
Multi-robot motion planning of k-colored discs is
PSPACE-hard
Thomas Brocken
TU Eindhoven, the Netherlands
thomasbrocken@live.nl

G. Wessel van der Heijden
TU Eindhoven, the Netherlands
g.w.v.d.heijden@student.tue.nl

Irina Kostitsyna
TU Eindhoven, the Netherlands
i.kostitsyna@tue.nl

Lloyd E. Lo-Wong
TU Eindhoven, the Netherlands
l.e.lo-wong@student.tue.nl

Remco J. A. Surtel
TU Eindhoven, the Netherlands
remcosurtel@hotmail.com

Abstract
In the problem of multi-robot motion planning, a group of robots, placed in a polygonal domain
with obstacles, must be moved from their starting positions to a set of target positions. We consider
the specific case of unlabeled disc robots of two different sizes. That is, within one class of robots,
where a class is given by the robots’ size, any robot can be moved to any of the corresponding target
positions. We prove that the decision problem of whether there exists a schedule moving the robots
to the target positions is PSPACE-hard.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Disc-robot motion planning, algorithmic complexity, PSPACE-hard

1 Introduction

Due to a wide range of applications, the multi-robot motion planning problem has received a
great amount of attention in the theoretical computer science community in recent years. In
the most general setting, the problem can be phrased in the following way: given a set of
robots placed in a polygonal domain, find a schedule to move the robots from their initial
locations to some specified target locations without collisions. From the point of view of
identifying which robots move to which target positions, we can distinguish between labeled
and unlabeled robot motion planning. Labeled motion planning is the most studied and,
possibly, is a more natural variant of the problem. In it the robots have unique IDs, and
each robot has a specifically assigned target location. In this paper, however, we are more
interested in unlabeled robot motion planning, where the robots are indistinguishable from
one another, and each robot can move to any of the specified target locations. A classic
example of a motivating application for this problem is a swarm of robots operating in a
warehouse, where it does not matter which of the robots arrives to pick up an item to be
transported. Generalizing the notions of labeled and unlabeled motion planning, Solovey
and Halperin [6] introduce the k-color robot motion planning problem, where given are k
classes of robots and k sets of target positions. Within each class the robots are unlabeled,
and each robot may move to any location in the corresponding set of target positions. When

ar
X

iv
:2

00
4.

12
14

4v
1

 [
cs

.C
G

]
 2

5
A

pr
 2

02
0

mailto:thomasbrocken@live.nl
mailto:g.w.v.d.heijden@student.tue.nl
mailto:i.kostitsyna@tue.nl
mailto:l.e.lo-wong@student.tue.nl
mailto:remcosurtel@hotmail.com

2 Multi-robot motion planning of k-colored discs is PSPACE-hard

Figure 1 An example of a Sliding Block puzzle. The goal is to take the 2× 2 green square outside
the box through the exit on the bottom (through which only the green square can slide).

k = n the problem becomes the standard labeled version of the robot motion planning, and
when k = 1 it is the unlabeled version.

In this paper we consider the k-color Disc-Robot Motion Planning problem, k-DRMP,
where classes of robots differ only by their radii. We show that the problem of deciding
whether a particular target location can be reached by a robot from the corresponding class
is PSPACE-hard. Our results imply that a version of the Sliding Block game with round
pieces can make for a fun and interesting puzzle.

Related work. We start with a brief overview of the known algorithmic results for the disc
robot motion planning problem. For unlabeled unit disc robots inside a simple polygon,
Adler et al. [1] develop a polynomial-time algorithm to solve the problem under an additional
requirement that the distance between any two points from the union of the starting and
target locations is at least 4. For unlabeled unit disc robots inside a polygonal domain with
obstacles, Solovey et al. [8] show how to find a solution close to optimal in polynomial time.
In addition to the same requirement on the separation between the starting/target positions,
they require the minimum distance between a robot location and an obstacle to be at least√

5.
In contrast, for a set of disc robots of possibly different radii in a simple polygon, it is

NP-hard to decide whether a target location can be reached by any robot [9].
A wider range of hardness results exists for rectangular or square-shaped robots. Many of

these are inspired by Sliding Block puzzles, a family of popular games where different shapes
are densely packed in a rectangular grid box with little room for movement, and the goal is
to free a specific target block and move it outside of the box by sliding the pieces around.
Figure 1 shows an example of a puzzle where the blocks are rectangles of integer side length.

