
COT 6410 Fall 2010 Final Exam Sample Questions 
 

 1. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC) 
recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by 
listing all possible categories. No justification is required. 
a.) D = ~C  RE, NR         
b.) D ⊆  (A∪C)  REC, RE, NR         

c.) D = ~B    NR          
d.) D = B −  A  REC, RE         

 2. Prove that the Halting Problem (the set K0 ) is not recursive (decidable) within any formal model of 
computation. (Hint: A diagonalization proof is required here.)  
 
Assume we can decide the halting problem.  Then there exists some total function Halt such 
that 
    1  if [x] (y) is defined 
 Halt(x,y)  = 
      0  if [x] (y) is not defined 
Here, we have numbered all programs and [x] refers to the x-th program in this ordering.  We 
can view Halt as a mapping from ℵ  into ℵ  by treating its input as a single number 
representing the pairing of two numbers via the one-one onto function 
 pair(x,y) = <x,y> = 2x  (2y + 1) – 1 
 with inverses  
  <z>1 = exp(z+1,1) 
  
 <z>2 = ((( z + 1 ) // 2 <z>1  ) – 1 ) // 2 
Now if Halt exist, then so does Disagree, where 
   0   if Halt(x,x) = 0, i.e, if [x] (x) is not defined 
 Disagree(x) = 
     µy (y == y+1)  if Halt(x,x) = 1, i.e, if [x] (x) is defined 

Since Disagree is a program from ℵ  into ℵ   , Disagree can be reasoned about by Halt.  Let d 
be such that Disagree = [d], then 
 Disagree(d) is defined ⇔  Halt(d,d) = 0 ⇔  [d](d) is undefined ⇔  Disagree(d) is undefined 

But this means that Disagree contradicts its own existence.  Since every step we took was 
constructive, except for the original assumption, we must presume that the original assumption 
was in error.  Thus, the Halting Problem is not solvable. 

 3. Using reduction from the known undecidable HasZero, HZ = { f | ∃x f(x) = 0 }, show the non-
recursiveness (undecidability) of the problem to decide if an arbitrary primitive recursive function g 
has the property IsZero, Z = { f | ∀x f(x) = 0 }. 

HZ = { f | ∃x ∃t [ STP(x, f, t) & VALUE(x, f, t) == 0] } 
Let f be the index of an arbitrary effective procedure. 

Define gf(y) = 1 -  ∃x ∃t [ STP(x, f, t) & VALUE(x, f, t) == 0] 
If ∃x f(x) = 0, we will find the x and the run-time t, and so we will return 0 (1 – 1) 
If ∀x f(x) ≠  0, then we will diverge in the search process and never return a value. 

Thus, f ∈  HZ iff gf ∈  Z = { f | ∀x f(x) = 0 }. 



COT 6410 – 2 – Fall 2010: Sample Final Questions – Hughes 

4. Choosing from among (D) decidable, (U) undecidable, (?) unknown, categorize each of the following 
decision problems. No proofs are required.  

 

Problem / Language Class Regular Context Free Context Sensitive 

L = Σ* ? D U U 

L = φ  ? D D U 

L = L2 ? D U U 

x  ∈  L2, for arbitrary x ? D D D 

 5. Use PCP to show the undecidability of the problem to determine if the intersection of two context 
free languages is non-empty. That is, show how to create two grammars GA and GB based on some 
instance P = <<x1,x2,…,xn>, <y1,y2,…,yn>> of PCP, such that L(GA) ∩  L(GB) ≠  φ  iff P has a 
solution. Assume that P is over the alphabet Σ .You should discuss what languages your grammars 
produce and why this is relevant, but no formal proof is required. 
 GA = ( { A } , Σ  ∪  { [ i ]  | 1≤i≤n } , A , PA }  GB = ( { B } , Σ  ∪  { [ i ]  | 1≤i≤n } , B , PB } 

PA : A →  xi A [ i ]  |  xi [ i ]    PB : A →  yi B [ i ]  |  yi [ i ] 

