
A universal DNA computing model for solving
NP-hard subset problems
Enqiang Zhu1, Xianhang Luo1, Chanjuan Liu2 �, Xiaolong Shi1

�

, and Jin Xu3 �

1Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China
2School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
3School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
�

Corresponding authors: chanjuanliu@dlut.edu.cn; xlshi@gzhu.edu.cn; jxu@pku.edu.cn

ABSTRACT

DNA computing, a nontraditional computing mechanism, provides a feasible and effective method for solving NP-hard problems
because of the vast parallelism and high-density storage of DNA molecules. Although DNA computing has been exploited to
solve various intractable computational problems, such as the Hamiltonian path problem, SAT problem, and graph coloring
problem, there has been little discussion of designing universal DNA computing-based models, which can solve a class of
problems. In this paper, by leveraging the dynamic and enzyme-free properties of DNA strand displacement, we propose
a universal model named DCMSubset for solving subset problems in graph theory. The model aims to find a minimum (or
maximum) set satisfying given constraints. For each element x involved in a given problem, DCMSubset uses an exclusive
single-stranded DNA molecule to model x as well as a specific DNA complex to model the relationship between x and other
elements. Based on the proposed model, we conducted simulation and biochemical experiments on three kinds of subset
problems, a minimum dominating set, maximum independent set, and minimum vertex cover. We observed that DCMSubset
can also be used to solve the graph coloring problem. Moreover, we extended DCMSubset to a model for solving the SAT
problem. The results of experiments showed the feasibility and university of the proposed method. Our results highlighted the
potential for DNA strand displacement to act as a computation tool to solve NP-hard problems.
Keywords: DNA computing; subset problems; NP-hard; DNA strand displacement.

Introduction

The existence of NP-hard problems that cannot be solved in
a polynomial time (unless P=NP) has inspired researchers to
exploit new computing models. DNA computing, as a novel
computing model, leverages the Watson–Crick complemen-
tary pairing principle and predictable double helical structure,
and has been extensively studied by researchers from various
areas, including mathematics1–3, computer science4, 5, and bi-
ology6, 7. Original work on DNA computing was undertaken
in 1994 by Adelman8, who provided an inspiring theory for
solving intractable computational problems with biotechnol-
ogy, and experimentally verified the principle by a simple
example of the Hamiltonian path problem. Adelman’s work
created a new computing method for solving combinatorial
problems, which is called molecular parallelism by Reif9. Al-
though scholars have expressed skepticism toward molecular
computation owing to its capability to handle only simple
problems10, this argument was quickly destroyed by Lipton11,
who demonstrated the feasibility of solving the SAT prob-
lem by extending Adelman’s method. Recent studies in1, 12

have shown that DNA computing can solve the graph coloring
problem effectively.

In 1998, to simplify the process of solution detection,
Roweis et al.13 proposed a sticker-based model for DNA com-
putation, called the sticker model, involving neither enzymes

nor PCR extension. More importantly, the original double-
stranded structures can be recovered through memory strands
after secondary annealing, which allows for the reuse of the
DNA material. Based on the sticker model, in 2002, Zimmer-
mann et al.14 designed DNA algorithms to solve the counting
version of a series of NP-hard problems, including k-cliques,
independent k-sets, Hamiltonian paths, and Steiner trees. Also
in 2002, Braich et al.15 solved a 20-variable instance of the 3-
SAT problem based on the separation operation of the sticker
model.

Based on the sticker model, in 2000, Yurke16 proposed
the DNA strand displacement technology, which aims to
construct nucleic acid systems with desired dynamic prop-
erties. A toehold-mediated strand displacement reaction is
described as a molecular dynamic process of replacing a de-
sired single-stranded DNA (called incumbent) from a duplex
(i.e., a double-stranded DNA with a sticky end) with an in-
put single-stranded DNA (called invader) that consists of the
desired single-stranded DNA and the complementary strand
of the sticky end (i.e., the toehold) to create a more stable
complex (a double-stranded DNA)17, 18. Figure 1 illustrates
the principle of the strand displacement reaction. Compared
with the traditional self-assembly models, DNA strand dis-
placement can be completed spontaneously at room tempera-
ture. Moreover, the DNA strand displacement is enzyme-free,
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which provides with more flexibility in constructing molecular
circuits. Significant literature has been published on DNA
strand displacement. In 2011, Qian and Winfree5 proposed
a reversible strand displacement logic gate, called a seesaw
gate, based on which they designed a 4-bit square-root cir-
cuit containing 130 DNA strands. The seesaw gate has been
widely used as a simple building block for constructing large-
scale circuits and neural networks4. In 2014, Machinek et
al.19 proposed a method of creating mismatched base pairs to
achieve the kinetic control of strand displacement. In 2020,
Wang et al.20 designed DNA switching circuits based on DNA
strand displacement for digital computing. Moreover, Liu et
al.17 proposed a DNA strand displacement circuit called the
cross inhibitor, which is time-sensitive and allows interactive
inhibition between two input signals. More recently, lever-
aging the property of programmable interactions between
nucleic acid strands, Jung6 expanded the capabilities of cell-
free biosensors by designing DNA displacement interference
circuits. Zhu et al.21 first experimentally demonstrated that
DNA strand displacement could be applied to encryption.

3'CCCTCCGATGTTTGA5' Target
5'GCTACAAACT3' Incumbent

t*

i

i*

GCTACAAACT3' Invader5'GGGAG
it

5'GCTACAAACT3'
i

GC
TA
CA
AA
CT
3'

3'CCCTC CGATGTTTGA5'
5'GGGAG

t

t* i*GCTACAAACTCT3'3'CCCTCCGATGTTTGA5' Target
GCTACAAACT3' Invader5'GGGAG

t

t*

i

i*

5'GCTACAAACT3' Incumbent
i

kbind
kunbind

kdisp

Figure 1. The principle of DNA strand displacement. Initially, an
incumbent single-stranded i is hybridized to a complementary
domain i∗ of a target strand with an extra toehold domain t∗,
forming a duplex. The invader consists of the incumbent
single-stranded i and the complementary toehold t of t∗. The
displacement starts with the action that the toehold t of the invader
binds to t∗ and progresses through a branch migration process of
replacing the incumbent i by the invader and creating a more stable
double-stranded complex. The overall reaction rate is strongly
dependent on toehold stability17, 18.

