W

NDTM's

e
3

If this is a Yes instance, we are guaranteed tha
acceptable choice will eventually be found and we go

In a NDTM, what we are doing is making, and t'estlng
all of those choices at once by ‘spawning’ a*dlffe ent
NDTM for each of them. Those that dont work out,

simply die (or something).

ax

~ This is kind of llkethe ultlm

| programmlng

NDTM's

To allay concerns about not being able to rite
on the tape, we can allow each spawned NDT

to have its own copy of the tape with a read/
write head. |

The restriction is that nothing can be reported
back except that th ccept state was reached

Another interpretation of nondeterminism:

From the basic definition, we notice that out of
every state having a nondeterministic choice, at
least one choice is valid and all the rest sort of die
off. That is they really have no reason for being

spawned (for this instance - maybe for another). So,
we station at each such state, an 'oracle’ (an all

knowing being) who only allows the correct NDTM
to be spawned.

An 'Oracle Machine.'

This is not totally unreasonable. We can look"
at a non deterministic decision as a .
deterministic algorithm in which, when an
“option" is to be tested, it is very lucky, or
clever, to make the correct choice the first
time.

In this sense, the two machines would
identically, and we are just asking ' H'long

does a DTM take if it always makes
correct dec1510ns7“ |

As long as we are talking magic, we might as well
talk about a 'super’ oracle stationed at the start
state (and get rid of the rest of the oracles) '
whose task is to examine the given instance and
simply tell you what sequence of transitions

needs to be executed to reach the accept state.

He/she will write them to the left of cell O (th
instance is to the right).

* Now, you simply write a DTM to run back and
forth between the left of the tape to get the

'next action' and then go back to the right
half to examine the NDTM and instance to
verify that the provided transition is a valid
next action. As predicted by the oracle, the
DTM will see that the NDTM would reach the
accept state and can report the numbe of
steps required. |

A_

NDTM's

All of this was orlgmally designed with Language
Recognition problems in mind. It is not a far stretch to
realize the Yes instances of any of our more real word-
like decision problems defines a language, and that th.e :
same approach can be used to "solve" them. ?

* E

Rather than the oracle placing the sequence of. i
transitions on the tape, we ask him/her to prov1de a
‘witness' to (a 'proof’ of) the correctness ofthe

fi lnstance

L,

NDTM's

For example, in the SubsetSum problem, we ask
oracle to write down the subset of objects whose sum
is B (the desired sum). Then we ask "Can we wrlte
deterministic polynomial algorithm to test th ""gl e
witness."

The answer for SubsetSum is Yes, ;@31; i.e., the
witness is verifiable in rmlmstl ﬁﬁﬁﬂuwldl time.

NDTM's - Wi tnse "

Just what can we ask and expect of a "witness!'

The witness must be something that

(1) we can verify to be accurate (for the glven G’j}@
problem and instance) and -

(2) we must be able to “flmsh off';the solution.

E 8 's' y_.-,_..-,r ,.,,_.' =
plynml

L,

NDTM's - Wi ess' b

The witness can be nothing!

Then, we are on our own. We have to "solve the lnstance in
polynomlal time." 2

The withess can be "Yes."

Duh. We already knew that. We have to nowgv":'r.'ify
instance is a yes instance (same as above).

The w1tness has to be s,omethlng Gﬂhg? than

’m e

| nothlng and Yes.

- }

i L -

BEsL
e

The information provided must be something we could
have come up with ourselves, but probably at an
exponential cost. And, it has to be enough so that we
can conclude the final answer Yes from it.

Consider a witness for the graph coloring problem:

Given: A graph G = (V, E) and an integer k.

Question: Can the vertices of G be aSSIgned colors {.19
that adjacent vertices have dlfferent
colors and use at mos rs?

The witness could be nothing, or Yes.

But that's not good enough - we don't know of a
polynomial algorithm for graph coloring.

It could be "vertex 10 is colored Red."

That's not good enough either. Any single vertex ca o
be colored any color we want.

It could be a color assigned to each vertex.

S

That would work, because we can verify ltS lldlty in
polynomial time, and we can conclu 'the
answer of Yes.

What if it was a color for all vertices but one?

That also is enough. We can verify the correctness of
the n-1 given to us, then we can verify that the one 3
uncolored vertex can be colored with a color not on
any neighbor, and that the total is not more than k.

What if all but 2, 3, or 20 vertices are colored
All are valid witnesses.

What if half the vertices are colored7

NDTM's - Witnessees

An interesting question: For a given pro em,
what is (are) the limits to what can be
provided that still allows a polynomlal
verification?

A major question remains: Do we have,
NDTMs, a model of computation that solves all
deterministic exponential (DE) problems in

polynomial time (nondeterministic polynomia
time)??

It definitely solves some problemsl_‘"
are DE in nondeterministic polynomial time.

A_

NDTM's"

But, so far, all problems that have been proven
require deterministic exponential time also requ1re
nondeterministic exponential time.

So, the jury is still out. In the meantime, NDTMs are
stlll valuable, because they identify a larger class of
problems than does a deterministic TM - the set of
decision problems for which Yes mstances can be

i verlfled in polynomial time.

We now begin to discuss several different classes of
problems. The first two will be: B

NP ‘Nondeterministic’' Polynomial

‘Deterministic’ Polynomial,
The 'easiest’ probl

A_

Problem C laéses .

We assume knowledge of Deterministic and .
Nondeterministic Turing Machines. (DTM's and NDT S)

The only use in life of a NDTM is to scan a stég
characters X and proceed by state transitions until an
‘accept’ state is entered. ;

X must be in the language the ND M is designed to
ogmze 0therw15e it blows up!!

Problem Clacee

So, what good is it?

We can count the number of transitions on the
path (elapsed time) to the accept state!!!

If there is a constant k for which the"numbe of
‘transitions is at most | X|¥, then"the language is said to
e nondetermlmstlc polynomla

The subset of YES instances of the set of instances 'f a

decision problem, as we have described them above, is

a language. k.
When given an instance, we want to know that it is in the

subset of Yes instances. (All answers to Yes instances look
alike - we don't care which one we get or how it was
obtained).

This begs the question "What about the No insta

L T R R S e R
D Iy WA £ 8 3 0, Ay e AW € ST

This actually defines our first Class, NP, the set of decisibn |
problems whose Yes instances can be solved by a
Nondeterministic Turing Machine in polynomial time.

That knowledge is not of much use!! We still don't know how
to tell (easily) if a problem is in NP. And, that's our goal.

Fortunately, all we are doing with a NDTM is tracing the
correct path to the accept state. Since all we are mterested
in doing is counting its length, if someone just gave us the
correct path and we followed it, we could lear the same
thing - how long it is. ‘ B

.‘:.“A

It is even simpler than that (all this has been
proven mathematically). Consider the A
following problem:

You have a big van that can carry 10,000 |bs. You
also have a batch of objects with welghts Wi, Wy, ..
w, |bs. Their total sum is more than 10,000 |b

you can't haul all of them.

Can you load the van with exactly 10, OOO;;
(WOW. That's the SubsetSum p .blem)

Now, suppose it is possible (i.e., a Yes instance) and
someone tells you exactly what objects to select.

We can add the weights of those selected objects and
verify the correctness of the selection.

This is the same as following the correct path in a
NDTM. (Well, not just the same, but it can be prov" 1
be equivalent.) .

Therefore, all we have to do is count ho ong it takes
to verify that a "correct” answer" iS‘ln‘?fact

We are now ready for our

We have, already, an informal definitn for
the set NP. We will now try to get a bette

idea of what NP includes, what it does
include, and give a formal deflmtlon

Does G contain a vertex cover
with at most k vertices?

Version 2. Given a graph G and_)__ate k.
Does the smallest vertex cover of G
have exactly k vertices?