L(GA) = { xi1  xi2 … xip  [ip] … [i2] [i1]   | p ≥  1, 1 ≤ it ≤ n, 1 ≤ t  ≤ p  } 

L(GB) = { yj1  yj2 … yjq  [jq] … [j2] [j1]   | q ≥  1, 1 ≤ ju ≤ n, 1 ≤ u  ≤ q  } 

L(GA)  ∩   L(GB) = { w  [kr] … [k2] [k1]   | r ≥  1, 1 ≤ kv ≤ n, 1 ≤ v  ≤ r  }, where 

w = xk1 xk2 … xkr  =  yk1 yk2 … ykr   

If L(GA)  ∩   L(GB) ≠  φ  then such a w exists and thus k1 , k2 , … , kr is a solution to this instance 
of PCP. This shows that a decision procedure for the non-emptiness of the intersection of CFLs 
implies a decision procedure for PCP, which we have already shown is undecidable. Hence, the 
non-emptiness of the intersection of CFLs is undecidable.  Q.E.D. 

 6. Consider the set of indices CONSTANT = { f | ∃K ∀y [ ϕ f(y) = K ] }. Use Rice’s Theorem to show 
that CONSTANT is not recursive. Hint: There are two properties that must be demonstrated. 
First, show CONSTANT is non-trivial. 
 Z(x) = 0, which can be implemented as the TM R, is in CONSTANT 
 S(x) = x+1, which can be implemented by the TM C11R, is not in CONSTANT 
 Thus, CONSTANT is non-trivial 
 
Second, let f, g be two arbitrary computable functions with the same I/O behavior. 
 That is, ∀x, if f(x) is defined, then f(x) = g(x); otherwise both diverge, i.e., f(x)↑  and g(x)↑  
 Now, f ∈  CONSTANT  

⇔  ∃K ∀x  [ f(x) = K ]   by definition of CONSTANT 
⇔  ∀x [ g(x) = C ]  where C is the instance of K above, since ∀x [  f(x) = 
g(x) ] 
⇔  ∃K ∀x [ g(x) = K ]  from above 
⇔  g ∈  CONSTANT by definition of CONSTANT 

 
Since CONSTANT meets both conditions of Rice’s Theorem, it is undecidable.  Q.E.D. 
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 7. Show that CONSTANT ≡m TOT, where TOT = { f | ∀y ϕ f(y)↓  }. 

CONSTANT ≤m TOT  
Let f be an arbitrary effective procedure. 
 Define gf by 

gf (0) = f(0) 
gf (y+1) = f(y+1) + µ  z  [f(y+1) = f(y) ] 

 Now, if f ∈  CONSTANT then ∀y [ f(y)↓   and  [ f(y+1) = f(y) ] ].  
Under this circumstance, µ  z [f(y+1) = f(y) ] is 0 for all y and gf (y) = f(y) for all y.  
Clearly, then gf ∈  TOT 

 If, however, f ∉  CONSTANT then ∃y [f(y+1) ≠  f(y) ] and thus, ∃y f(y)↑ .  
 Choose the least y meeting this condition.  

If f(y)↑   then gf (y)↑  since f(y) is in gf (y)’s definition (the 1st  term). 
If f(y)↓   but  [f(y+1) ≠  f(y)] then gf (y)↑  since µ  z [ f(y+1) = f(y) ]↑  (the 2nd  term). 
Clearly, then gf ∉  TOT 

Combining these, f ∈  CONSTANT ⇔   gf ∈  TOT and thus CONSTANT ≤m TOT 
 
TOT  ≤m CONSTANT  
Let f be an an arbitrary effective procedure. 
 Define gf by 

gf (y) = f(y) – f(y) 
 Now, if f ∈  TOT then ∀y [ f(y)↓  ] and thus ∀y gf (y) = 0 . Clearly, then gf ∈  CONSTANT 
 If, however, f ∉  TOT then ∃y [f(y)↑  ] and thus, ∃y [gf (y)↑]. Clearly , then gf ∉  
CONSTANT 
Combining these, f ∈  TOT ⇔   gf ∈  CONSTANT and thus TOT  ≤m CONSTANT 
 
Hence, CONSTANT ≡m TOT.  Q.E.D. 
 