Several studies have utilized DNA strand displacement
to solve intractable combinational optimization problems. In
2018, Tang et al.22 applied DNA strand displacement to solve
the 0-1 programming problem, where the model is built based
on circular DNA. However, the method is impractical because
the number of required species of fluorescence is equal to
the number of variables. Therefore, in 2021, the same team2

designed a chemical reaction network through three reaction
modules (i.e., weighted, sum, and threshold) to solve 0-1 inte-
ger programming problems. The reliance on fluorescence was
reduced significantly. Also Yang et al.23 proposed a method
to solve the SAT problem, which uses a specific origami struc-
ture to represent the solutions and detects the solutions by
DNA strand displacement.

Although many models of DNA computation have been
proposed to solve various types of problems, many of these
models were designed to solve only one type of problem. As
a result, more energy and effort are required to design dis-
tinct models for different problems. Several attempts have

been made to reduce the operational complexity by simplify-
ing the models, and great processes have been attained24, 25.
However, different models require different environmental
conditions (e.g., temperature, enzyme, and equipment), which
hampers the compatibility between models, even though all
these models are simplified extremely. This results in a high
cost when using DNA computing to solve different problems,
which hampers the popularization of molecular computers
with powerful capability, like electronic computers.

To deal with the above challenges, researchers have begun
to design universal models of DNA computation. In 2019,
Woods et al.26 utilized tiles to construct an iterated boolean
circuit, which can be used to simulate Turing machines27,
universal boolean circuits28, and cellular automata29. In 2020,
Wang et al.20 designed a circuit for digital computation by
combining DNA strand displacement and switching circuits,
which can be applied to a variety of scenarios, such as molec-
ular full adder30 and the 4-bit square-root circuit3, 31. In 2022,
Xie et al.32 designed a three-way junction-incorporated dou-
ble hairpin unit by combining single-stranded gates33 and ex-
ponential amplification reaction34, which can achieve multiple
functions and applications, including a 4-to-2 encoder35, 1-
to-2 demultiplexer36, 1-to-4 demultiplexer37, and multi-input
OR gate.

However, regarding NP-hard problems, previous DNA
computing models are still problem dependent, making the
development of universal DNA computing models fascinating
but challenging. Among NP-hard problems, there are many
classic problems, such as the minimum dominating set, the
maximum independent set, and the minimum vertex covering,
which aim to find minimum or maximum subsets that satisfy
some given restricted conditions. These problems belong to
the subset problem in graph theory. This paper proposes a
universal DNA computing model named DCMSubset for
solving these problems. Given a vertex, DCMSubset utilizes
the Watson–Crick complementary pairing principle to model
the relationship of the vertex by a specific DNA complex.
The set of such DNA complexes corresponding to all vertices
forms the computation gate circuit of DCMSubset. Different
elements (vertex or edge) are represented by different single-
stranded sequences. Thus, each element is equipped with a
separate detection gate that uses DNA strand displacement
reactions to accurately detect the element. To demonstrate
the feasibility of DCMSubset, we conducted simulation and
biochemical experiments on the above three subset problems,
the results of which show the universality of DCMSubset.
We observed that graph coloring could also be solved by
DCMSubset, which is a direct application of the maximum
independent set. Moreover, we extended DCMSubset to a
suitable model for solving the SAT problem. The results sug-
gest the potential of DCMSubset to solve a wider range of
NP-hard problems.

Results
The principle of DCMSubset. Regarding subset problems,
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Figure 2. Principle of DCMSubset. a A star graph Sk. b The structure of single strands γ(vi), i = 0,1, . . . ,k, representing
the vertices of Sk. c The structure of the computation gate Γ(v0), representing the adjacent relation between v0 and other
vertices of Sk. d The strand displacement reaction of Γ(v0) and the input single-stranded Input(v0), where Input(v0) is the
complementary strand of β (v0). e The structure of detection gate D(v0) of the vertex v0 of Sk. f The strand displacement
reaction of D(v0) and γ(v0). g The Peterson graph. h Reaction kinetics of the experiment showing the feasibility of
DCMSubset. i Reaction kinetics of the first kind of possible leakage reactions. j Reaction kinetics of the second kind of
possible leakage reactions. Where the curves Ti (in Fig. 2 h and i) and Ti j (in Fig. 2 j) for i, j ∈ {1,2,5,6} and i 6= j were plotted
by transferring the cycle value into the reaction time, indicating the change of the relative fluorescence unit (RFU) values in the
FAM channel.

modeling elements and their relations using DNA molecules
is fundamental to constructing universal models. This paper
focuses on problems related to graphs, where a graph G is of-
ten described as a 2-tuple (V , E) such that V (6= /0) represents
the vertex set of G, and E (a set of two-element subsets of V )
represents the edge set of G. Two vertices are adjacent if and
only if they are the ends of an edge of G, while a vertex is
incident with an edge if and only if the vertex is an end of the
edge. Given a vertex u, the set N(u) of vertices adjacent to
u is called the neighborhood of u, and N[u] = N(u)∪{u} is
called the close neighborhood of u; similarly, the set Ne(u) of
edges incident to u is called the edge-neighborhood of u, and
Ne[u] = Ne(u)∪{u} is the close edge-neighborhood of u.

The problem we consider in this paper, named p-
SUBSET[φ ], can be formally described as follows.

Problem 1 p-SUBSET[φ]: Given a graph G = (V,E) and a
property φ , the problem asks to find a subset S of V with the
minimum (or maximum) cardinality such that S satisfies φ .

Below is an account of the design of DCMSubset for
solving p-SUBSET[φ ] problems.

Based on φ , we first determine the underlying set U of the
problem; generally, U =V or U =V ∪E. For each element
x0 ∈U , we design a 29-nt single-stranded DNA (denoted by
γ(x0)) to represent it and use a DNA complex (denoted by
Γ(x0)) to characterize a relation (that is relevant to φ , e.g., the

adjacent relation and the incident relation) between x0 and
other elements. γ(x0) consists of a 5-nt toehold domain a(x0),
a 16-nt branch migration domain b(x0), and a 8-nt branch
migration domain c(x0). Γ(x0) is obtained by binding all
γ(xi)s (i = 0,1, . . . ,k) to a long single-stranded (denoted by
β (x0)) that consists of a 5-nt toehold t(x0) at its 3’-end and
the complementary strands a(x j)

∗ and b(x j)
∗ of a(x j) and

b(x j), respectively, for j ∈ {0, . . . ,k}, where x j is either x0
or an element associated with x0. All Γ(x)s for x ∈U build
the computation gate circuit of DCMSubset. To illustrate
this modeling method, we consider the star graph Sk, shown
in Fig. 2 a, where the vertex set V = {vi|i = 0,1, . . . ,k} and
the edge set E = {ei = v0vi|i = 1,2, . . . ,k}. We, for example,
consider the adjacent relation and U =V . For i = 0,1, . . . ,k,
vi is modeled as a 29-nt single-stranded γ(vi) (see Fig. 2 b)
and the close neighborhood of vi is modeled as a duplex Γ(vi)
(see Fig. 2 c for an illustration of Γ(v0)).