Suppose, for either version, we are i en a
graph G and an integer k for which th
answer is "'yes." Someone also glves us a set
X of vertices and claims |

"X satisfies the conditions."

In Version 1, we can fairly easily check h
the claim is correct — in polynomial time.

That is, in polynomial time, we can*“chec 4
that X has K vertices, and thatX is a vertex
cover. i

In Version 2, we can also easily check that X has
exactly k vertices and that X is a vertex cover.

But, we don't know how to easily check that the
not a smaller vertex cover!!

That seems to require exponential time.

These are very similar lookmg "dec1s10n problems
e (Ye_s/No answers), yet they Y different in this

Ty Sl

one mportant‘respect

In the first: We can verify a correct ansy er
in polynomial time.

In the second: We apparently can not verify
a correct answer in polynomlal tlme.
(At least, we don't knowhow y one in

Could we have asked to be given something that
would have allowed us to easily verify that X was the
smallest such set?

No one knows what to ask for!!

- To check all subsets of k or fewer ver::

, e)ibonentlal time (there can be an
er of them).

Version 1 problems make up the class called NP

Definition: The Class NP is the set of all decision
problems for which answers to Yes instances can b '
verified in polynomial time. ’

(Specifically, it does not mean "not polynomial”).

Akt

Version 2 of the Vertex Cover problem is not unl que
There are other versions that exhibit this same
property. For example,

Version 3: Given: A graph G = (V, E) and":n
integer k.
Question: Do all vertex covers Gﬂ G

have mor than k vertices?

hat would/could a ‘witness' for a Yes instance be?

Again, no one knows except to list all subsets of at
most k vertices. Then we would have to check eac of
the possible exponential number of sets. &

Further, this is not isolated to the Vertex Cover
problem. Every decision problem has a 'Version 3,"
also known as the ‘complement® problem (we will
,dlscuss these further at a later

Version 2 and 3 problems are apparen ly 1
in NP.

So, where are they??

Second Significant Class of Pro, ms:

P

Some decision problems in NP can be solved (without
knowmg the answer in advance) - in polynomla time.
That is, not only can we verify a correct answer in
polynomial tlme, but we can actually compute the
correct answer in polynomial time - from "scratch."

These are the problems that ma'“"“

P is a subset of NI

Problems in P can also have a witness - we
just don't need one. But, this line of thoug t
leads to an interesting observation. Con51 der

s

the problem of searching a list L for'r'a [@J

leen A list L of n‘values key X.

We know this problem is in P. But, we can
also envision a nondeterministic solution. An
oracle can, in fact, provide a "witness" for a

Yes mstance by SImply writing down the in de
of where X is located.

We can verlfy the correctness with one SImple
comparison and reporting, Yes the w' ness is
correct.

Now, consider the complement (Version 3) of this
problem:

Given: Alist L of n values and a key X.
Question: Is X not in L?

Here, for any Yes instance, no ‘witness’ ‘Vsems
but lf the oracle SImply wrltes down Yes \A@@w)

verify the correctness in polynomlal y comparing
=X_WIth each of the n values and m% X is not in

('-'

Therefore, both problems can be verified in polyno mia
time and, hence, both are in NP.]

This is a characteristic of any problem in P - bo h ﬁgajr)
its complement can be verified in polynomlal time (of
course, they can both be 'solved' in polynomla time,

There is a popular conjecture that if any proble“n
its complement are both in NP, then both are also mP

This has been the case for several problems that for
many years were not known to be in P, but both the
problem and its complement were known to be in NP.

For example, Linear Programming (proven to be in P
the 1980’s), and Prime Number (proven in 2006 to

A notable ‘holdout’ to date is Graph Isomd m

.
3
B,

know how to solve in polynomial time. Why?

Because they really don't have polynomial ‘ rit

Or, because we are not yet clever e ' oh to havera
a polynomial algorithm for :

At the moment, no one knows.

Some believe all problems in NP have polynomlal algorl ms.
Many do not (believe that).

The fundamental question in theoreticalfompu er science Is
Does P = NP?

here is

We now look at other classes of problems.

Hard appearing problems can turn out to be |
easy to solve. And, easy looking problems can
actually be very hard (Graph Theory is rich
with such examples).

We must deal with the concept of “as hard
as,” "no harder than," etc. in a more rigorous

Problem A is said to be 'no harder than' problem B e the
smallest class containing A is a subset of the smallest class
containing B.

containing problem X.

If, for some constant o,

fy(n) = ntp(n),

the time to solve A is no more than mul [i],it

'Fu

of the tlme‘ requlred"to solve &ﬂﬁn A is 'no harder than' B.

"L-
"

‘l

The requirement for determining the relative dlfflCUlty
of two problems A and B requires that we know, at
least, the order of the fastest algorithm for problem B

and the order of some algorithm for Problem A.
We may not know either!!

In the following we exhibit a technique that can a
us to determine this relationship without knowmg
anything about an algorithm for either problem

Reductions

For any problem X, let X(l, Answerx)
represents an algorithm for problem X *":'e er

if none is known to exist.

l, is an arbitray instance given to éi,lgaﬁli}]m and
Answer, is the returned answer determl ed by the
algorlthm 2

Turing Reductwn is an algorithm A(I - Answer A)

for solving all instances of problem A and satlsﬁe
the following:

(1) Constructs zero or more instances of problem B :
invokes algorithm B(I;, Answerg), on each

(2) Computes the result, Answer,, for I,.

(3) Except for the time requlred to exe'cute B d.u.
execution time of algorlt m?A ust be polynomial w

i respect to the s1ze of 154 [\

Reductions

proc A,, Answer,)
For i=1 to alpha

e Compute I

B(I;, Answerg)

Reductions

We may assume a 'best' algorithm for proble B
without actually knowing it. |

If A(I,, Answer,) can be written W1th0u ;
algorlthm B, then problem A%lS @‘jm_jl/ a

Reductions

v
B,

The existence of a Turing reductioh;
stated as: F

"Problem A reduces to problem B" g

"A)B"

Reductions

Theorem. If A > B and problem B is polynd
then problem A is polynomial.

Corollary. If A > B and problem A is e
then problem B is exponential.

The previous theorem and its corollary do
capture the full implication of Turing reductions.

Regardless of the complexity class problels _
a Turing reduction implies problem A is in a
subclass.

‘Regardless of the class problem A might be in,
"oblem%B isina super class.

L,

Reductions

Theorem. If A>» B, then problem A is "no harde
than" problem B. 4

Proof: Let t,(n) and tg(n) be the maximum tlmes
algorithms A and B per the definition. Thus, fA(n <
t,(n). Further, since we assume the best algorl hm for
B, tg(n) =fg(n). Since A » B, there is a cons ant k such
that t,(n) < n¥ty(n). Therefore, f (n) < t ty(n) < nkty(n) =
nkfy(n). That is, A is no h - than B.

Reductions

Theorem.
If A> B and B >» C then A >» C

Definition.
IfA > B and B)wA 'then A and B are

o

An Aside (Computailit : ;0)

Without condition (3) of the definition, a s1mp g
Reduction results.

If problem B is decidable,

then so is problem A.
Equivalently, S
If problem A is undec1dable |

then problem B is undecidable

Special Type of RedilCtion o

Polynomial Transformation
(Refer to the definition of Turing Reductions)

(1) Problems A and B must both be decision proble

(2) A single instance, I, of problem B is constructed from
single instance, I,, of problem A.

LA

Polynomial Transformations enforce an equiVl ce
relationship on all decision problems, particularlﬂ;xm
in the Class NP. Class P is one of those classes a

"easiest' class of problems in NP.

D
N

In 1971, Stephen Cook proved there y :’}“

Specifically, a problem called
Satisfiability (or, SAT

_.IA__

Satisfi abili (Y™

U={u,, u,,.., u}, Boolean variables.