 8. Why does Rice’s Theorem have nothing to say about each of the following? Explain by showing 
some condition of Rice’s Theorem that is not met by the stated property.  

  a.) AT-LEAST-LINEAR = { f | ∀y ϕ f(y) converges in no fewer than y steps }. 
We can deny the 2nd condition of Rice’s Theorem since 
Z, where Z(x) = 0, implemented by the TM R converges in one step no matter what x is and 
hence is not in AT-LEAST-LINEAR 

Z’, defined by the TM R L  R, is in AT-LEAST-LINEAR  

However, ∀x [ Z(x) = Z’(x) ], so they have the same I/O behavior and yet one is in and the 
other is out of AT-LEAST-LINEAR, denying the 2nd condition of Rice’s Theorem 

 
  b.) HAS-IMPOSTER = { f | ∃  g [ g≠f  and ∀y [ ϕg(y) = ϕ f(y) ] ] }. 

  We can deny the 1st condition of Rice’s Theorem since all functions have an imposter. To see 
this, consider, for any function f, the equivalent but distinct function g(x) = f(x) + 0. Thus, 
HAS-IMPOSTER is trivial since it is equal to ℵ , the set of all indices. 
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 9. The trace language of a computational device like a Turing Machine is a language of the form 
Trace = { C1#C2# … Cn#  |  Ci ⇒  Ci+1, 1 ≤  i <  n } 
Trace is Context Sensitive, non-Context Free. Actually, a trace language typically has every other 
configuration word reversed, but the concept is the same. Oddly, the complement of such a trace is 
Context Free. Explain what makes its complement a CFL. In other words, describe the 
characteristics of this complement and why these characteristics are amenable to a CFG description.  

The complement of a trace need either not look like a trace (that’s easy) or look like one, but 
have one or more errors. By one or more errors, we just mean that there is a pair Cj#Cj+1# 
where it is not the case that Cj ⇒  Cj+1. A PDA can guess which configuration starts this pair, 
push that configuration into its stack and check that the next one is in error (of course, this 
generally means one element of the pair is reversed). Such checking is within the capabilities of 
a PDA. 

 10. We described the proof that 3SAT is polynomial reducible to Subset-Sum.  
a.) Describe Subset-Sum 
b.) Show that Subset-Sum is in NP 
c.) Assuming a 3SAT expression (a + ~b + c) (~a + b + ~c), fill in the upper right part of the 
reduction from 3SAT to Subset-Sum. 

 a b c a + ~b + c ~a + b + ~c 
a 1   1  

~a 1    1 
b  1   1 

~b  1  1  
c   1 1  

~c   1  1 
C1    1  
C1’    1  
C2     1 
C2’     1 

 1 1 1 3 3 

 11. Consider the decision problem asking if there is a coloring of a graph with at most k colors (k-
Color), and the optimization version that asks what is the minimum coloring number of a graph 
(MinColor). You can reduce in both directions. So, do that. Make sure you carefully explain for each 
direction just what it is that you are proving. 
1. Show that k-Color is polynomial time many-one reducible to MinColor: 
Let G=(N,V) be an arbitrary graph and k>0 an arbitrary positive whole number. We can solve k-
Color by asking an oracle for MinColor to provide the minimum coloring of G. We then check the 
MinColor answers. If it is less than or equal to k, we answer yes; else we answer no. This proves that 
MinColor is NP-Hard, based on our knowledge that k-Color is NP-Complete. 
2. Show that MinColor is polynomial time Turing reducible to k-Color: 
Let G=(N,V) be an arbitrary graph. Let n=|N|.  Do a binary search suing an oracle for k-Color in 
order to find the minimum k such that k-Color returns yes.  This takes log n questions of the oracle. 
Thus, MinColor is in FNP and is therefore NP-Hard. In fact, since we asked just log n questions and 
the reduction steps are polynomial, computing MinColor is no more complex than k-Color, within a 
polynomial factor. 
 

 