Each computation gate corresponding to an element x ∈U
receives an exclusive input signal strand Input(x) (the com-
plementary strand of β (x)) as the invader to displace the in-
cumbent strands, that is, γ(x) and γ(xi) for i = 1, . . . ,k, where
xi is an element associated with x. See Fig. 2 d for the strand
displacement reaction of Γ(v0) and Input(v0), which releases
γ(vi), i = 0,1, . . . ,k and a stable double strand (W1(v0)). The
computation gate mechanism can be expressed via the follow-
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ing reaction:

Γ(x)+ Input(x)
k1−→ γ(x)+ γ(x1)+ . . .+ γ(xk)+W1(x) (1)

To detecte the released single strands by the computation
gate circuit, we need a detection gate for each element to
recognize the released single strands. For each element x, the
detection gate of x, denoted by D(x), is a duplex that binds
an incumbent strand consisting of b(x) and c(x) to an target
strand consisting of a(x)∗,b(x)∗ and c(x)∗. Here, the incum-
bent strand carries a fluorophore at its 3’-end, and the target
strand carries a quencher at its 5’-end. Because the quencher
is close to the fluorophore, the fluorescence is inhibited in
D(x). When the invader γ(x) exists, its toehold a(x) binds to
the domain a(x)∗ of D(x), and branch migration moves grad-
ually to the domain c(x)∗, which releases a single-stranded
Out put(x) with a fluorescence signal for monitoring and a sta-
ble beacon-labeled double-stranded W2(x). See Fig. 2 e and f
for the structure of D(v0) and the strand displacement reaction
between D(v0) and γ(v0), respectively. All D(x)s build the de-
tection gate circuit of DCMSubset for x ∈U . The detection
gate mechanism can be expressed via the following reaction:

D(x)+ γ(x)
k2−→ Out put(x)+W2(x) (2)

DCMSubset consists of computation gate circuit and the
detection gate circuit, which work as follows.

Regarding a p-SUBSET[φ ] problem P on the underlying
set U = {v1,v2, . . . ,vn}, for the purpose of finding a mini-
mum (or maximum) subset satisfying φ , we have to traverse
over all the subsets of U . To determine whether a subset
U ′ = {u1,u2, . . . ,u`} ⊆U satisfies φ , we first add the com-
putation gates Γ(u1), Γ(u2),. . . , Γ(u`) into a tube T and then
divide T equally into n tubes T1, T2, . . . , Tn. Second, we add
the detection gates D(ui) into the ith tube Ti for i = 1,2, . . . ,n.
Third, we add all Input(ui), i = 1,2, . . . , `, to each Tj for
j ∈ {1,2, . . . ,n} and detect the fluorescence signals. It should
be noted that computation gates should be designed in com-
pliance with the property φ ; that is, the design should ensure
that U ′ is a solution of P if and only if the combination of
fluorescence signals in all Ti (i = 1,2, . . . , `) is a certificate of
the property φ (e.g., the fluorescence signals in all tubes are
detected or none of the tubes are detected).

Feasibility of DCMSubset. To verify the feasibility of
DCMSubset, we conducted a biochemical experiment for
detecting the close neighborhood N[v1] = {v1,v2,v5,v6} of
the vertex v1 in the Peterson graph P (as shown in Fig. 2
g). We first designed the input strands Input(v1), computa-
tion gate Γ(v1), and detection gates D(v1), D(v2), D(v5), and
D(v6); see Supplementary Table S1 and S2 for the details of
these strands. To verify that Γ(v1) can release single strands
γ(v1),γ(v2),γ(v5) and γ(v6), we found it sufficient to prepare
four tubes (say T1,T2,T5, and T6) such that Ti contains the
mixture of Γ(v1) and D(vi) for i = 1,2,5,6. For each Ti, we
first added D(vi) (10 µl × 1 µM) and the computation gates
Γ(v1) (10 µl × 2 µM); then, we added Input(v1) (10 µl ×

1 µM); finally, all Ti were put into a fluorescence quantifica-
tion PCR machine for detecting the fluorescence output. The
experimental results are shown in Fig. 2 h, from which we
can see that the fluorescence signals in all these tubes are
captured.

In addition, we can observe that the strand displacement
reaction for D(vi) (Eq. (2)) is triggered by the toehold do-
main a(vi)

∗ and proceeds from the branch migration domains
b(vi)

∗ and c(vi)
∗; the input strand Input(vi) for Γ(vi) (Eq.

(1)) contains a(vi) and b(vi); γ(vi) contains a(vi), b(vi), and
c(vi). Therefore, two kinds of experiments were carried out
to analyze the possible leakage reactions: (1) the reactions of
Input(v1) and D(v j) for j = 1,2,5,6; and (2) the reactions of
γ(v j) and D(vk) for j,k ∈ {1,2,5,6} and j 6= k.

Regarding the first kind of experiment, we prepared four
tubes Tj ( j ∈ {1,2,5,6}). For each tube Tj, we added the
mixture of D(v j) (15 µl × 0.67 µM) and Input(v1) (15 µl ×
0.67 µM). Regarding the second experiment, we prepared 12
tubes denoted by Tjk ( j,k ∈ {1,2,5,6} and j 6= k), to which
we added γ(vi) (15 µl × 1.33 µM) and D(v j) (15 µl × 0.67
µM). To monitor the fluorescence signals, we put all the tubes
Ti and Ti j into the fluorescence quantification PCR machine.
It can be seen that no fluorescence signal is detected in all
these tubes (see Fig. 2 i and j). This indicates that the possible
leakage reactions in DCMSubset do not affect the accuracy
of the detection gate.

Below is the applications of DCMSubset to three impor-
tant subset problems in graph theory: the minimum domi-
nating set, the maximum independent set, and the minimum
vertex cover. All graphs considered in the paper contain no
loop or parallel edge, i.e., simple graphs.