One of the earliest results is due to Hopcroft et al. [5], where they show that it is
PSPACE-hard to decide whether a given set of rectangular robots enclosed in a rectangular
domain can be reconfigured into a particular target configuration. Flake and Baum [3]
showed that solving the Rush Hour puzzle on an n× n grid is PSPACE-complete. Rush
Hour is a type of a sliding-block puzzle, where the blocks, called cars, are rectangles of
width 1 and of length either 2 or 3, and the cars are only allowed to move parallel to their
longer side. To prove the hardness of the Rush Hour puzzle, Flake and Baum develop a
new specialized model of computation based on “Generalized Rush Hour” logic. They show
how to simulate a Finite Turing Machine with circuits built on this logic, which settles the
complexity of the problem.

Inspired by Flake and Baum’s construction, Hearn and Demaine [4] develop a Non-
deterministic Constraint Logic (NCL) framework which has proven to be invaluable in
showing hardness results for many problems, based on puzzles and otherwise. To showcase

T. Brocken, G. W. van der Heijden, I. Kostitsyna, L. E. Lo-Wong, and R. J. A. Surtel 3

the power of the NCL, they use it to prove PSPACE-completeness of a number of puzzles,
including the Sliding Block, even when all blocks are small (in particular, of size 1× 2), the
classic Rush Hour (for cars of length 2 and 3), and others. Tromp and Cilibrasi [10] used the
NCL framework to show that Rush Hour is PSPACE-complete even for the cars of length 2
alone. Finally, using NCL, Solovey and Halperin [7] prove that unlabeled multi-robot motion
planning for unit square robots moving amidst polygonal obstacles is PSPACE-hard.

Contribution. The contrast between the abundance of hardness results for rectangular and
square robots and a few results, negative as well as positive, for disc robots, suggests that
the complexity of the problem greatly depends on the shape of the robots, even when the
difference between the shapes is seemingly insignificant. Establishing the complexity of
multi-robot motion planning of unit disc robots has been an open problem for quite some
time. In this paper we show the first PSPACE-hardness result for motion planning of disc
robots. In particular, we show that the 2-color multi-robot motion planning problem for disc
robots with radii 1/2 or 1 in a polygonal domain is PSPACE-hard by a reduction from the
NCL. In contrast, the NP-hardness construction of [9] uses discs of very different sizes with
a large ratio between the largest and the smallest disc.

The rest of the paper is structured in the following way. In Section 2 we introduce a formal
problem statement and overview the NCL. In Section 3 we show the hardness reduction. We
start with describing the gadgets in Section 3.1, and prove their correctness in Section 3.2.
Finally, in Section 3.3 we state our main results.

2 Problem statement and preliminaries

In this section we start with a few definitions, and we state the k-color Disc-Robot Motion
Planning (k-DRMP) problem more formally.

Let P be a polygonal domain in the plane. By D(p, r) we denote a disc of radius r
centered at a point p. A point p ∈ P is a valid position for a disc robot with radius r > 0, if
D(p, r) is fully contained in P . A set of points S = {p1, . . . , pn} ⊂ P is a valid configuration
for a set of robots with radius r if (1) pi is a valid position for a robot of radius r for all
1 ≤ i ≤ n, and (2) discs D(pi, r) and D(pj , r) do not intersect in their interior, that is, if
|pi − pj | ≥ 2r, for all 1 ≤ i < j ≤ n.

For k distinct positive radii {r1, r2, . . . , rk} and k positive integers {n1, n2, . . . , nk}, denote
a k-configuration to be a set of k configuration-radius pairs S = {(Si, ri) : |Si| = ni}. A
k-configuration is valid if each Si is a valid configuration for disc robots of radius ri, and
for all i < j, all x ∈ Si and all y ∈ Sj , the discs of respective radii centered at x and y do
not intersect in their interior, that is, |x − y| ≥ ri + rj . We will refer to the set of robots
with the same radius as a class of robots. Thus, each Si specifies a configuration of a class of
robots with radius ri.