C = {c4, Cy,-.., C.,}, "OR clauses”
For example:

C. =

_.A;

Satisfiabilicy

Cooks Theorem:
1) SAT is in NP
2) For every problem A in NP,
A >, SAT

Thus, SAT is as hard as e ery proble in NP.

e S

or ‘infd’df, see Garey pgs. 39 -

Since SAT is itself in NP, that means
SAT is a hardest problem in NP (there
can be more than one.).

A hardest problem in a class is called
the "completion” of that class

re, SAT is N P-Com plete.

Today, there are 100's, if not 1,000's, of problems
that have been proven to be NP—Complete. (See

[

Garey and Johnson, Computers and Intm'a lity:
A Guide to the Theory of NP—Completeness for a

list of over 300 as of the early 1980')

A_ —

P = NP?"

If P = NP then all problems in NP are
polynomial problems.

If P # NP then all NP-C problems are ,_ [lm
super-polynomial and perhaps exponen i3
That is, NP-C problems could | requ1 e sub
exponentlal super- polynomlal time.

P = NP?

Why should P equal NP?

There seems to be a huge "gap” between the known
problems in P and Exponential. That is, almost all known
polynomial problems are no worse than n3 or n4.

Where are the O(n>°) problems?? O(n'%9)? Maybe they
are the ones in NP-Complete?

It's awfully hard to envision a problem that would
require n'%, put surely they exist?

Some of the problems in NP-C just look like we \.so d
be able to find a polynomial solution (looks canbe
deceiving, though).

P = NP?
Why should P not equal NP?

e P = NP would mean, for any problem in NP, that
it is just as easy to solve an instance form
"scratch,” as it is to verify the answer if

someone gives it to you. That seems a bit hard
to believe.

There simply are a lot of awfully hard looking
problems in NP-Complete (and Co-NP-Complete)
and some just don't seem to be solvable in
polynomial time.

An awfully lot of smart people have tried for
long time to find polynomial algorithms fo.r some.
of the problems in NP- Complete w1th o luck

A decision problem, C, is NP-complete if:
— Cisin NP and
— Cis NP-hard. That is, every problem in NP is polynomially reducible to C.

D polynomially reduces to C means that there is a deterministic polynomial-
time many-one algorithm, f, that transforms each instance x of D into an

instance f(x) of C, such that the answer to f(x) is YES if and only if the
answer to x is YES.

To prove that an NP problem A is NP-complete, it is sufficient to show that
an already known NP-complete problem polynomially reduces to A. By
transitivity, this shows that A is NP-hard.

A consequence of this definition is that if we had a polynomial time

algorithm for any NP-complete problem C, we could solve all problems in
NP in polynomial time. That is, P = NP.

Note that NP-hard does not necessarily mean NP-complete, as a given NP-
hard problem could be outside NP.

11/16/10 COT 6410 © UCF 430

U={u,, u,,..., u}, Boolean variables.

C ={c,, Cc,,..., C}, "OR clauses™
For example:

C; = (ug v U35 V ~U,yg V Us... V ~Ug)

Can we assign Boolean values to the variables in U
so that every clause is TRUE?

There is no known polynomial algorithm!!

« SAT is the problem to decide of an arbitrary
Boolean formula (wff in the propositional

calculus) whet

her or not this formula is

satisfiable (has a set of variable assignments

that evaluate t

ne expression to true).

« SAT clearly can be solved in time k2", where Kk is
the length of the formula and n is the number of
variables in the formula.

 What we can show is that SAT is NP-complete,
providing us our first concrete example of an NP-
complete decision problem.

11/16/10

COT 6410 © UCF 433

« Givena TM, M, and an input w, we need to create a
formula, ¢y, ,, containing a polynomial number of terms
that is satisfiable just in case M accepts w in polynomial
time.

« The formula must encode within its terms a trace of
configurations that includes
— A term for the starting configuration of the TM
— Terms for all accepting configurations of the TM
— Terms that ensure the consistency of each configuration

— Terms that ensure that each configuration after the first
follows from the prior configuration by a single move

11/16/10 COT 6410 © UCF 434

* puw = ¢cell A pstart A pmove A dpaccept

+ See the following for a detailed description
and discussion of the four terms that make

up this formula.
o http://www.cs.tau.ac.il/~safra/Complexity/Cook.ppt

11/16/10 COT 6410 © UCF 435

Within a year, Richard Karp added 22 problems to
this special class.

These included such problems as:
3-SAT
3DM
Vertex Cover,
Independent Set,
Knapsack,
Multiprocessor Scheduling, and
Partition.

S={s, Sy ..., S}
set of positive integers
and an integer B.

Question: Does S have a subset whose
values sum to B?

No one knows of a polynomial algorithm.

{No one has proven there isn’t one, either!!}

The following polynomial transformations have been shown to
exist.(Later, we will see what these problems actually are.)

Theorem. SAT)P 3SAT
Theorem. 3SAT >P SubsetSum

Theorem. SubsetSum)P Partition

Assuming a 3SAT expression (a+ ¢ + c) (b + b + ~c), the following shows
the reduction from 3SAT to Subset-Sum.

a b c at+~b+c ~a+b+~c
a 1 1
~a 1 1
b 1 1
~b 1 1
c 1 1
~C 1 1
C1 1
c1 1
C2 1
C?2’ 1
1 1 1 3 3

11/16/10 COT 6410 © UCF 439

« Partition is polynomial equivalent to SubsetSum

— Let iy, iy, .., 1., G be an instance of SubsetSum. This
instance has answer yes” iff
DI P Z*Sum(|1, ly, .., 1) —G,Sum(iy, iy, .., 1,)+ G
has answer “yes” in Partltlon Here we assume that
G = Sum(iy, Iy, .., I,), for, if not, the answer is “no.”

— Let iy, iy, .., i, be an instance of Partition. This instance
has answer ‘yes” iff
Iy oy ooy 1 Sum(|1, oy vy 1)/2
has answer “yes” in SubsetSum

11/16/10 COT 6410 © UCF 440

Choosing from among (REC) recursive, (RE) re non-recursive,
(coRE) co-re non-recursive, (NRNC) non-re/non-co-re,
categorize each of the sets in a) - d). Justify your answer by showing
some minimal quantification of a known recursive predicate.

a) A={f]f(x) ? forall x}
V<x,t> ~STP(f x,t) coRE

b.)B = {f| domain(f) is a proper subset of X; that is f diverges at
some points }

Ix Vt ~STP(f x,t) NRNC
c.)C ={f| f(x) > x for at least one value x }

3<x,t> [STP(f.x,t) & VALUE(f,x,t)>x] RE
d.)D = { <f,x> | f(x) converges in at most x steps }

STP(f.x,x) REC

11/16/10 © UCF EECS 441

Prove that the Uniform Halting Problem (the set TOTAL) is non-re
within any formal model of computation

Assume otherwise. Let F enumerate the indices of all algorithms.
Define G(x)=Univ (F(x),x)+1=g@g,(x)=F(x) +1
But then G is itself an algorithm. Assume it is the g-th one

Flg)=F,=G
Then, G(g) =F4(g) +1=G(g) +1

But then G contradicts its own existence since G would need to be
an algorithm.