Application to minimum dominating set. Given a graph
G = (V,E), a dominating set (DS) of G is a subset S of V such
that every vertex in V \S is adjacent to a vertex in S.

Problem 2 The minimum dominating set (MDS) problem
requires finding a DS of the minimum cardinality.

We used DCMSubset to find an MDS of the Peterson
graph P shown in Fig. 2 g. In order to reduce costs, we first
dealt with the solution space by some preprocessing with a
theoretical guarantee. We needed the following two results,
where Proposition 1 follows directly from the definition of
DS, and Proposition 2 was obtained by Bruce38 in 1996.

Proposition 1 If S is a DS of a graph G = (V,E), then
|N[S]| ≥ |V |, where N[S] = ∪v∈SN[v].

Proposition 2 Let S be an MDS of a graph such that every
vertex is adjacent to at least three vertices. Then, |S| ≤ 3|V |

8 .

As |N[v]|= 4 for any vertex of P, it has |N[S]| ≤ 8 for any
S ⊂ V with |S| = 2. Thus, according to Proposition 1, any
dominating set of P contains at least three vertices. More-
over, by Proposition 2, we know that any MDS of P contains
exactly three vertices. Therefore, the solution space Ω is
the set of all 3-subsets with cardinality

(10
3

)
= 120; that is,
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Figure 3. Experiments for determining whether {v1,v2,v3} is a DS of P. a Logic circuit implementation of the first group
of experiments. b Reaction kinetics of the first group of experiments, which corresponds to the input {v1,v2,v3}. The curve was
plotted by transferring the cycle value to the reaction time. The outputs were normalized to RFU values in the FAM channel
with the highest signals. c Agarose gel electrophoresis results, where for i = 1,2, . . . ,10, Ti contains input strands (Input(v1),
Input(v2), and Input(v3)), computation gates (Γ(v1), Γ(v2), and Γ(v3)), and the detection gate D(vi).

Ω = {{v1,v2,v3},{v1,v2,v4}, . . . ,{v8,v9,v10}}. For descrip-
tion convenience, we used Si, i = 1,2, . . . ,120 to denote the
120 candidate solutions in Ω.

We now focus on finding an MDS of P using
DCMSubset. As previously mentioned, for i = 1,2, . . . ,10,
vi is modeled as a single-stranded γ(vi) that consists of three
parts: a(vi), b(vi), and c(vi). The adjacent relation of vi is
modeled as a duplex Γ(vi) (i.e., the computation gate of vi),
which is hybridized by γ(x) for all x ∈ N[vi] and a long single-
stranded β (vi), where β (vi) consists of a 5-nt toehold t(vi)
and the complementary strands of a(x) and b(x). The detec-
tion gate D(vi) is a duplex that is hybridized by a single strand
consisting of b(vi) and c(vi) and a single strand consisting
of the complementary strands of a(vi)

∗, b(vi)
∗, and c(vi)

∗.
See Supplementary Tables S1 and S2 for the details of these
strands.

The experiments are described as follows. We prepared
120 groups of experiments for testing the solution space,
where each group consists of 10 tubes. The ith group of
experiments was used to determine whether Si is an MDS of
P. We use Ti j to denote the jth tube in the ith group, where
i = 1,2, . . . ,120, j = 1,2, . . . ,10. We first added D(v j) (12.5

µl × 1.1 µM) and the three computation gates Γ(x),Γ(y),
and Γ(z) (each 4 µl × 5.5 µM) corresponding to the three
vertices in Si = {x,y,z} to each tube Ti j. Then, we added
Input(x), Input(y), and Input(z) (each 2.5 µl × 5.5 µM) to
Ti j. Finally, all tubes Ti j were put into the fluorescence quan-
tification PCR machine for detecting the fluorescence output.
See Fig. 3 a for the diagram of the first group of experiments,
which corresponds the candidate solution S1 = {v1, v2, v3}.

According to the above discussion, a vertex s ∈ N[s′] for
some s′ ∈ {x,y,z} implies that s must be released by the dis-
placement reactions of Γ(s′) and Input(s′). Therefore,

Theorem 1 The ith candidate solution Si ∈ Ω is a DS of P
if and only if the fluorescence signal in Ti j is detected for all
j ∈ {1,2, . . . ,10}.

Here, we emphasize that we stopped our experiments
as soon as a solution was found, and all groups of exper-
iments were conducted similarly (if all the 120 groups of
experiments were implemented, then all of the MDS of P
could be found). Thus, only 12 groups of experiments were
implemented, corresponding to the inputs (candidate solu-
tions) S1 = {v1,v2,v3}, S2 = {v1,v2,v4}, S3 = {v1,v2,v5},
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S4 = {v1,v2,v6}, S5 = {v1,v2,v7}, S6 = {v1,v2,v8}, S7 =
{v1,v2,v9}, S8 = {v1,v2,v10}, S9 = {v1,v3,v4}, S10 =
{v1,v3,v5}, S11 = {v1,v3,v6}, and S12 = {v1,v3,v7}. By The-
orem 1, Si, i = 1,2, . . . ,12 is a DS if all of the 10 tubes of the
ith group of experiments output fluorescence signals. Figure 3
b shows the result of fluorescence detection of the first group
of experiments, in which the ninth and tenth tubes do not yield
a fluorescence signal, which implies that S1 is not a DS of P.
The results of fluorescence detection of the other 11 groups of
experiments are shown in Supplementary Fig. S1–S3, from
which we see that S12 is a DS of P and also an MDS of P.

To test that the experiments can produce the desired out-
comes (double-stranded W1 in Eq. (1)), we separately carried
out agarose gel electrophoresis experiments for pure Γ(x) and
the mixture of Γ(x), Input(x), and D(x). Figure 3 c shows
the experimental results corresponding to the three inputs
Input(v1), Input(v2), and Input(v3) (the results of the other
11 groups of experiments are shown in Supplementary Fig.
S3), from which we see that a new band between 75 bp and
100 bp is produced in the mixture solution, while no new band
is produced in the pure Γ(x) solution. This result is consistent
with the design of DCMSubset because the double-stranded
structure W1(x) formed by the strand displacement reaction
of Γ(x) and Input(x) (Eq. (1)) has the length 89 bp.

Application to maximum independent set. Given a
graph G = (V,E), an independent set (IS) of G is a subset
S⊆V such that any two vertices in S are not adjacent.

Problem 3 The maximum independent set (MIS) problem
requires finding an IS of the maximum cardinality.

