Name: KEY

- 1. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NR) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.
 - a.) { f | domain(f) is finite }

NR

Justification: $\exists x \ \forall y \ge x \ \forall t \ \sim STP(y, f, t)$

b.) { **f** | **domain**(**f**) **is empty** }

CO

Justification: $\forall x \ \forall t \ \sim STP(x, f, t)$

c.) $\{ \langle f,x \rangle \mid f(x) \text{ converges in at most 20 steps } \}$

REC

Justification: STP(x, f, 20)

d.) { f | domain(f) converges in at most 20 steps for some input x }

RE

Justification: $\exists x \exists t STP(x, f, t)$

- 2. Let set **A** be recursive, **B** be re non-recursive and **C** be non-re. Choosing from among (**REC**) recursive, (**RE**) re non-recursive, (**NR**) non-re, categorize the set **D** in each of a) through d) by listing all possible categories. No justification is required.
 - a.) $\mathbf{D} = \mathbf{C}$

RE, NR

b.) $D \subseteq A \cup C$

REC, RE, NR

c.) $\mathbf{D} = \mathbf{B}$

NR

 $\mathbf{d.)} \ \mathbf{D} = \mathbf{B} - \mathbf{A}$

REC, RE

3. Prove that the **Halting Problem** (the set $HALT = K_0 = L_u$) is not recursive (decidable) within any formal model of computation. (Hint: A diagonalization proof is required here.)

Look at notes.

4. Using reduction from the known undecidable **HasZero**, $HZ = \{ f \mid \exists x \ f(x) = 0 \}$, show the non-recursiveness (undecidability) of the problem to decide if an arbitrary primitive recursive function **g** has the property **IsZero**, $Z = \{ f \mid \forall x \ f(x) = 0 \}$,. Hint: there is a very simple construction that uses **STP** to do this. **Just giving that construction is not sufficient; you must also explain why it satisfies the desired properties of the reduction**.

 $HZ = \{f \mid \exists x \ \exists t \ [\ STP(x,f,t) \ \& \ VALUE(x,f,t) == 0] \}$

Let f be the index of an arbitrary effective procedure.

Define $g_f(y) = 1 - \exists x \exists t [STP(x, f, t) & VALUE(x, f, t) == 0]$

If $\exists x f(x) = 0$, we will find the x and the run-time t, and so we will return 0 (1-1)

If $\forall x f(x) \neq 0$, then we will diverge in the search process and never return a value.

Thus, $f \in HZ$ iff $g_f \in Z$.

- 5. Define RANGE_ALL = $(f \mid range(f) = \aleph)$.
- **a.**) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at **c.**) and **d.**) to get a clue as to what this must be.)

$$\forall x \exists \langle y,t \rangle [STP(y,f,t) \& Value(y,f,t)=x]$$

b.) Use Rice's Theorem to prove that **RANGE_ALL** is undecidable.

This is non-trivial as $I(x) = x \in RANGE_ALL$ and $C_0(x) = 0 \notin RANGE_ALL$ Let f,g be such that $\forall x \varphi_f(x) = \varphi_g(x)$.

 $f \in RANGE_ALL \Leftrightarrow range(f) = \aleph$

 \Leftrightarrow range(g) = \aleph since g outputs the same value as f for any input \Leftrightarrow g \in RANGE ALL

Since the property is non-trivial and is an I/O property, Rice's Theorem says it is undecidable.

c.) Show that **TOTAL** $\leq_{\mathbf{m}}$ **RANGE_ALL**, where **TOTAL** = { $\mathbf{f} \mid \forall y \ \varphi_{\mathbf{f}}(y) \downarrow$ }.

