
COT 6410 Fall 2010 Final Exam Sample Questions

 1. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC)
recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by
listing all possible categories. No justification is required.
a.) D = ~C RE, NR
b.) D ⊆ (A∪C) REC, RE, NR

c.) D = ~B NR
d.) D = B − A REC, RE

 2. Prove that the Halting Problem (the set K0) is not recursive (decidable) within any formal model of
computation. (Hint: A diagonalization proof is required here.)

Assume we can decide the halting problem. Then there exists some total function Halt such
that
 1 if [x] (y) is defined
 Halt(x,y) =
 0 if [x] (y) is not defined
Here, we have numbered all programs and [x] refers to the x-th program in this ordering. We
can view Halt as a mapping from ℵ into ℵ by treating its input as a single number
representing the pairing of two numbers via the one-one onto function
 pair(x,y) = <x,y> = 2x (2y + 1) – 1
 with inverses
 <z>1 = exp(z+1,1)

 <z>2 = (((z + 1) // 2 <z>1) – 1) // 2
Now if Halt exist, then so does Disagree, where
 0 if Halt(x,x) = 0, i.e, if [x] (x) is not defined
 Disagree(x) =
 µy (y == y+1) if Halt(x,x) = 1, i.e, if [x] (x) is defined

Since Disagree is a program from ℵ into ℵ , Disagree can be reasoned about by Halt. Let d
be such that Disagree = [d], then
 Disagree(d) is defined ⇔ Halt(d,d) = 0 ⇔ d is undefined ⇔ Disagree(d) is undefined

But this means that Disagree contradicts its own existence. Since every step we took was
constructive, except for the original assumption, we must presume that the original assumption
was in error. Thus, the Halting Problem is not solvable.

 3. Using reduction from the known undecidable HasZero, HZ = { f | ∃x f(x) = 0 }, show the non-
recursiveness (undecidability) of the problem to decide if an arbitrary primitive recursive function g
has the property IsZero, Z = { f | ∀x f(x) = 0 }.

HZ = { f | ∃x ∃t [STP(x, f, t) & VALUE(x, f, t) == 0] }
Let f be the index of an arbitrary effective procedure.

Define gf(y) = 1 - ∃x ∃t [STP(x, f, t) & VALUE(x, f, t) == 0]
If ∃x f(x) = 0, we will find the x and the run-time t, and so we will return 0 (1 – 1)
If ∀x f(x) ≠ 0, then we will diverge in the search process and never return a value.

Thus, f ∈ HZ iff gf ∈ Z = { f | ∀x f(x) = 0 }.

COT 6410 – 2 – Fall 2010: Sample Final Questions – Hughes

4. Choosing from among (D) decidable, (U) undecidable, (?) unknown, categorize each of the following
decision problems. No proofs are required.

Problem / Language Class Regular Context Free Context Sensitive

L = Σ* ? D U U

L = φ ? D D U

L = L2 ? D U U

x ∈ L2, for arbitrary x ? D D D

 5. Use PCP to show the undecidability of the problem to determine if the intersection of two context
free languages is non-empty. That is, show how to create two grammars GA and GB based on some
instance P = <<x1,x2,…,xn>, <y1,y2,…,yn>> of PCP, such that L(GA) ∩ L(GB) ≠ φ iff P has a
solution. Assume that P is over the alphabet Σ .You should discuss what languages your grammars
produce and why this is relevant, but no formal proof is required.
 GA = ({ A } , Σ ∪ { [i] | 1≤i≤n } , A , PA } GB = ({ B } , Σ ∪ { [i] | 1≤i≤n } , B , PB }

PA : A → xi A [i] | xi [i] PB : A → yi B [i] | yi [i]

L(GA) = { xi1 xi2 … xip [ip] … [i2] [i1] | p ≥ 1, 1 ≤ it ≤ n, 1 ≤ t ≤ p }

L(GB) = { yj1 yj2 … yjq [jq] … [j2] [j1] | q ≥ 1, 1 ≤ ju ≤ n, 1 ≤ u ≤ q }

L(GA) ∩ L(GB) = { w [kr] … [k2] [k1] | r ≥ 1, 1 ≤ kv ≤ n, 1 ≤ v ≤ r }, where

w = xk1 xk2 … xkr = yk1 yk2 … ykr

If L(GA) ∩ L(GB) ≠ φ then such a w exists and thus k1 , k2 , … , kr is a solution to this instance
of PCP. This shows that a decision procedure for the non-emptiness of the intersection of CFLs
implies a decision procedure for PCP, which we have already shown is undecidable. Hence, the
non-emptiness of the intersection of CFLs is undecidable. Q.E.D.

 6. Consider the set of indices CONSTANT = { f | ∃K ∀y [ϕ f(y) = K] }. Use Rice’s Theorem to show
that CONSTANT is not recursive. Hint: There are two properties that must be demonstrated.
First, show CONSTANT is non-trivial.
 Z(x) = 0, which can be implemented as the TM R, is in CONSTANT
 S(x) = x+1, which can be implemented by the TM C11R, is not in CONSTANT
 Thus, CONSTANT is non-trivial

Second, let f, g be two arbitrary computable functions with the same I/O behavior.
 That is, ∀x, if f(x) is defined, then f(x) = g(x); otherwise both diverge, i.e., f(x)↑ and g(x)↑
 Now, f ∈ CONSTANT

⇔ ∃K ∀x [f(x) = K] by definition of CONSTANT
⇔ ∀x [g(x) = C] where C is the instance of K above, since ∀x [f(x) =
g(x)]
⇔ ∃K ∀x [g(x) = K] from above
⇔ g ∈ CONSTANT by definition of CONSTANT

Since CONSTANT meets both conditions of Rice’s Theorem, it is undecidable. Q.E.D.