We used DCMSubset to find an MIS of Peterson graph P (see
Fig. 2 h). Analogously, we first reduced the solution space by
some preprocessing with theoretical guarantee. We utilized
the following two results: Proposition 3 follows directly by
the pigeonhole principle and the fact that the set of vertices
with the same color is an independent set; Proposition 4 was
obtained by Lovász in 197939.

Proposition 3 Let I be an IS of an n-vertex graph G. Then,
|I| ≥ b n

χ(G)c, where χ(G) is the chromatic number of G, that
is, the minimum number of colors assigned to the vertices of
G such that no two adjacent vertices receive the same color.

Proposition 4 Let I be an MIS of an n-vertex graph G. Then,
|I| ≤ d −nλmin(A)

λmax(A)−λmin(A)
e, where A is the adjacency matrix of

G, and λmax(A) and λmin(A) are the maximum and minimum
eigenvalues of A, respectively.

As the chromatic number of a graph that is neither iso-
morphic to K4 (the complete graph on four vertices) nor an
odd cycle is at most the maximum degree40, it follows that
χ(P) ≤ 3, so any MIS of P contains at least four vertices,
according to Proposition 3. Additionally, the maximum and
minimum eigenvalues of the adjacency matrix of P are 3 and
-2, respectively, which implies that an MIS of P contains at

most four vertices, according to Proposition 4. Therefore, an
MIS of P contains exactly four vertices, and the solution space
Ω is the set of all 4-subsets with the cardinality

(10
4

)
=210; that

is, Ω = {{v1, v2, v3, v4},{v1, v2, v3, v5},. . . ,{v7, v8, v9, v10}}.
We use Ik, k = 1,2, . . . ,210 to denote the 210 candidate solu-
tions in Ω.

We now focus on the experiment of finding an MIS of
P base on DCMSubset. All key components were designed
in a manner similar to the MDS problem except for a slight
change to the computation gate Γ(vi), i = 1,2, . . . ,10. Here,
each Γ(vi) was modified by just deleting the c(vi) compo-
nent of γ(vi) at the 5’-end, and the other components were
unchanged. We denote Γ′(vi) as the new computation gate;
see Fig. 4 a for Γ′(v0). The experiments were conducted as
follows. We prepared 210 groups of experiments for testing
the solution space, where each group used one tube. The
kth group of experiments (denoted by Tk) aimed to determine
whether Ik is an MIS of P. Suppose that Ik = {x,y,z,w}. We
first added the four detection gates D(x), D(y), D(z), D(w)
(each 5 µl × 0.916 µM) and the four computation gates Γ′(x),
Γ′(y), Γ′(z) and Γ′(w) (each 5 µl × 1.832 µM) to Tk. Then,
we added Input(x), Input(y), Input(z) and Input(w) (each 5
µl × 0.916 µM) to Tk. Finally, Tk was put into a fluorescence
quantification PCR machine for detecting the fluorescence
output. See Fig. 4 c for the circuit diagram of the first group
of experiments, which corresponds to the solutions I1 = {v1,
v2, v3, v4}.

It is clear that if an arbitrary vertex s ∈ {x,y,z,w} is adja-
cent to one of x,y,z, and w, then γ(s) is released by Γ′(s′) for
some s′ ∈ {x,y,z,w} and then detected by D(s); moreover, if
{x,y,z,w} is an IS, then no γ(s) for s ∈ {x,y,z,w} is released
by Γ′(s′) for any s′ ∈ {x,y,z,w}. We can observe that Γ′(s)
and Input(s) can only produce a partial strand of γ(s) that
consists of only a(s) and b(s), denoted by γ ′(s). Also, γ ′(s)
and D(s) do not produce fluorescence signals (see Fig. 4 b).
Therefore, the following result holds.

Theorem 2 The kth candidate solution Ik ∈ Ω is an IS of P if
and only if no fluorescence signal is detected in Tk.

Also, we stopped our experiments as soon as a so-
lution was found. Thus, we only conducted 49 groups
of experiments, corresponding to the candidate solu-
tions {v1,v2,v3,v4}, {v1,v2,v3,v5}, {v1,v2,v3,v6}, {v1,v2,v3,v7},
{v1,v2,v3,v8}, {v1,v2,v3,v9}, {v1,v2,v3,v10}, {v1,v2,v4,v5},
{v1,v2,v4,v6}, {v1,v2,v4,v7}, {v1,v2,v4,v8}, {v1,v2,v4,v9},
{v1,v2,v4,v10}, {v1,v2,v5,v6}, {v1,v2,v5,v7}, {v1,v2,v5,v8},
{v1,v2,v5,v9}, {v1,v2,v5,v10}, {v1,v2,v6,v7}, {v1,v2,v6,v8},
{v1,v2,v6,v9}, {v1,v2,v6,v10}, {v1,v2,v7,v8}, {v1,v2,v7,v9},
{v1,v2,v7,v10}, {v1,v2,v8,v9}, {v1,v2,v8,v10}, {v1,v2,v9,v10},
{v1,v3,v4,v5}, {v1,v3,v4,v6}, {v1,v3,v4,v7}, {v1,v3,v4,v8},
{v1,v3,v4,v9}, {v1,v3,v4,v10}, {v1,v3,v5,v6}, {v1,v3,v5,v7},
{v1,v3,v5,v8}, {v1,v3,v5,v9}, {v1,v3,v5,v10}, {v1,v3,v6,v7},
{v1,v3,v6,v8}, {v1,v3,v6,v9}, {v1,v3,v6,v10}, {v1,v3,v7,v8},
{v1,v3,v7,v9}, {v1,v3,v7,v10}, {v1,v3,v8,v9}, {v1,v3,v8,v10},
and {v1,v3,v9,v10}, where {v1,v3,v9,v10} is an MIS, while the
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Figure 4. The first group of experiments that determine whether {v1,v2,v3,v4} is an IS of P. a The structure of
computation gate Γ′(v1). b The strand displacement reaction of γ ′(v1) and the detection gate D(v1), where the incumbent
strand of D(v1) (consists of domains b(v1) and c(v1)) cannot be released. c Logic circuit implementation. d Reaction kinetics
of the experiments, where the curve was plotted by transferring the cycle value into the reaction time, and the outputs were
normalized to the RFU values in the FAM channel with the highest signals. e Agarose gel electrophoresis results, where T1
contains input strands (Input(v1),Input(v2),Input(v3), and Input(v4)), computation gates (Γ′(v1),Γ′(v2),Γ′(v3) and Γ′(v4)),
and detection gates (D(v1),D(v2),D(v3),D(v4)).

others are not ISs of P. Figure 4 d shows the result of fluo-
rescence detection of the first group of experiments, which
implies that S1 is not an IS of P. Figure 4 e shows the result of
agarose gel electrophoresis of the first group of experiments.
The results of the other 48 groups of experiments are shown
in Supplementary Figs. S4–S5, from which we see that S49 is
an IS of P and an MIS of P.