11/16/10 © UCF EECS 442

Let set A be recursive, B be re non-recursive and C be non-re.
Choosing from among (REC) recursive, (RE) re non-recursive,
(NR) non-re, categorize the set D in each of a) through d) by listing
all possible categories. No justification is required.

a)D=~B NR
b.)DCA REC, RE, NR
c)D=AUB REC, RE

d)D=C-A REC, RE, NR

11/16/10 © UCF EECS 443

Let set A be non-empty recursive, B be re non-recursive and C be non-re.
Using the terminology (REC) recursive, (RE) re-non-recursive, (NR) non-
re, categorize each set by dealing with the cases | present, saying whether
or not the set can be of the given category and. briefly, but convincingly,
justifying each answer. You may assume, for any set S, the existence of
comparably hard sets Sg = {2x|xES} and S, = {2x+1|xES}.

a)ANB={x|xeAandx&eB}

REC: Yes. Choose A ={0}, then ANB={0} orANB={}. Both are REC

RE: Yes. If A= X then AN B =B, which is RE

NR: No. Let x, be a characteristic function for A and gz be a semi-
decision procedure for B, then A N B is semi-decided by g, , g Wwhere
da na(X) = xa(x) *gg(x) and so A ' B is always RE

b)A*C={x*y|x€EAandyeC}
REC: Yes. Choose A = {0}, then A* C = {0} which is REC
NR: Yes. Choose A = {1}, then A* C = C which is NR

11/16/10 © UCF EECS 444

Consider the set of indices TwoOrMore = { f | |[range(f)] > 1 }.

a.) Show some minimal quantification of some known recursive predicate that
provides an upper bound for the complexity of this set. (Hint: Look at ¢.) and
d.) to get a clue as to what this must be.)

a=<x,y,t> [x #y & STP(f x,t) & STP(f,y,t) & Value(fx,t) ¥ Value(f,y,t)]
b.) Use Rice’s Theorem to prove that TwoOrMore is undecidable.

TwoOrMore is non-trivial: CO & TwoOrMore; S € TwoOrMore
TwoOrMore is an I/O Property:

Let f and g be such that Vx [f(x) == g(x)]

Clearly the ranges of f and g are the same and hence both either are in or
out of TwoOrMore

As TwoOrMore satisfies both requirements of ice’s Theorem, TwoOrMore
is undecidable.

11/16/10 © UCF EECS 445

Consider the set of indices TwoOrMore = { f | |[range(f)] > 1 }.

c.) Show that K <, TwoOrMore, where K= { f | @(f)| }.

Let f be arbitrary and let g{x) = @{f) - p(f) + x

Clearly, if f € K, g{x) = x, for all x, in which case g; € TwoOrMore;
Iff &K, g{x) 1, for all x, in which case g; & TwoOrMore.

Thus, f € K iff g, € TwoOrMore, proving that K <,, TwoOrMore

d.) Show that TwoOrMore < K, where K= {f| @{f)| }.

Let f be arbitrary and
let g(z) = u<x,y,t> [x #y & STP(f,x,t) & STP(f,y,t) & Value(f,x,t) #
Value(f,y,t)]
If f € TwoOrMore then is g, is defined everywhere and so g; € K
If f & TwoOrMore then is g;is diverges everywhere and so g; & K
Thus, f € TwoOrMore iff g; € K, proving that TwoOrMore =<, K

11/16/10 © UCF EECS

446

Consider the set of indices TwoOrMore = { f | |[range(f)] > 1 }.

e.) From a.) through d.) what can you conclude about the computable
complexity of TwoOrMore (choose from REC, RE, RE-COMPLETE, CO-
RE, CO-RE-COMPLETE, NON_RE/NON-CO_RE)? Briefly justify your

conclusion.

RE-COMPLETE. (a) says at worst RE; (b) says non-recursive; (c)
shows that all re sets are reducible to TwoOrMore since K is known to
be RE-COMPLETE; (d) just provides redundant confirmation of the
set’s RE-COMPLETE status. Thus, you can just use (d) as a proof
since TwoOrMore =, K and K is known to be RE-COMPLETE

11/16/10 © UCF EECS 447

Why does Rice’s Theorem have nothing to say about the following? Explain by
showing some condition of Rice’s Theorem that is not met by the stated
property.

NOT_CONSTANT_TIME = { f | for any fixed C, dy ¢(y) fails to converge in
C steps }.

Consider C, and K,, where CO is the constant 0 base function.

C, ENOT_CONSTANT_TIME

K, € NOT_CONSTANT_TIME, where

K,(0) = C,(0)

Ko(y+1) = Ko(y)

Here C,(x) = K,(x), for all x, yet one belongs to NOT_CONSTANT_TIME
and the other does not. Thus, NOT_CONSTANT _TIME is not an I/O

property and so Rice’s Theorem has nothing to say about its possible
undecidability.

11/16/10 © UCF EECS 448

Let S be an arbitrary infinite re set. This means that S is the range of some total recursive
function f,. It also means S is the domain of some partial recursive function gs.
Additionally, the range of fg is infinite and the domain of gg is similarly infinite. Using
either fg or g5, show that S has an infinite recursive subset, call it R. To be complete
you will need to create a characteristic function for R, xg, and argue that R is infinite.

Define fo(0) = fs (0); faly+1) = fs (u 2 [fs (2) > 5 (v)])

First, we need to argue that fy(y) is defined everywhere, but this is clear since fg is defined

everywhere; f(0) is directly defined from fg (0); and the infiniteness of S guarantees there
is always a larger value enumerated by fs than we have found as the value enumerated at

fr(y), for any y.

Second, by definition fo(y+1) > f(y), for all y, so the range of fp is monotonically increasing and
its range is infinite.

Third, since fg(y), for any y, is defined as some element enumerated by fg, its range is an
infinite subset of S.

Now, define xy (x) = 3z (z=x) [f; (z) = x]

Xr Uses the bounded existential quantifier, so it always returns a value (0 or 1). If x is in the
range of f,, then it must appear by the time we enumerate the first x values (0-based
counting) since fp is monotonically increasing. Thus, x is a characteristic function for R,
as required, and so R is recursive.

11/16/10 © UCF EECS 449

« Repeat of material from Exam#1

* A question about quantification

« A question about Real-Time

« Closure of recursive/re sets

» A question about K and/or K,

» Various re and recursive equivalent definitions
e A reduction or two

« Use of STP/VALUE

« Application of Rice’s Theorem

 Many-one reduction

11/16/10 © UCF (Charles E. Hughes)

450

1. For each of the following sets, write a set description
that involves the use of a minimum sequence of
alternating quantifiers in front of a totally computable
predicate (typically formed from STP and/or VALUE).
Choosing from among (REC) recursive, (RE) re non-
recursive, (CO-RE) complement of re non-recursive,
(HU) non-re/non-co-re, categorize each of the sets
based on the quantified predicate you just wrote. No
proofs are required.

a.)S ={f|f(x) ! for all x}; V<x,t> ~STP(f x,t)
b.)A = {<fx>|f(x)=0};7t [STP(f x,t) & Value(f,x,t)=0]

11/16/10 © UCF (Charles E. Hughes) 451

2. Assume S is the range of some partial recursive function fg. Prove
that S is the domain and range of some partial recursive function
gs- To get full credit, you must argue convincingly (not formally)
that the function you specified is the correct one for S. You may
use common known recursive functions to attack this (e.g., STP,
VALUE, UNIV), but you may not use known equivalent definitions
of enumerable or semi-decidable.

Given fs define gg(x) = I<y,t> [STP(f,y,t) & Value(f,y,t) = x] * x
If x € Range(fs) then there exists some y such that fi(y) =x and so

Iy, t> [STP(f,y,t) & Value(f,y,t) = x] . Under this circumstance,
the search will be successful and g¢(x) = x.

If x & Range(fg) then V<y,t> [~STP(f,y,t) or Value(f,y,t) = x] . Under
this circumstance, the search will fail and gg(x) .

Thus, g satisfies our requirements for a partial recursive function
whose range and domain are S.

