1. Consider the set of indices 
DEFINED = { f | x f(x) }. 
Use Rice’s Theorem to show that DEFINED is not decidable. 
Hint: There are two properties that must be demonstrated. 

Defined is not trivial as the index of S(x) = x+1 is in, but (x) = y [ y == y+1] is not.
Let f and g be indices of two arbitrary effective procedures such that the dom(f) = dom(g). 
f  DEFINED  
	x f (x)  		by definition of DEFINED
	dom(f) ≠  		since f converges somewhere
	dom(g) ≠  		since dom(g) = dom(f)
	x g (x)  		since domain is not empty
	
g  DEFINED		by definition of DEFINED

2. Let P = { f | x f(x) converges in at most x steps }. Why does Rice’s theorem not tell us anything about the undecidability of P? 

Because P is not an I/O behavior; it is a performance behavior. 
To see this, consider the two functions F(x) = 0 and G(x) = μy [y>x] – μy [y>x] .
x F(x) = G(x), but F is in P and G is not.

3. Show that DEFINED is not decidable by reducing K0 to this set. 

Let f be the index of an arbitrary function, F, and x be an arbitrary input.
Define Gfx(y) = F(x)-F(x).
Gfx(y) is defined everywhere and thus in DEFINED if <f,x> is in K0.
Gfx(y) is undefined everywhere and thus not in DEFINED if <f,x> is not in K0.

4. Is DEFINED re? Support your conclusion. 

It is. We can semi-decide DEFINED by using the STP predicate as follows:  f  DEFINED iff  <x,t> [ STP(f,x,t) ]

5. 
Let Incr = { f | x f(x+1)>f(x) }. 
Let TOT = { f | x f(x) converges }. 
Prove that Incr m TOT. 

Let f be an index of an arbitrary function, F.
Define Gf(x) = F(x)-F(x) + x.
Gf is the Identity function and thus is in INCR if f is in TOTAL.
Gf diverges on at least one input and thus is in not INCR if f is not in TOTAL.

Let f be an index of an arbitrary function, F.
Define Gf(x) = μy [F(x+1) > F(x)]. 
Gf(x) is the constant 0 and hence is TOTAL if f is in INCR.
Gf(x) diverges on at least one input and thus is not TOTAL if f is not in INCR.

6. Let sets A and B each be re non-recursive. 
Consider C = A  B. For (a)-(c), either show sets A and B with the specified property or demonstrate that this property cannot hold. 
a) Can C be recursive? 
b) Can C be re non-recursive 
c) Can C be non-re? 

Consider A = { 2x | x  K0 }, B = { 2x+1 | x  K0 }. 
A and B are each 1-1 equivalent to K0 and hence re, non-recursive.
A  B =  and is hence recursive, so (a) can hold.

A = K0, B = K0 
A  B = K0 and is hence re, non-recursive, so (b) can hold.

C can be semi-decided since we can just take the semi-decision procedures for A and B, say fA and fB and provide a semi-decision procedure for C via fC(x) = fA(x) * fB(x). Here fC diverges iff either fA or fB diverge. Also, if either returns 0 (false), then fC either returns 0 or diverges, if the other diverges. Thus, (c) cannot hold. 