As a direct extension, we observe that the DCMSubset
circuit can be used to solve the k-coloring problem, which
requires us to determine whether there exists an assignment
of k colors to the vertices of a graph G such that no two
adjacent vertices receive the same color. As such an assign-
ment is a k-coloring of G if and only if every set of vertices
that receive the same color is an IS of G, it is enough to
enumerate all k-partitions of V (G) (i.e., divide V (G) into k
disjoint subsets), and for each k-partition V1,V2, . . . ,Vk (where
V1∪V2∪ . . .∪Vk =V (G) and Vi∩Vj = /0 for i, j ∈ {1,2, . . . ,k}
and i 6= j), we can determine whether Vi (for i = 1,2, . . . ,k) is
an IS of G using the DCMSubset circuit for the MIS prob-
lem. If Vi is an IS for all i ∈ {1,2, . . . ,k}, then V1,V2, . . . ,Vk
corresponds to a k-coloring (vertices in Vi is colored with i);
otherwise, V1,V2, . . . ,Vk does not correspond to a k-coloring,
and we consider the next k-partition.

Below we argue the applications of DCMSubset to the
minimum vertex cover problem. As the experiments were
implemented in the same way as the MDS problem, we only
verified the correctness of the designed circuits by simulation
experiments.

Application to minimum vertex coverage. Given a
graph G = (V,E), a vertex covering (VC) of G is a subset
C ⊆V such that each edge is incident with at least one vertex
of C.

Problem 4 The minimum vertex covering (MVC) problem
requires us to find a VC of the minimum cardinality.

Next, we constructed the DCMSubset circuit for find-
ing all MVCs of the Peterson graph P. Because an MVC
involves both vertices and edges of a graph, we had to model
both of these two types of elements. While all of the key
components of the circuit were designed in the same way as
that for the MDS problem, single-stranded γ(ei) and com-
plex D(ei), for i = 1,2, . . . ,15 were added to model the edges
of P and their detection gate. Moreover, each computation
gate Γ(vi), i = 1,2, . . . ,10, indicating the incident relation,
was hybridized by γ(x) for x ∈ {vi,ei1 ,ei2 ,ei3} and a long
single-stranded β (vi) consisting of a 5-nt toehold t(vi) and
the complementary domains of a(x) and b(x). Here, ei1 , ei2 ,
and ei3 are the three edges that are incident with vi. See
Supplementary Fig. S8 for the illustration of Γ(v1).

For an n-vertex graph G, it is well known that |I|+ |C|= n
(first observed by Gallai41 in 1959), where I and C are an MIS
and MVC of G. Therefore, an MCV of P contains six vertices,
and the solution space Ω is the set of all 6-subsets of V (P)
with the cardinality

( 10
6=210

)
. Let Ω = {Ci|i = 1,2, . . . ,210}.

The simulation experiments were implemented as fol-
lows. We prepared 210 groups of experiments. For each
i = 1,2, . . . ,210, the ith group of experiments involves 15 spe-
cific experiments, for the purpose of determining whether Ci
is an MVC of P. We use Ti j to denote the jth experiment in ith
group, where j = 1,2, . . . ,15. Let Ci = {vik |k = 1,2, . . . ,6}.
For each group Ti j, we first added D(e j) (10nM), then the
six computation gates Γ(xik) (each 20nM), and finally the six
inputs Input(xik)(each 10nM), where k = 1,2, . . . ,6. To as-
sess whether Ci is a VC, we detected the concentration of the
output signal using DSD simulation tool. See Fig. 5 for the
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Figure 5. Logic circuit implementation of determining whether or not {v1,v2,v3,v4,v5,v6} is a VC of P based on
DCMSubset.

circuit of the first group of experiments, which corresponds to
the inputs Input(vk) for k = 1,2, . . . ,6.

Through the above analysis, we obtained the following
result.

Theorem 3 Ci ∈ Ω is a VC of P if and only if the con-
centration of the output signal in Ti j is detected for all
j ∈ {1,2, . . . ,15}.

We conducted 210 groups of simulation experiments, cor-
responding to the 210 candidate solutions {v1,v2,v3,v4,v5,v6},
{v1,v2,v3,v4,v5,v7}, . . ., {v5,v6,v7,v8,v9,v10}, where
{v1,v2,v4,v8,v9,v10}, {v1,v3,v4,v6,v7,v10}, {v1,v3,v5,v7,v8,v9},
{v2,v3,v5,v6,v9,v10}, and {v2,v4,v5,v6,v7,v8} are MVCs. The
simulation results are illustrated in Supplementary Figs. S11–
S17.

Discussion
We demonstrated that DCMSubset could be applied to sub-
set problems in graph theory. In contrast with previous DNA
computing models, DCMSubset is more general.

Splitting computation gates. We observed that when a
vertex x had a big neighborhood, the single-stranded β (x) in
the computation gate Γ(x) was significantly longer. This may
increase the likelihood of error in the process of molecular
assembly. We attempted to solve this problem by a split-
ting method with regard to computation gates. Consider the
computation gate Γ(v0) shown in Fig. 2 c, which is ob-
tained by binding γ(vi), i = 0,1, . . . ,k to a single-stranded
β (v0). It is clear that the length of β (v0) increases with
the increase of k. We controlled the length of β (v0) by
splitting {v0,v1, . . . ,vk} into ` subsets with a similar cardi-
nality. We took ` = 3 as an example to show the splitting
method, and other cases could be dealt with similarly. First,
construct a covering of {v0,v1, . . . ,vk} that consists of three
subsets N1 = {v0,v1, . . . ,vr1},N2 = {v0,vr1+1,vr1+2, . . . ,vr2},
and N3 = {v0,vr2+1,vr1+r2+2, . . . ,vk}, where r1 = b k