We say that a set of n disc robots with radius r can be reconfigured from a valid
configuration S into a valid configuration T , if |S| = |T | = n, and there exist n paths
{π1, π2, . . . , πn}, where each path πi : [0, 1] → R2 is a continuous curve, such that their
starting points form the set S (i.e.,

⋃
i

πi(0) = S), their final points form the set T , (i.e.,⋃
i

πi(1) = T), and at any moment in time t ∈ [0, 1], the set of points {π1(t), π2(t), . . . , πn(t)}

forms a valid configuration for the given value of r.
Analogously, we say that k classes of robots can be reconfigured from a valid k-configuration

S = {S1, S2, . . . , Sk} into a valid k-configuration T = {T1, T2, . . . , Tk}, if |Si| = |Ti| for all

4 Multi-robot motion planning of k-colored discs is PSPACE-hard

i, and there exist a set of paths which reconfigure each Si into Ti, such that no two robots
overlap at any moment in time.

Drawing inspiration from Hearn and Demaine [4] and Solovey and Halperin [7], we define
a few variants of the k-DRMP problem.
Multi-to-multi k-DRMP Given k classes of robots and two valid k-configurations S and T ,

decide whether the robots can be reconfigured from S to T .
Multi-to-single k-DRMP Given k classes of robots, a valid k-configuration S, and a target

position t ∈ P , decide whether there exists a valid k-configuration T with t ∈ Ti for some
Ti ∈ T , such that the robots can be reconfigured from S to T .

Multi-to-single-in-class k-DRMP Given k classes of robots with distinct radii {r1, . . . , rk},
some 1 ≤ i ≤ k, a valid k-configuration S, and a target position t ∈ P , decide whether
there exists a valid k-configuration T with t ∈ Ti, where Ti ∈ T is the target configuration
for the robots with radius ri, such that the robots can be reconfigured from S to T .

Intuitively, the multi-to-multi problem can be interpreted as follows: Let k-configurations
S and T represent the start and target positions respectively for the k classes of robots. Can
the robots move from S to T without any collisions? In this paper we will prove that this,
and the other two variants of the k-DRMP problem, are PSPACE-hard. Note, that it is
possible to define more variants of the k-DRMP problem by varying which starting or target
positions might be fixed, possibly with a fixed matching on them, with specified robot radii,
or in any other way along these lines. Many of them can be shown PSPACE-hard with a
slight modification to our reduction.

2.1 Nondeterministic constraint logic
We will now briefly introduce the nondeterministic constraint logic (NCL). Hearn and
Demaine [4] define an NCL machine as a weighted graph G = (V,E), with nonnegative
integer weights on the edges, and with integer minimum in-flow constraints on the nodes. A
state of the NCL machine is an assignment of directions onto the edges of G. A state is valid
if for every node the total weight of incoming edges is at least the value of the minimum
in-flow constraint of that node.

Consider a valid state of the NCL machine, and some edge e = (u, v) ∈ E directed from u

to v. We can perform an edge flip by reassigning the orientation of e from v to u, as long as
the state after the flip remains valid, that is, the in-flow constraint of u is still satisfied. The
edge flip operation describes possible transitions between the states of the NCL machine.

Hearn and Demaine [4] show that, even for very restricted versions of the NCL machine,
it is PSPACE-complete to decide whether there exists a sequence of valid edge flips which
transforms one valid state into another. In particular, the PSPACE-completeness holds for
the following four decision problems on an NCL machine which is (1) defined on a simple
planar graph G = (V,E), (2) has edge weights either 1 or 2, (3) has the minimum in-flow
constraint 2 on all nodes, and (4) has nodes of types AND or protected OR (which we describe
later). The decision problems are:
State-to-state Given two states σ1 and σ2, decide whether there exists a valid sequence of

edge flips that transforms σ1 into σ2.
State-to-edge Given a state σ1 and an edge e ∈ E, decide whether there exists a state σ2

such that e has the opposite orientations in σ1 and σ2, and there exists a valid sequence
of edge flips that transforms σ1 into σ2.