11/16/10 © UCF (Charles E. Hughes) 452

3. Let INFINITE = {f | domain(f) is infinite } and

NE = {| 3y g(y)!) | |
Show that NE <., INFINITE. Present the mapping and then explain

why it works as desired.
Let f be an arbitrary index.
Define g{x) = u <y,t> STP(y, f, t)
f ENE = 3 <y,t> STP(y, f, t)
Let k = u <y, t> STP(y, f, t)
Then g{x) = k ¥x and g€ INFINITE
fZNE = V <y,t>~STP(y, f, t) = V x g{x) ! = g; ZINFINITE
Thus, NE <, INFINITE as was required.

11/16/10 © UCF (Charles E. Hughes) 453

4. Assuming that the Uniform Halting Problem is
undecidable (it's actually not even re), use reduction to
show the undecidability of { f | Vx f(x+1) > f(x) }

Define INCR = { f| Vx f(x+1) > f(x) }

Let f be an arbitrary index.

Define g{(x) = f(x) — f(x) + x

fETOTAL = Vx f(x)] = Vx g{x+1) > g(x) = g, INCR
fZTOTAL = Ix f(x)! = Ix g(x) ! = g ZINCR

Thus, TOTAL <, INCR and so INCR is not even re.

11/16/10 © UCF (Charles E. Hughes) 454

5. Define the pairing function <x,y> and its
two inverses <z>, and <z>,, where if z =
<x,y>, then x = <z>, and y = <z>,,.

That’s in the notes

11/16/10 © UCF (Charles E. Hughes) 455

6. LetP={f|dx[STP(f, x, x)]}. Why
does Rice’s theorem not tell us anything
about the undecidability of P?

Because this is not an I/O property (it’s a
performance metric).

Clearly C, is in P but K, is not, where
Ko(x) = 0; K,(x+1) = K,(x) even though
Vx Ky(x) = Cy(x)

11/16/10 © UCF (Charles E. Hughes) 456

7. LetlIncr={f]| VX, d{(x+1)>¢«x) }.
Let TOT = {f]| VX, ¢«(x)| }
Prove that Incr =, TOT.

Silly me. We already showed TOTAL <, INCR in #4.

Let f be an arbitrary index.

Define g{x) = uy [f(x+1) > f(x)]

f EINCR = Vx f(x+1) > f(x)= Vx g{x) =0 = g, TOTAL
f ZINCR = Ix ~[f(x+1) > f(x)] = Ix g(x) ! = g, & TOTAL
Thus, INCR <, TOTAL and so Incr =, TOT

11/16/10 © UCF (Charles E. Hughes) 457

8. LetlIncr={f| VX ¢(x+1)>¢«(X) }. Use Rice’s
theorem to show Incr is not recursive.

Incr is non-trivial:
S(x) = x+1 EIncr; Cy(x) =0 & Incr

Incr is an I/O property:
Let f, g be arbitrary indices Vx ¢{x) = ¢,(x).
f € Incr iff Vx ¢(x+1)>¢{x) iff
Vx ¢,(x+1)>¢,(x) iff g € Incr

11/16/10 © UCF (Charles E. Hughes) 458

9. Consider the set of indices UNDEFINED = { f |V<x,t> [~STP(x, f, 1)]}.
Use Rice’s Theorem to show that UNDEFINED is not recursive.

Undefined is not trivial as the index of f(x) = uy [y == y+1]is in
Undefined and that of S(x) = x+1 is not.

Let f and g be indices of two arbitrary partial recursive functions
such that the dom(f) = dom(qg).
f € UNDEFINED < V<x,t> [~STP(x, f, t)] by defn. of undefined

Vx f(x) 1 by meaning of STP

dom(f) = ¢ since f converges nowhere
dom(g) = ¢ since dom(g) = dom(f)

Vx g(x)? since domain is empty
V<x,t> [~STP(x, g, t)] by meaning of STP

g € UNDEFINED by definition of UNDEFINED

11/16/10 © UCF (Charles E. Hughes) 459

10.Show that ~K, <m UNDEFINED, where
~Ko = { <P x> | ¢ x) 1=Vt [~STP(f, X, 1)] }.

Define the mapping of <f,x> to be the
index of the function g;, where

Vy gf,x(y) = (pf(x)'
<f,x>E~KO < p{x) ! <
Vy 9:.(y) ! < g;,E UNDEFINED.
Note: This is actually a 1-1 mapping,
so the result is stronger than required.

11/16/10 © UCF (Charles E. Hughes) 460

A*C={x*y|x€AandyeC}

Can A*C be re non-recursive, where A is non-empty
recursive, C is non-re?

YES. Define TOT. ={2x | x € TOT}; K- = {2x+3 | x €K};
E={2x|x€E X}

LetC={1}) UTOT UKrand A ={1} U E.
A*C={1} UEUTOT_UTOT-*EUK UK. *E
A*C={1} UE UK. //E dominates all even value sets

This set is 1-1 equivalent to K, which is re non-
recursive. Thus, A*C can be re non-recursive.

11/16/10 © UCF EECS 461

.IA

Polynomial Tranor i

8-
,_-

Ao

Polynomial transformations are also known as Karg
Reductions

When a reduction is a polynomial trar}‘_§t‘in we
subscript the symbol with a "p" as follows:

Polynomial Transforiicise

Following Garey and Johnson, we recognize thre
forms of polynomial transformations.

(a) restriction,
(b) local replacement, and
(c) component design.

Restriction allows nothing much more complex
than renaming the objects in I, so that they are,
in a straightforward manner, objects in I;. .

For example, objects in |, could be a collection
of cities with distances between certain pairs of
cities. In I, these might correspond to vertlc'“
in a graph and weighted edges.

The term 'restriction’ alludes to the fact that a proof of
correctness often is simply describing the subset of
instances of problem B that are essentially identical
(isomorphic) to the instances of problem A, that is, the
instances of B are restricted to those that are instances of
A. To apply restriction, the relevant instances in Problem B |
must be identifiable in polynomial time.

For example, if P # NP and B is defined over the set ,of‘a
graphs, we can not restrict to the instances that possess a
= Hamiltonian Circuit. 3 |

Liveness: A variable is live if its current assignment may be used at some
future point in a program’s flow

Optimizers often try to keep live variables in registers

If two variables are simultaneously live, they need to be kept in separate
registers

Consider the K-coloring problem (can the nodes of a graph be colored with
at most K colors under the constraint that adjacent nodes must have
different colors?

Register Allocation reduces to K-coloring by mapping each variable to a
node and inserting an edge between variables that are simultaneously live

K-coloring reduces to Register Allocation by interpreting nodes as variables
and edges as indicating concurrent liveness

This is a simple because it's an isomorphism

11/16/10 © UCF EECS 466

Local Replacement is more complex because there is
usually not an obvious map between instance |, and

instance Ig. But, by modifying objects or small groups of
objects a transformation often results. Sometimes the
alterations are such that some feature or property of
problem A that is not a part of all instances of problem
can be enforced in problem B. As in (a), the instances of* |
problem B are usually of the same type as of problé‘m

In a sense, Local Replacement might be viewed
as a form of Restriction. In Local Replacement

we describe how to construct the mstances of B
that are isomorphic to the instances of A, t:mjtlj)
Restriction we describe how to ellmmate
‘instances of B that are not i omorphl to

4_ nstances of A '

Polynomial TransforiiGisems

Component Design is when instances ::;i;
problem B are essentlally constructed '
“from scratch,” and there may be llttle
resemblance between instances of A
and those of B. 3SAT to SubsetS m

R o
L
.' - .‘

» Vertex cover seeks a set of vertices that cover every vertex in some graph

* LetI; 551 be an arbitrary instance of 3-SAT. For integers nand m, U = {u,, u,, ..., u,}
and C, = [z, z,, z;3} for 1 <i < m, where each z; is either a u, or u,’' for some k.

* Construct an instance of VC as follows.
« For 1 =i=nconstruct 2n vertices, u, and u;' with an edge between them.