3c and
r2 = r1 + b k−r1

2 c. Then, the computational gate Γ(v0) (see
Supplementary Fig. S10 a) of v0 is split into three components
Γ(v0)1 (see Supplementary Fig. S10 b), Γ(v0)2 (see Supple-
mentary Fig. S10 c), and Γ(v0)3 (see Supplementary Fig. S10
d), where for i = 1,2,3, Γ(v0)i is the duplex hybridized by all
γ(x) for x ∈ Ni and a single-stranded βi(v0) that consists of

a 5-nt toehold t at its 3’-end and the complementary strands
of a(x) and b(x) for x ∈ Ni. Here, a slight change to Γ(v0)2
and Γ(v0)3 should be done by deleting the c(v0) domain from
their γ(v0) strand (we use γ ′(v0) to denote the remainder of
γ(v0) after deleting its c(v0) domain). Correspondingly, the
input single-stranded Input(v0) is replaced by three short
single strands Input(v0)1, Input(v0)2, and Input(v0)3 (see
Supplementary Fig. S10 e), where Input(v0)i is the com-
plementary β ∗i (v0) of βi(v0), for i = 1,2,3. Because γ ′(v0)
and D(v0) do not produce fluorescence signal (see the pre-
vious experiments for the MIS problem, as shown in Fig.
4 b), the strand displacement reaction for computation gate
(Eq. (1)) can be replaced by the following three reactions.

Γ(v0)1 + Input(v0)1
k3−→ γ(v0) + γ(v1) + . . . + γ(vr1) + W1

Γ(v0)2 + Input(v0)2
k3−→ γ ′(v0)+ γ(vr1+1)+ . . .+ γ(vr2)+W2

Γ(v0)3 + Input(v0)3
k3−→ γ ′(v0)+ γ(vr2+1)+ . . .+ γ(vk)+W3

Application to SAT. In the previous sections, we demon-
strated that DCMSubset can be used to solve subset problems
in graph theory. To further extend the scope of its applicabil-
ity, we attempted to solve other problems by DCMSubset.
A DCMSubset-based approach for the SAT problem is de-
scribed as follows.

Problem 5 The SAT problem aims to determine whether
there is a truth assignment of 0 (‘false’) or 1 (‘true’) to
a set of boolean variables {x1, . . . ,xn} that makes a con-
junctive normal form (CNF) F = C1 ∧C2 ∧ . . . ∧Cm true,
where Ci = `i1 ∨ `i2 ∨ . . . ∨ `iki for i = 1,2, . . . ,m and `i j
( j = 1,2, . . . ,ki) is called a literal, which is either x or the
negative ¬x of x for some x ∈ {x1, . . . ,xn}.

It is clear that F has true value if and only if every clause
Ci has true value. Our target is to design a DNA circuit based
on the method of DCMSubset to determine the truth value
of each clause Ci for a given truth assignment to the boolean
variables.

Unlike in the models for graph problems, for each i ∈
{1,2, . . . ,n}, we used single strands γ+(xi) and γ−(xi) (see
Supplementary Fig. S6 a) to present xi and ¬xi, respectively.
Here, γ+(xi) and γ−(xi) were designed as follows: In the di-
rection from 5’ to 3’, γ+(xi) consists of a toehold domain a(xi)
and two branch migration domains b(xi) and c(xi); γ−(xi) con-
sists of the complementary domains a(xi)

∗, b(xi)
∗, and c(xi)

∗
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of a(xi), b(xi), and c(xi). Observe that although the bases
between γ+(xi) and γ−(xi) are complementary along the 5’
to 3’ direction, they are not hybridized into a double strand
owing to the restriction of their directions.

The computation gate Γ(Ci) was designed for each clause
Ci, i= 1,2, . . . ,m, obtained by binding all γ(x) for x∈Ci (here,
γ(x)=γ−(x) if the corresponding literal is the negative form of
x; otherwise, γ(x)=γ+(x)) to a single-stranded β (Ci), via the
toehold domain a(x) (or a(x)∗) and branch migration domain
b(x) (or b(x)∗). Note that β (Ci) was designed different from
the previous design; we reserved a toehold domain t for every
x ∈Ci; see Supplementary Fig. S6 c.

Now, for each truth assignment θ = {θ1,θ2, . . . ,θn},
where θi ∈ {0,1} represents the truth value of the variable
xi, we designed n input strands Input(xi) (see Supplementary
Fig. S6 b), i = 1,2, . . . ,n as follows: When θi = 0, Input(xi)
is denoted by Input−(xi), which (in the direction from 5’ to
3’) consists of the toehold domain t∗ and the complementary
domains a(xi)

∗ and b(xi)
∗ of a(xi) and b(xi), respectively;

when θi = 1, Input(xi) is denoted by Input+(xi), which (in
the direction from 5’ to 3’) consists of the toehold domain
t∗ and two branch migration domains a(xi) and b(xi). For
the same reason as that for γ+(xi) and γ−(xi), Input+(xi) and
Input−(xi) cannot hybridize into a double-stranded complex.

Each computation gate Γ(Ci) receives ki input signal
strands Input(xi j), j = 1,2, . . . ,ki) as the invader to displace
the incumbent strands γ(xi j), where Ci = `i1∨ `i2∨ . . .∨ `iki).
If and only if Input(xi j) and γ(xi j) have the same symbol (i.e.,
either Input+(xi j) and γ+(xi j), or Input−(xi j) and γ−(xi j)),
the incumbent strands γ(xi j) can be replaced by the strand
displacement reaction of this group of inputs and Γ(Ci).

The detection gate D(`i j) was designed for each literal in
Ci, i = 1,2, . . . ,m, j = 1,2, . . . ,ki, which is obtained by bind-
ing the target strand (a complementary strand γ(`i j)

∗ of γ(`i j))
to a single-stranded output, via the branch migration domains
b(x) (or b(x)∗) and c(x) (or c(x)∗). When the invader γ(`i j)
exists, the strand displacement reaction of γ(`i j) and D(`i j)
can occur and produce an output single. Supplementary Fig.
S6 d illustrates the work flow diagram of DCMSubset on SAT.
In Supplementary Fig. S6 c, we give a molecular implementa-
tion of the DCMSubset circuit for the SAT problem.

For each truth assignment θ , we carried out i (i =
1,2, . . . ,m) groups of experiments to determine the truth value
of each clause Ci. Ti denotes the ith group of experiments. Re-
grading each group of experiments, we added Γ(Ci) (10nM),
D(`i j) for j = 1,2, . . . ,ki (each 10nM), and inputs correspond-
ing to the truth assignment (each Input(xi) 10nM and total
(10 ∗ n)nM) to Ti. Then, we detected the content change of
output signal by DSD simulation. According to the above
analysis, the truth value of Ci is true if and only if the out-
put content increases in Ti. Therefore, F is true under θ if
and only if the output content increases in all these m groups
of experiments. See the supplementary case analysis for an
example of solving the SAT problem.

