COT 6410 EXAM#1
–
 –
Fall 2010 – Hughes

COT 6410
Fall 2010
Exam#1
Name:
KEY

12
1.
Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.

a)
A = { f | f(x) (for all x }

(<x,t> ~STP(f,x,t)

coRE

b.)
B = { f | domain(f) is a proper subset of (; that is f diverges at some points }

(x(t ~STP(f,x,t)

NRNC

c.)
C = { f | f(x) > x for at least one value x }

(<x,t> [STP(f,x,t)&VALUE(f,x,t)>x]

RE

d.)
D = { <f,x> | f(x) converges in at most x steps }

STP(f,x,x)

REC

6
2.
Prove that the Uniform Halting Problem (the set TOTAL) is non-re within any formal model of computation. (Hint: A diagonalization proof is required here.)

Look at Notes

6
3.
Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC) recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by listing all possible categories. No justification is required.

a.)
D = ~B

NR

b.)
D (A

REC, RE, NR

c.)
D = A (B

REC, RE

d.)
D = C (A

REC, RE, NR

10
4.
Let set A be non-empty recursive, B be re non-recursive and C be non-re. Using the terminology (REC) recursive, (RE) re non-recursive, (NR) non-re, categorize each set by dealing with the cases I present, saying whether or not the set can be of the given category and. briefly, but convincingly, justifying each answer. You may assume, for any set S, the existence of comparably hard sets
SE = {2x|x(S} and SO = {2x+1|x(S}. The following is a sample of the kind of answer I require:

a.)
A (B = { x | x (A and x (B }

REC: Yes. Choose A = {0}, then A (B = {0} or A (B = { }. In either case, the set is REC
RE: Yes. If A = (then A (B = B, which is RE
NR: No. Let (A be a characteristic function for A and gB be a semi-decision procedure for B, then A (B is semi-decided by gA (B where gA (B(x) = (A(x) * gB(x) and so A (B is always RE

b.)
A* C = { x*y | x (A and y (C }

REC: Yes. Choose A = {0}, then A* C = {0} which is REC
NR: Yes. Choose A = {1}, then A* C = C which is NR

5.
Consider the set of indices TwoOrMore = { f | |range(f)| > 1 }.

3
a.)
Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.)

(<x,y,t> [x ≠ y & STP(f,x,t) & STP(f,y,t) & Value(f,x,t) ≠ Value(f,y,t)]
4
b.)
Use Rice’s Theorem to prove that TwoOrMore is undecidable.

TwoOrMore is non-trivial: C0 (TwoOrMore; S (TwoOrMore

TwoOrMore is an I/O Property:

Let f and g be such that (x [f(x) == g(x)]

Clearly the ranges of f and g are the same and hence both either are in or out of TwoOrMore
As TwoOrMore satisfies both requirements of ice’s Theorem, TwoOrMore is undecidable.

3
c.)
Show that K (m TwoOrMore, where K = { f | (f(f)(}.

Let f be arbitrary and let gf(x) = (f(f) - (f(f) + x

Clearly, if f (K, gf(x) = x, for all x, in which case gf (TwoOrMore;

If f (K, gf(x) (, for all x, in which case gf (TwoOrMore.

Thus, f (K iff gf (TwoOrMore, proving that K (m TwoOrMore

3
d.)
Show that TwoOrMore (m K, where K = { f | (f(f)(}.

Let f be arbitrary and
let gf(z) = µ<x,y,t> [x ≠ y & STP(f,x,t) & STP(f,y,t) & Value(f,x,t) ≠ Value(f,y,t)]
If f (TwoOrMore then is gf is defined everywhere and so gf (K
If f (TwoOrMore then is gf is diverges everywhere and so gf (K
Thus, f (TwoOrMore iff gf (K, proving that TwoOrMore (m K
3
e.)
From a.) through d.) what can you conclude about the computable complexity of TwoOrMore (choose from REC, RE, RE-COMPLETE, CO-RE, CO-RE-COMPLETE, NON_RE/NON-CO_RE)? Briefly justify your conclusion.

RE-COMPLETE. (a) says at worst RE; (b) says non-recursive; (c) shows that all re sets are reducible to TwoOrMore since K is known to be RE-COMPLETE; (d) just provides redundant confirmation of the set’s RE-COMPLETE status.Thus, you can just use (d) as a proof since TwoOrMore (m K and K is known to be RE-COMPLETE
 3
6.
Why does Rice’s Theorem have nothing to say about the following? Explain by showing some condition of Rice’s Theorem that is not met by the stated property.

NOT_CONSTANT_TIME = { f | for any fixed C, (y (f(y) fails to converge in C steps }.

Consider C0 and K0, where C0 is the constant 0 base function.

(1) C0 (NOT_CONSTANT_TIME

(2) K0 (NOT_CONSTANT_TIME, where

K0(0) = C0(0)

K0(y+1) = K0(y)

Here C0(x) = K0(x), for all x, yet one belongs to NOT_CONSTANT_TIME and the other does not. Thus, NOT_CONSTANT_TIME is not an I/O property and so Rice’s Theorem has nothing to say about its possible undecidability.

6
7.
Let S be an arbitrary infinite re set. This means that S is the range of some total recursive function fs. It also means S is the domain of some partial recursive function gS. Additionally, the range of fS is infinite and the domain of gS is similarly infinite. Using either fS or gS, show that S has an infinite recursive subset, call it R. To be complete you will need to create a characteristic function for R, (R, and argue that the set R you defined is infinite.
Define fR(0) = fS (0); fR(y+1) = fS (µ z [fS (z) > fR (y)])

First, we need to argue that fR(y) is defined everywhere, but this is clear since fS is defined everywhere; fR(0) is directly defined from fS (0); and the infiniteness of S guarantees there is always a larger value enumerated by fS than we have found as the value enumerated at fR(y), for any y.

Second, by definition fR(y+1) > fR(y), for all y, so the range of fR is monotonically increasing and its range is infinite.

Third, since fR(y), for any y, is defined as some element enumerated by fS, its range is an infinite subset of S.

Now, define (R (x) = (z (z≤x) [fR (z) = x]

(R uses the bounded existential quantifier, so it always returns a value (0 or 1). If x is in the range of fR, then it must appear by the time we enumerate the first x values (0-based counting) since fR is monotonically increasing. Thus, (R is a characteristic function for R, as required, and so R is recursive.