« Foreach clause C, = [z,4, z,, 3}, 1 <i< m, construct three vertices z;,, z;,, and z; and
form a "triangle on them. Each z; is one of the Boolean variables u, or its complement
u,’. Draw an edge between z; and the Boolean variable (whichever it is) Each z; has
degree 3. Finally, set k = n+2m.

« Theorem. The given instance of 3-SAT is satisfiable if and only if the constructed
instance of VC has a vertex cover with at most k vertices.

11/16/10 © UCF EECS 470

* A Process Scheduling Problem can be described by
— m processors P, P,, ..., P,

— processor timing functions S,, S,, ..., S,,, each describing how the
corresponding processor responds to an execution profile,

— additional resources R4, R, ..., Ry, e.g., memory

— transmission cost matrix C; (1 <1i, j < m), based on proc. data sharing,
— tasks to be executed T4, T, ..., T,

— task execution profiles A, A,, ..., A,

— a partial order defined on the tasks such that T; < T, means that T; must
complete before T, can start execution,

— communication matrix D; (1 <1, j < n); D; can be non-zero only if T; < T,,
— weights W,, W,, ..., W,, -- cost of deferring execution of task.

11/16/10 © UCF EECS 471

« The intent of a scheduling algorithm is to minimize the sum of the
weighted completion times of all tasks, while obeying the constraints
of the task system. Weights can be made large to impose deadlines.

« The general scheduling problem is quite complex, but even simpler
instances, where the processors are uniform, there are no additional
resources, there is no data transmission, the execution profile is just
processor time and the weights are uniform, are very hard.

* In fact, if we just specify the time to complete each task and we have
no partial ordering, then finding an optimal schedule on two
processors is an NP-complete problem. It is essentially the subset-
sum problem. | will discuss this a bit more at a later time.

11/16/10 © UCF EECS 472

The problem of optimally scheduling n tasks T, T,, ..., T,, onto 2 processors
with an empty partial order < is the same as that of dividing a set of positive
whole numbers into two subsets, such that the numbers are as close to
evenly divided. So, for example, given the numbers

3,2,4, 1

we could try a “greedy” approach as follows:
put 3 in set 1

put 2 in set 2

put 4 in set 2 (total is now 6)

put 1 in set 1 (total is now 4)

This is not the best solution. A better option is to put 3 and 2 in one set and
4 and 1 in the other. Such a solution would have been attained if we did a
greedy solution on a sorted version of the original numbers. In general,
however, sorting doesn’t work.

11/16/10 © UCF EECS 473

Try the unsorted list
7,7,6,6,5,4,4, 54

Greedy (Always in one that is least used)
7,6,5,5=23

7,6,4,4,4=25

Optimal

7,6,6,5=24

7,4,4,4,5=24

Sort it

7,7,6,6,5,5 4, 4,4
7,6,5,4,4=206

7,6,5,4=22

Even worse than greedy unsorted

11/16/10 © UCF EECS 474

S S
(" TE™
NE
T

11/16/10

Preemptive

© UCF EECS

475

2/ 2 a2

17 19

15

13

T

T7
T8

T1
T2

TS5

T4

T6

8 10 12 14 16 18 20

6

4

2

)

=

]

-2

N

T! /‘/é
lp]

- /
m}% \
> NN o AN
2\
-~ R \
N N
35 \ I\
S\ B\
e\
| @ wy

ol 21 N\
S PN
3 N\
3

ms

)

WINI©
N
<m
v
"))
IR
I3 |-

16 18 20

a

1
T7, T6, T5, T4, T3, T2, T1

12

™S
11

10

8
ith L
7

6

4
List Schedule w
3

2

15 17 19

13

= {T1T9
9

S

1

J.f#ﬂ /J.f/«./A A
N NN
N AN
N NN
%f W%W/J
N NN
Y NN

NN

4]

b
N1OIN
=

-
M

14 16 18 20

12

10

t with 4 Processors

© UCF EECS

1 L

igina

Use Or

476

11/16/10

11/16/10

1 3 5 7 9 11 13 15 17 19
T1| T>5 TS
T T6 T9
T T7 B _ |
> 4 6 8 10 12 14 16 18 20

Original List Schedule but with AIll Times Reduce:

1 3 5 7 9 11 13 15 17 19
T1 T6 T9
T2| T4 T7 % ,ﬁVAﬁ%%%%%%

Original List Schedule but with TS5 and T6 Inde

© UCF EECS

477

While it is not known whether or not P = NP?, it
IS clear that we need to “solve” problems that are
NP-complete since many practical scheduling
and networking problems are in this class. For
this reason we often choose to find good
“heuristics” which are fast and provide
acceptable, though not perfect, answers. The
First Fit and Best Fit algorithms we previously
discussed are examples of such acceptable,
imperfect solutions.

11/16/10 © UCF EECS 478

A UET is a Unit Execution Tree. Our Tree is funny. It has a single
leaf by standard graph definitions.

1. Assign L(T) = 1, for the leaf task T

2. Letlabels 1, ..., k-1 be assigned. If T is a task with lowest
numbered immediate successor then define L(T) = k (non-
deterministic)

This is an order n labeling algorithm that can easily be implemented
using a breadth first search.

Note: This can be used for a forest as well as a tree. Just add a new
leaf. Connect all the old leafs to be immediate successors of the
new one. Use the above to get priorities, starting at 0, rather than 1.
Then delete the new node completely.

Note: This whole thing can also be used for anti-trees. Make a
schedule, then read it backwards. You cannot just reverse priorities.
11/16/10 © UCF EECS 479

13 14

8 9 10 11 12

\\y/

S

141 12| 8 6 3 1

13 110 7 4 M

I
w

11| 9 S) 2

Theorem: Level Strategy is optimal for unit execution, m arbitrary, forest
precedence

11/16/10 © UCF EECS 480

1. Assign L(T) = 1, for an arbitrary leaf task T
2. Letlabels 1, ..., k-1 be assigned. For each task T such that

{L(T’) is defined for all T" in Successor(T) }

Let N(T) be decreasing sequence of set members in
{S(T’)| T"is in S(T)}

Choose T* with least N(T%).
Define L(T*) = K.

This is an order n? labeling algorithm. Scheduling with it involves n union /
find style operations. Such operations have been shown to be
implementable in nearly constant time using an “amortization” algorithm.

Theorem: Level Strategy is optimal for unit execution, m=2, dag precedence.

11/16/10 © UCF EECS 481

1. Consider the simple scheduling problem where we have a set of independent tasks
running on a fixed number of processors, and we wish to minimize finishing time.

How would a list (first fit, no preemption) strategy schedule tasks with the following
IDs and execution times onto four processors? Answer using Gantt chart.

(T1,1) (T2,1) (T3,3) (T4,3) (T5,2) (T6,2) (T7,4)

Now show what would happen if the times were sorted non-decreasing.

Now show what would happen if the times were sorted non-increasing.

11/16/10 © UCF EECS 482

2. Some scheduling problems can be efficiently solved using a level
(critical path) algorithm. The first step of such an algorithm is the
assignment of priorities (lowest is 1) to each task and the creation of
a list schedule based on these priorities. Unit execution time tasks
with a forest (or anti-forest) task graph are amenable to a level
algorithm. Given the following such system, assign priorities to the
right of each task as represented by a dot (¢), then show the
resultant 3-processor schedule.

N\ 7% .« .
¥ . W
o\ o N. Z

11/16/10 © UCF EECS 483

Y-
¥

For any decision problem A in NP, there is

‘complement’ problem Co—A defined on the s'j v
instances as A, but with a questlon whose answer t[g
the negation of the answer in A. That i is, an instance is
a "yes" instance for A if and only if it is a "no’
instance in Co—A. 3

Notice that the complem t of a complement problem
is the original proble .5

b .
v
B,

Co-NP is the set of all decision problems whose
complements are members of NP.