COT 6410 – 3 – Fall 2010: Sample Final Questions – Hughes

 7. Show that CONSTANT ≡m TOT, where TOT = { f | ∀y ϕ f(y)↓ }.

CONSTANT ≤m TOT
Let f be an arbitrary effective procedure.
 Define gf by

gf (0) = f(0)
gf (y+1) = f(y+1) + µ z [f(y+1) = f(y)]

 Now, if f ∈ CONSTANT then ∀y [f(y)↓ and [f(y+1) = f(y)]].
Under this circumstance, µ z [f(y+1) = f(y)] is 0 for all y and gf (y) = f(y) for all y.
Clearly, then gf ∈ TOT

 If, however, f ∉ CONSTANT then ∃y [f(y+1) ≠ f(y)] and thus, ∃y f(y)↑ .
 Choose the least y meeting this condition.

If f(y)↑ then gf (y)↑ since f(y) is in gf (y)’s definition (the 1st term).
If f(y)↓ but [f(y+1) ≠ f(y)] then gf (y)↑ since µ z [f(y+1) = f(y)]↑ (the 2nd term).
Clearly, then gf ∉ TOT

Combining these, f ∈ CONSTANT ⇔ gf ∈ TOT and thus CONSTANT ≤m TOT

TOT ≤m CONSTANT
Let f be an an arbitrary effective procedure.
 Define gf by

gf (y) = f(y) – f(y)
 Now, if f ∈ TOT then ∀y [f(y)↓] and thus ∀y gf (y) = 0 . Clearly, then gf ∈ CONSTANT
 If, however, f ∉ TOT then ∃y [f(y)↑] and thus, ∃y [gf (y)↑]. Clearly , then gf ∉
CONSTANT
Combining these, f ∈ TOT ⇔ gf ∈ CONSTANT and thus TOT ≤m CONSTANT

Hence, CONSTANT ≡m TOT. Q.E.D.

 8. Why does Rice’s Theorem have nothing to say about each of the following? Explain by showing
some condition of Rice’s Theorem that is not met by the stated property.

 a.) AT-LEAST-LINEAR = { f | ∀y ϕ f(y) converges in no fewer than y steps }.
We can deny the 2nd condition of Rice’s Theorem since
Z, where Z(x) = 0, implemented by the TM R converges in one step no matter what x is and
hence is not in AT-LEAST-LINEAR

Z’, defined by the TM R L R, is in AT-LEAST-LINEAR

However, ∀x [Z(x) = Z’(x)], so they have the same I/O behavior and yet one is in and the
other is out of AT-LEAST-LINEAR, denying the 2nd condition of Rice’s Theorem

 b.) HAS-IMPOSTER = { f | ∃ g [g≠f and ∀y [ϕg(y) = ϕ f(y)]] }.

 We can deny the 1st condition of Rice’s Theorem since all functions have an imposter. To see
this, consider, for any function f, the equivalent but distinct function g(x) = f(x) + 0. Thus,
HAS-IMPOSTER is trivial since it is equal to ℵ , the set of all indices.

COT 6410 – 4 – Fall 2010: Sample Final Questions – Hughes

 9. The trace language of a computational device like a Turing Machine is a language of the form
Trace = { C1#C2# … Cn# | Ci ⇒ Ci+1, 1 ≤ i < n }
Trace is Context Sensitive, non-Context Free. Actually, a trace language typically has every other
configuration word reversed, but the concept is the same. Oddly, the complement of such a trace is
Context Free. Explain what makes its complement a CFL. In other words, describe the
characteristics of this complement and why these characteristics are amenable to a CFG description.

The complement of a trace need either not look like a trace (that’s easy) or look like one, but
have one or more errors. By one or more errors, we just mean that there is a pair Cj#Cj+1#
where it is not the case that Cj ⇒ Cj+1. A PDA can guess which configuration starts this pair,
push that configuration into its stack and check that the next one is in error (of course, this
generally means one element of the pair is reversed). Such checking is within the capabilities of
a PDA.

 10. We described the proof that 3SAT is polynomial reducible to Subset-Sum.
a.) Describe Subset-Sum
b.) Show that Subset-Sum is in NP
c.) Assuming a 3SAT expression (a + ~b + c) (~a + b + ~c), fill in the upper right part of the
reduction from 3SAT to Subset-Sum.

 a b c a + ~b + c ~a + b + ~c
a 1 1

~a 1 1
b 1 1

~b 1 1
c 1 1

~c 1 1
C1 1
C1’ 1
C2 1
C2’ 1

 1 1 1 3 3

 11. Consider the decision problem asking if there is a coloring of a graph with at most k colors (k-
Color), and the optimization version that asks what is the minimum coloring number of a graph
(MinColor). You can reduce in both directions. So, do that. Make sure you carefully explain for each
direction just what it is that you are proving.
1. Show that k-Color is polynomial time many-one reducible to MinColor:
Let G=(N,V) be an arbitrary graph and k>0 an arbitrary positive whole number. We can solve k-
Color by asking an oracle for MinColor to provide the minimum coloring of G. We then check the
MinColor answers. If it is less than or equal to k, we answer yes; else we answer no. This proves that
MinColor is NP-Hard, based on our knowledge that k-Color is NP-Complete.
2. Show that MinColor is polynomial time Turing reducible to k-Color:
Let G=(N,V) be an arbitrary graph. Let n=|N|. Do a binary search suing an oracle for k-Color in
order to find the minimum k such that k-Color returns yes. This takes log n questions of the oracle.
Thus, MinColor is in FNP and is therefore NP-Hard. In fact, since we asked just log n questions and
the reduction steps are polynomial, computing MinColor is no more complex than k-Color, within a
polynomial factor.