Edge-to-edge Given two edges e1 and e2 with specific orientations, decide whether there
exist two states σ1 and σ2 with e1 and e2 of prescribed orientation respectively, and there

T. Brocken, G. W. van der Heijden, I. Kostitsyna, L. E. Lo-Wong, and R. J. A. Surtel 5

in1 in2

out

in1 in2

out

Figure 2 Two types of nodes. Edges with weight 1 are shown in red and edges with weight 2 are
shown in blue. Left: An AND node. The minimum in-flow requirement of the vertex is 2. Edge
out can be directed outwards only if both in1 and in2 are directed inwards, if the minimum in-flow
constraint were to be maintained. Right: A protected OR node. Edge out can be directed outwards
if either in1 and in2 is directed inwards. In a protected OR it is not possible for both in-edges to be
directed inwards simultaneously.

exists a valid sequence of edge flips that transforms σ1 into σ2.
Edge-to-state (symmetric to state-to-edge) Given an edge e ∈ E and a state σ2, decide

whether there exists a state σ1 such that e has the opposite orientations in σ1 and σ2,
and there exists a valid sequence of edge flips that transforms σ1 into σ2.

The two types of nodes, the AND and the protected OR, are both degree three nodes
with the following properties (refer to Figure 2). The AND node has two incident edges
of weight 1, and one incident edge of weight 2. Thus, to satisfy the in-flow constraint, the
weight-2 edge can be directed outwards only if both weight-1 edges are directed inwards.
All incident edges of an OR node have weight 2. Thus, an edge can be directed outwards if
at least one other incident edges is directed inwards. In a protected OR node two incident
edges are labeled as input, and one as output. The ‘protected’ property forbids the two input
edges to be directed inwards at the same time. In many cases, including ours, this restriction
simplifies reductions.

I Theorem 1 (Theorem 11 [4]). State-to-edge, edge-to-state, state-to-state, and edge-to-edge
are PSPACE-complete, even when the constraint graph is simple, planar, and only has nodes
of types AND and protected OR.

3 From NCL to 2-DRMP

In this section we will prove that the k-DRMP problem is PSPACE-hard for k classes of
unlabeled disc robots moving amidst obstacles constructed out of line segments and circular
arcs, even if k = 2. We reduce from the NCL problem, for a given constraint graph G

we construct a 2-DRMP instance that emulates the NCL machine built on G. Then, by
considering the state-to-edge and state-to-state versions of the NCL problem we will show
that the three variants of the 2-DRMP problem defined in Section 2 are PSPACE-hard.

Consider an instance of a constraint graph G = (V,E) with AND- and protected OR-
nodes, and consider its orthogonal drawing on a square grid, with the nodes having integer
coordinates, and edges having at most one bend [2] (refer to Figure 3 for an example). We
will construct an instance of the 2-DRMP problem such that it is equivalent to the NCL
problem on G.

Similarly to the constructions in [3, 4, 7], we create a grid-like environment (refer to
Figure 4): square cells of size 18×18 are separated with walls of width 1. The cells correspond
to the nodes of G or to the edges passing through grid points. If there is an edge in G

6 Multi-robot motion planning of k-colored discs is PSPACE-hard

v1 v2

v3 v4 v5 v6

v7 v8

Figure 3 Orthogonal drawing of a constraint
graph G. Edges with weight 1 are shown in red,
while edges with weight 2 are shown in blue.
Nodes v5, v6, and v8 are AND-nodes, and nodes
v1, v2, v3, v4 and v7 are protected OR-nodes.

Figure 4 The grid-environment to be filled
with gadgets, corresponding to graph G shown
in Figure 3. Square cells either correspond to
the nodes of G, or grid points that edges pass
through.

mu

mv

mu

mv

Figure 5 Two terminal positions of an edge robot. Left: edge directed from u to v. Right: edge
directed from v to u.

passing between two adjacent cells, there is an opening of width 2 in the middle of the wall
separating the two cells. In each cell we construct free space (by filling its complement with
obstacles) and densely place two classes of disc robots with radii 1/2 and 1 to emulate the
nodes and the edges of G. The details of the three types of gadgets are described in the
following section.

3.1 Gadgets
The three types of gadgets needed to emulate an NCL machine are AND gadgets, protected
OR gadgets, and connector gadgets. Before we describe the specifics of each of the gadgets,
we introduce a few building components which will appear in all of them.