For example: consider Graph Color
GC | e
Given: A graph G and '@feger k.

. 13 "’{';.'.: ;.._. ek A ‘ » '
Question: ,,n : beproper colored with k colors?

The complement problem of GC

Co-GC

Given: A graph G and-a'fi';“lteg r l}so
Quest10n° Do all proper colorings of (
ire more than k ww ;

Notice that Co—GC is a problem that doe
not appear to be in the set NP. That is, w
know of no way to check in polynomlal

time the answer to a ""Yes" instance @?CXD:

What is the "answer" t” ._f-El Yes ﬂjlimwt

Not all problems in NP behave this way. For exan Dle,
if X is a problem in class P, then both "yes" and "no"
instances can be solved in polynomial time. |

That is, both "yes" and "no" instances can be
verified in polynomlal time and hence, X
are both in NP, in fact, both are 1nﬂP |
This implies P = Co—P and, further,
P- @g?@ NP N Co-NP

This gives rise to a second fundamental Au 1:
NP = Co-NP? i

If P = NP, then NP = Co—NP.
This is not "if and onl

It is possible that NP = Co-NP and, yet, P # NP

If A >, B and both are in NP, then the same
polynomial transformation will reduce CO-A to

Co-B. That is, Co—A », Co—B. Therefore,
SAT is 'complete' in Co—NP.

In fact, corresponding to NP—Complet is the
complement set CO—N P—Comple e, the set of

L, E

Turing Reductionsm

Now, return to Turing Reduction

Recall that Turing reductions mclude
polynomial transformations as a special
case. So, we should expect {151?,/ will be

® -»

.
3
B,

(1) Problems A and B can, but need not, béf
decision problems. |

(2) No restriction placed upon the ny_ r
of instances of B that are co ". !

Technically, Turing Reductions include j
Polynomial Transformations, but it is useful to
distinguish them.

Polynomial transformations the easiest to
- apply ‘

To date, we have concerned ourselves Wlth
decision problems. We are now in a
position to include additional problems. In
particular, optimization problems.

We require one additional tool — the second
type of transformatmn discussed above —

sy
e

Definition: Problem B is NP-Hard if there ,ﬂLLLHlLt;%
reduction A » B for some problem A in NP—
Complete.

Lt

This implies NP-Hard problems are at least as hard
as NP—Complete problems. Therefore they can not
be solved in polynomlal tlme unle P=NP (and
maybe not then). '

QSAT

QSAT is the problem to determine lf an
arbltrary fully quantified Boolean

expression is true. Note: SAT only uses ,
existential. y

QSAT is NP-Hard, but may not in NP

Polynomial transformations are Turing reductions.

Thus, NP-Complete is a subset of NP—Hard
Co-NP-Complete also is a subset of N H}}m@
NP-—Hard contains many other-mterestln problems.

A_

NP-Equivalernts

Co-NP problems are solvable in polynomial timjﬂ
only their complement problem in NP is solvable in
polynomial time.

Due to the existence of Turing reductions redt
either to the other. ;

cher problems not known to be
hlS property (beSIdes“fthose in Co-NP).

.

o

Problem B in NP-Hard is NP—Equrvalent when B reduces to
any problem X in NP, That is, B >» X. .

Since B is in NP-Hard, we already know there is a problerﬁv
in NP-Complete that reduces to B. That is, A » B. |

Since X is in NP, X » A. Therefore, X >» A > B

Thus, X, A, and B are all polyomiallyr equi J

| Theorem. | Problems 1n"N'P Equivalent are polynomial if and

NP—Equivlen .

Problem X need not be, but often is, NP
Complete.

In fact, X can be any problem-;;'N or Co-NP.

Case

Alliances: Members of a group who have i ed to
support their neighbors in the group in times of need.
crisis. 3

Military alliances

4
.

Businesses allia

Basic Property

Any "attacking' force by nonmembers on a smgle mem er
of the alliance can be "defended" by that memberand its

neighbors in the alliance.

A number of variations exist and have [ﬁggjj studied.
For example, we might requlre ther e be k more, or
fi defend than attacker etc.

A Graph Model:

Ol‘ every vertex
x in S, x plus its nelghbors ln \ S are, in LLUJ_LLL-" at
least as many as the numbe of neighbors of
‘that are not m:S g

Formally:

For every x E S,

INIx] N 8| > [N[x]-S.

Alliances have also been proposed as:
Similarity measures for large data bases for

finding "clusters' of similar objects,«Rela B(
pages on the World Wide Web; etc. :

Formal statement of the Defensive Alliance pro blem (as
a decision problem): :

Defensive Alliance:
Given: A graph G and an integer k.
Does G have a Defensive aAlllanc with at
most k vertices?

en to be NP—Complete

As models for businesses and military, it w:

quickly realized that a defensive alliance co d not
always protect its members from an 1n111 sent

simultaneous attack on sever l alha ce members.

A stronger version of a defensive alliance
was proposed — a Secure Set: :

An alliance in which every ' _ _ > simultaneous
attack can be defended '

St
bvs,

b

4

S € V(G) is a secure set if and only '

el

IN[X| N S| > [N[X]-S] for every X CS.

.

-
O

b

%

Notice, if we only consider sets X Ltg,r
which X has a single vertex — identical to the

definition of a Defensive Alliance.

Formal statement of the Secure Set ‘_ ;
(as a decision problem):

Secure Set:
Given: A graph G and an 1teger k.
Does G have : a Secur Set with at most K

wutf.

Vertlces»

Notice: If someone were to give us a set of k vertices
and claimed it was a Secure Set:

We do not know how to verify the claim in polynomi:

It seems we must check each individual subset
given set of k vertices. There are Zk poss1ble ﬁﬂm Lp
| :check Since Kk can be n/2 or n/4,

To explore this a little further, consider t)
following related problem:

S—Secure |
Given: A graph G = (V E) @g

Notice that we encounter the same dlfﬁculty

as above — We don't know what we could b

given that we could use, in polynomlal t ime,
to verify that S is, in deed, a secure

Suppose, though, we asked the question
differently — the complemented version:

S—notSecure
Given: A graph G = (V, M@C V.
Is S not asecure s set?

Both of these problems use the same set of
instances, and an instance in the first is
"yes" if and only if it is "'no" in the second.

The problems are said to be "complements"
of each other. If one is shown to be i in NP
the other is said to be in Co-NP

Recall that if S is not a secure set, then
there exists a subset X of S for which |N[X]‘i

N S| < IN[X]-S|. if we are given an
instance — a graph G and set S — where S is
not a secure set, then someone can give us a
set X and claim "X will not satisfy the
secure set property," that is,

INIX] N S| < IN[X]-S].

T o e S = 7 g o g = g P e 0
L e e e P e e T Y

It is an easy process, when given G, S, and
X, to simply count the two quantities and

determine that X does not satisfy the secure.;
set property. Hence, verifying the answer in
polynomial time. Therefore, S—notSecure " S
in the set NP. It follows that S— Secure‘smus
then be in Co—NP.

Unless P = NP, all NP-Hard problem s have
only exponential algorithms.

That is, O(2") where n is the s1ze (ib@

instance. This is essentlally m{ggmrtu, and
test each poss1blesolut10 &

On the other hand, there are docu ed
cases of algorithms for some of these

problems that work surprisingly,: for
many, if not most, instances.

For some problems, we don't know.

But, for others: When certain proper ies or
features of the problem 1nstance are
restricted, the algorlthm actual behaves in
a polynomlal manner. 3

For example —
Subset Sum

te problem. There is a dynamic

that executes in O(Bn) time

Why is O(Bn) not polynomial?

Because B can be exponentially large, in fact, bigger
than 2". Notice that 2" can be represented with n bits.
So, B can double when n is 1ncreased b only one.