Let f be the index of an arbitrary effective procedure ϕ_f . Define g such that g(f), denoted g_f , is the index of the function ϕ_{g_f} defined by $\forall x \ \phi_{g_f}(x) = \phi_f(x) - \phi_f(x) + x$.

$$f \in TOTAL \Leftrightarrow \forall x \; \phi_f(x) \downarrow \Leftrightarrow \forall x \; \phi_{g_f}(x) = x \Rightarrow \forall x \; x \in range(g_f) \Rightarrow g_f \in RANGE_ALL$$

$$f\not\in TOTAL \Leftrightarrow \exists x \ \phi_f(x) \uparrow \Leftrightarrow \exists x \ \phi_{g_f}(x) \uparrow \Rightarrow \exists x \ x \not\in range(g_f) \Rightarrow g_f\not\in RANGE_ALL$$

This shows that TOTAL \leq_m RANGE_ALL, as was desired.

d.) Show that RANGE ALL \leq_m TOTAL.

Let f be the index of an arbitrary effective procedure ϕ_f . Define g such that g(f), denoted g_f , is the index of the function ϕ_{g_f} defined by $\forall x \phi_{g_f}(x) = \exists y \phi_f(y) = x$.

$$f \in RANGE_ALL \Leftrightarrow \forall x \; \exists y \; \phi_f(y) = x \Leftrightarrow \forall x \; \phi_{g_f}(x) \downarrow \Leftrightarrow g_f \in TOTAL$$

This shows that RANGE_ALL \leq_m TOTAL, as was desired.

e.) From a.) through d.) what can you conclude about the complexity of RANGE_ALL?
a) shows that RANGE_ALL is no more complex than others that must use the alternating qualifiers ∀∃. b) shows the problem is non-recursive. c) and d) combine to show that the problem is in fact of equal complexity with the non-re problem TOTAL, so the result in a) was optimal.

- **6.** This is a simple question concerning Rice's Theorem.
- a.) State the strong form of Rice's Theorem. Be sure to cover all conditions for it to apply.

Let P be a property of indices of partial recursive function such that the set

 S_P = { $f \mid f \text{ has property } P$ } has the following two restrictions

- (1) S_P is non-trivial. This means that SP is neither empty nor is it the set of all indices.
- (2) P is an I/O behavior. That is, if f and g are two partial recursive functions whose I/O behaviors are indistinguishable, $\forall x \ f(x)=g(x)$, then either both of f and g have property P or neither has property P.

Then P is undecidable.

b.) Describe a set of partial recursive functions whose membership cannot be shown undecidable through Rice's Theorem. What condition is violated by your example?

There are many possibilities here. For example $\{f \mid \exists x \sim STP(x,f,x)\}$ is not an I/O property and $\{f \mid \exists x \ f(x) \neq f(x)\}$ is trivial (empty).

7. Using the definition that S is recursively enumerable iff S is either empty or the range of some algorithm f_S (total recursive function), prove that if both S and its complement $\sim S$ are recursively enumerable then S is decidable. To get full credit, you must show the characteristic function for S, γ_S , in all cases. Be careful to handle the extreme cases (there are two of them). Hint: This is not an

 χ_{s} , in all cases. Be careful to handle the extreme cases (there are two of them). Hint: This is not an empty suggestion.

Let $S = \phi$ then $\sim S = \aleph$. Both are re and $\forall x \chi_S(x) = 0$ is S's characteristic function.

Let $S = \aleph$ then $\sim S = \emptyset$. Both are re and $\forall x \chi_S(x) = 1$ is S's characteristic function.

Assume then that $S \neq \phi$ and $S \neq \aleph$ then each of S and ~S is enumerated by some total recursive function. Let S be enumerated by f_S and ~S by $f_{\sim S}$. Define

$$\chi_{S}(x) = f_{S}(\mu y [f_{S}(y) == x || f_{S}(y) == x]) == x.$$

Note that x must be in the range of one and only one of f_S or $f_{\sim S}$. Thus, $\exists y \ f_S(y) == x \ \text{or} \ \exists y \ f_{\sim S}(y) == x$.

The min operator (μy) finds the smallest such y and the predicate

 $f_S(\mu y [f_S(y)==x || f_{-S}(y)==x]) == x$ checks that x is in the range of f_S .

If it is, then $\chi_S(x) = 1$ else $\chi_S(x) = 0$, as desired.