Based on our results, we posit that DCMSubset can also

be used to design DNA circuits for other classes of NP-hard
problems, such as the Hamiltonian problem, which we will
attempt to realize in our future work.

Methods
Materials and apparatuses. The DNA oligonucleotides (oli-
gos) used in this study were purchased from Sangon Biotech
(Shanghai). All DNA oligos were purified by Sangon us-
ing HPLC. Agarose, 10×TE Buffer, 50×TAE Buffer, 4S
Green Plus Nucleic Acid Stain, Sterilized ddH2O, and DNA
Marker A (25-500bp) were purchased from Sangon Biotech.
The DNA loading buffer (6×) was purchased from biosharp
(Guangzhou). The concentration of DNA oligonucleotides
was measured using a NanoPhotometer@ N120 (Implen, Mu-
nich, Germany). All samples were annealed in a polymerase
chain reaction thermal cycler (Thermo Fisher Scientific Inc.,
USA). The PCR analyses were carried out in QuantStudio 3,
using the QuantStudio Design & Analysis Software v.1.5.1
(Applied Biosystems, MA, US). Agarose gel electrophoresis
was carried out in BG-subMINI with BG-Power 600 (Bay-
Gene, Beijing). The DNA image on the gel was taken on
AlphaImager HP (Protein Simple, San Jose, CA) gel docu-
mentation system.

Individual unlabeled DNA oligos were dissolved in 1×TE
buffer (nuclease free, pH 7.8∼8.2) containing 12.5 mM Mg2+

to a final concentration of 100 µM according to the infor-
mation provided by the supplier, and stored at 4 ◦C. Oligos
labeled with dyes or quenchers were dissolved in Sterilized
ddH2O to a final concentration of 100 µM, according to the
information provided by the supplier, and stored in light-proof
tubes at 4 ◦C.

DNA sequences. All the DNA sequences used in our
study are listed in Supplementary Tables S1 and S2. The
DNA sequences were designed to meet several requirements:
(a) To balance the reaction rate, the GC content of all DNA
strands was maintained at 50% ∼ 70%; (b) We ensured the
stability of the formed molecule; (c) To reduce the leakage of
logic gates in the DCMSubset model, we avoided duplication
of three consecutive bases at the same position in all toehold
domains. Initially, the original sequences were obtained by
using Nupack, and were then modified by hand.

Molecular Assembly. All sequences that were assembled
had to be checked to ensure that no secondary structures af-
fecting strand displacement were generated. We found by
NUPACK check that the generation rate of all logic gate sec-
ondary structures was not higher than 0.2% at 37◦C. Here, we
used the NUPACK to obtain the minimum free energy struc-
ture (listed in Supplementary Table S3), where the relevant
parameters required for simulation are shown in Supplemen-
tary Table S4. All Γ(x) complexes and Γ′(x) complexes (listed
in Supplementary Table S1) were assembled by mixing the
corresponding single strands with equal molar concentrations
and equal volumes. Moreover, all D(x) complexes (listed in
Supplementary Table S1) were assembled by mixing the cor-
responding single strands using the concentration ratio γ(x)∗:
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out put = 1.1 : 1. Depending on the buffer for dissolving γ(x)∗

and out put (which was sterilized ddH2O), to ensure the same
ion concentration of Γ(x) and D(x), we added an additional
3× TAE containing 37.5 mM Mg2+ to neutralize the ion con-
centration when assembling D(x), in addition to mixing γ(x)∗

and out put. Further, γ(x)∗, out put, and 3× TAE/Mg2+ were
mixed with equal volume. We obtained the concentrations of
the diluted DNA single strands using the instrument. We took
two approaches to ensure the accuracy of the measured con-
centrations: (1) the solution was fully shaken and centrifuged
before each measurement; and (2) three measurements were
taken and averaged as the final concentration used.

Considering that length and number of single strands were
different for the assembled computation and detection gates,
we use two different annealing procedures to assemble logic
gates. The computation gates Γ(x) and Γ′(x) were first held at
95◦C for 3 minutes, then cooled to 60◦C at a rate of 1◦C/min,
and then cooled to 4◦C at a rate of 0.33◦C/min. Finally, the
computation gates were stored at 4 ◦C. The detection gates
were first held at 95◦C for 3 minutes, then cooled to 35◦C
at a rate of 0.6◦C/min, and then cooled to 4◦C at a rate of
1◦C/min. Finally, the detection gates were stored in the dark
at 4◦C. These steps were performed on a PCR thermal cycler.

Agarose gel electrophoresis. The DNA solutions were
analyzed in a 5% Agarose gel in a 1× TAE buffer after running
for 25 min at a constant power of 110 V using BG-subMINI
and BG-Power 600, and imaged with the gel documentation
system. 1× TAE was obtained by using ultrapure water to di-
lute 50× TAE. To prevent DNA samples from running out of
the gel during electrophoresis, we used a DNA loading buffer
(6×) (2µ l) to color the DNA samples (8µ l) before performing
electrophoresis. Also, we used DNA Marker A (25-500bp)
(7µl) as a reference for the DNA samples (10µl).

The 5% agarose gel was prepared as follows: First,
agarose (2.5 g powder) was dissolved in a 1×TAE buffer
(50 ml); then, it was heated until the powder was completely
dissolved, and 4S Green Plus Nucleic Acid Stain (10 µ l) was
added to dissolve it fully; finally, it was poured into a mem-
brane tool with a comb and cooled into a solid before being
prepared for use.

Simulation and fluorescence kinetics experiments.
Simulation for dynamic analysis was completed by Visual
DSD. The simulation duration was set to 600 s.

All fluorescence kinetic detection was performed using
the QuantStudio 3 equipped with a 96-well fluorescence plate
reader. The fluorescence detection procedure was as follows:
First, in the Hold Stage, the temperature was decreased to 4
◦C by a rate of 1.6 ◦C per second, and then the sample was
quickly put into QuantStudio 3; second, in the PCR Stage,
the temperature was increased to 23 ◦C by a rate of 3 ◦C per
second; finally, the fluorescence intensity of the sample was
measured every 3 min at 23 ◦C.
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