But, if B is relati his is a very reasonable

Is this "significant'?

Yes, from both a practical and theoretical po nt

Practically, there are several other problem that this
approach applies to: Knapsack bln packing, multi-
processor scheduling, etcﬁvand many of these have
real world 1mp11cat10ns. 5

For example, consider a freight shipn

company that has n = 100 items to be
transported by truck from one coast to
other. A truck can haul B tons. The total of
the 100 items far exceeds B, so one ‘wishes to
fill the truck to B, if poss1ble (note: getting
as close as possible is an equall difficult
problem)

N
!

For the DP algorithm to run in exponentia'l'{i
B would need to be in the order of 219 —

They don't make trucks that big.

Normally, B might be 5 to 10 ;t ns. 'Tf[ﬁ[@ the
algorithm runs in 0(20 000n A large
| 'oefﬁcmnt*but stlll‘llnea in n.

So, what do we mean by FPT?
The idea is to design a solution (an

algorithm) for solving some NP-

Hard problem in such a way that
the part of the problem that leads
to exponential time is isolated.

Suppose we have developed an "
algorithm to find the minimum
of "bandersnatches" in a graph G. It’s
running time is order

24-0n3,

In some sense, what makes this problem
hard is a large difference between th
maximum and minimum degrees.

nearly” regular.

Design algorithms which execut

f(k)n° (or, (k) + n*)

where f is a function lndependentof n,
~and o is a constant. ;

@M@ﬁ@e"ﬂpoq@w .

More Examples of NP
Complete Problems

11/16/10 © UCF EECS 538

Rules of Game

Numbers are height of crate stack;

If could get 4 high out of way we can attain
11/16/10 © OPB EECS 539

Problematic OR Gadget

Q

Can go out where did not enter

11/16/10 © UCF EECS 540

Directional gadget

- - -000R_ 0o - ﬁn‘ﬁ

Single stack is two high;
tipped over stack is one high, two long;
red square is location of person travelling the towers

11/16/10 © UCF EECS 541

One directional Or gadget

!
Q

11/16/10 © UCF EECS 542

(R EED-
[T
7
-
Ot

11/16/10

AND Gadget

A

Z

0

How AND Works
—_— |:| —_—

B[A]
z
Lt

© UCF EECS

..._[JNQE
jg
1=

543

Variable Select Gadget

T true --- A -+ 7 false

-1

choose x

Tip A left to set x true; right to set x false
Can build bridge to go back but never to change choice

11/16/10 © UCF EECS 544

11/16/10

((Xv~xXVy)A(~yvZzvwW)A~W)

ﬁnishE
A
—l[[l_'lIll[Il]]llIlllI]ll{:HIllllIIIIIIIIIIHIIEEB]E
& vV g Bridges back 33 r:
& g for true paths & :
1 3 E —Ill[lll E
L) o - - -
B O B HE IPE]IIH -]
B vV -] u| N m &
- - oV o Vo B -
. a 3 a8 H N 5 :
11 : o 11 : Ll 1] (] L | : L
_IIII_IIII_ —‘llll'-llll_ lIl[—l]Il_ ll[[_llll_
X ~X g~y Z 0 ~Z W O ~w
LT LT LT LT LT LT IBEEREN
—Illllll[llllllll LIy
startE
© UCF EECS

545

* TipOver win strategy is NP-Complete
* Minesweeper consistency is NP-Complete

* Phutball single move win is NP-Complete
— Do not know complexity of winning strategy
* Checkers is really interesting
— Single move to King isin P
— Winning strategy is PSpace-Complete

11/16/10 © UCF EECS 546

Adapted from presentation by
Ajit Hakke Patil
Spring 2010

« The graphics subsystem (GS) receives graphics commands
from the application running on CPU over a bus, builds the

image specified by the commands, and outputs the resulting
Image to display hardware

* Graphics Libraries:
— OpenGL, DirectX.

Surface Visualization

* As Triangle Mesh
« Generated by triangulating the : : :

geometry

Triangle List: Arbitrary ordering of triangles.

Triangle Strip: A triangle strip is a sequential ordering of
triangles. i.e consecutive triangles share an edge

In case of triangle lists we draw each triangle separately.

So for drawing N triangles you need to call/send 3N vertex
drawing commands/data.

However, using a Triangle Strip reduces this requirement from
3N to N + 2, provided a single strip is sufficient.

four separate triangles:
ABC, CBD, CDE, and
EDF

But if we know that it is a
triangle strip or if we
rearrange the triangles
such that it becomes a
triangle strip, then we can
store it as a sequence of
vertices ABCDEF

This sequence would be

decoded as a set of
triangles ABC, BCD, CDE
and DEF

Storage requirement:
— 3N=>N+2

 Single tri-strip that describes triangles is:
1,2,3,4,1,5,6,7,8,9,6,10,1,2

L
10

11/16/10 © UCF EECS 552

« Given some positive integer k (less than
the number of triangles).

« Can we create k tri-strips for some given
triangulation — no repeated triangles.

11/16/10 © UCF EECS 553

/I Draw Triangle Strip
glBegin(GL_TRIANGLE_STRIP);
For each Vertex

{
glVertex3f(x,y,z); //vertex

)
glEnd();

/| Draw Triangle List
gIBegin(GL_TRIANGLES);
For each Triangle
{
glVertex3f(x1,y1,21);// vertex 1
glVertex3f(x2,y2,z2);// vertex 2

glVertex3f(x3,y3,z3);// vertex 3

)
glEnd();

Given a triangulation T = {t, t,, t; ,.. t.}. Find the triangle strip
(sequential ordering) for it?

Converting this to a decision problem.
Formal Definition:

Given a triangulation T = {t,, t,, t5 ,.. t}. Does there exists a
triangle strip?

Provided a witness of a ‘Yes’ instance of the problem. we can
verify it in polynomial time by checking if the sequential triangles

are connected.
Cost of checking if the consecutive triangles are connected
— Forito N -1
» Check of iy, and i+1,, triangle are adjacent (have a
common edge)
* Three edge comparisions or six vertex comparisions

— ~ 6N
Hence it is in NP.

The dual graph of a
triangulation is obtained by
defining a vertex for each
triangle and drawing an edge
between two vertices if their
corresponding triangles
share an edge

This gives the triangulations
edge-adjacency in terms of
a graph
Cost of building a Dual
Graph

— O(Nz)
e.g G’ is a dual graph of G.

G!

* To prove its NP-Complete we reduce a known NP-Complete
problem to this one; the Hamiltonian Path Problem.

 Hamiltonian Path Problem:

— Given: A Graph G = (V, E). Does G contains a path that
visits every vertex exactly once?

Accept an Instance of Hamiltonian Path, G = (V, E), we restrict

this graph to have max. degree = 3.The problem is still NP-
Complete.

Construct an Instance of HasTriangleStrip

-G =G
V' =V
- E'=E

— Let this be the dual graph G’ = (V’, E’) of the triangulation T =
{1, 12, t3 ,.. tN}.

* V'~ Vertex v;represents triangle t, i=1to N

 E’ ~ An edge represents that two triangles are edge-
adfjacent (share an edge)

Return HasTriangleStrip(T)

G will have a Hamiltonian
Path iff G" has one (they are
the same).

G’ has a Hamiltonian Path
iff T has a triangle strip of
length N — 1.

T will have a triangle strip of
length N -1 iff G (G’) has a

Hamiltonian Path.

‘Yes’ instance maps to ‘Yes’
instance. ‘No’ maps to ‘No.’

The "Yes/No' instance maps to ‘Yes/No’ instance respectively
and the transformation runs in polynomial time.

Polynomial Transformation
Hence finding Triangle Strip in a given triangulation is a NP-
Complete Problem