Edge robot. Every gadget has two or three length-2 openings in the middle of the wall
edges surrounding the square cell of the gadget. Next to each opening a radius-1 edge robot
is placed (shown in green in the figures), which is shared by the two adjacent gadgets, and
which may go back and forth through the opening. The construction of the gadgets is such
that only the edge robots can enter and leave their corresponding gadgets. The rest of
the robots, called internal robots, will always remain within their gadget. Edge robots are
restricted in their movement by obstacles either as depicted in Figure 5 or by an obstacle
as depicted in Figure 6. Consider an opening between two gadgets corresponding to some
edge (u, v) ∈ E. Denote by mu and mv the two midpoints on the longer edges of the 1× 2
rectangle forming the opening, respectively closer to the gadgets corresponding to u and
v (refer to Figure 5). We will call these points terminal positions of the edge robot. With
respect to a given gadget, we will distinguish between an inside terminal position and an
outside terminal position of an edge robot. The terminal positions of the edge robot will

T. Brocken, G. W. van der Heijden, I. Kostitsyna, L. E. Lo-Wong, and R. J. A. Surtel 7

out

in2

Figure 6 Nudges at an edge robot. The slight narrowing in the free space does not let the interior
violet disc to travel more than a unit distance to the left.

Figure 7 Two configurations of a parallel
component.

Figure 8 Two configurations of a perpen-
dicular component.

correspond to the orientation of the edge (u, v) in G: the robot centered at mu corresponds
to the edge directed from u to v (Figure 5 (left)), and the robot centered at mv corresponds
to the edge directed from v to u (Figure 5 (right)). Intermediate positions of the robot do
not define a specific orientation of the edge, and may correspond to any direction. Thus, the
positions of the edge robots, if they are all in terminal positions, will fully describe a state of
an NCL machine.

Parallel and perpendicular components. The two constructions shown in Figures 7 and 8
are called a parallel component and a perpendicular component respectively. The parallel
component consists of free space formed by two parallel 2× 3 rectangles (outlined with a
dashed line) overlapping in a corner 1 × 1 square. Place two radius-1 discs (violet in the
figure) and a radius-(1/2) disc (yellow in the figure) in the resulting free space. For each
2× 3 rectangle consider two points placed at a unit distance from three of the four sides of
the rectangle. These points are the terminal positions for the two radius-1 discs. Finally, the
short unit-length boundary edges of the free space are rounded (replaced with radius-2 arcs
centered at the further terminal positions) so that the radius-(1/2) disc touches a radius-1
disc when moving into a corner of a rectangle.

The perpendicular component consists of two perpendicular 2× 3 rectangles (in dashed)
overlapping in a corner 1× 1 square. Similarly, place two radius-1 discs and a radius-(1/2)
disc in the free space, and consider the four terminal positions for the radius-1 discs. Again,
the short unit length boundary edges are replaced with radius-2 arcs centered at the further
terminal positions.

The parallel and perpendicular components are designed for propagating a signal of the
position of an edge robot. In Section 3.2 we will show the following property of a chain
of parallel and perpendicular configurations. Let C be a chain of at least 1 parallel and 1
perpendicular configuration, possibly extended with aligned radius-1 discs (for example, as
the one used in the connector gadget shown in Figure 11 (right)). Let A∗ be the first radius-1
robot in C, and B∗ be the last radius-1 robot in C. Let t1 and t2 be the terminal positions

8 Multi-robot motion planning of k-colored discs is PSPACE-hard

in2in1

out
out

in2

in1

Figure 9 AND-gadgets representing AND nodes. Edge robot out can move inside if and only if
both edge robots in1 and in2 are outside.

out

in2in1 in1

out

in2

Figure 10 The protected OR-gadgets representing protected OR vertices. Robot out can move
inside if and only if either in1 or in2 is outside. In this figure, in2 has moved out allowing robot out

to move in.
out

in

in

out

Figure 11 Connector gadgets representing connector vertices. Robot out can move inside only if
robot in is outside and vice versa.

T. Brocken, G. W. van der Heijden, I. Kostitsyna, L. E. Lo-Wong, and R. J. A. Surtel 9

of A∗, and t3 and t4 be the terminal positions of B∗, such that t1, t2, t3, and t4 appear in
order along C. Then the following lemma holds.

I Lemma 2. Robot A∗ can move to its terminal position t2 only if B∗ is in its terminal
position t4. Similarly, B∗ can move to its terminal position t3 only if A∗ is in its terminal
position t1.

Using this lemma we will use a sequence of at least 2 parallel and perpendicular components
to force the edge robots to be located at one of their terminal positions. We are now ready
to show the construction of the gadgets.

AND gadgets. There are two versions of the AND gadget (up to mirror symmetry and
rotation by 90◦, 180◦, or 270◦), shown in Figure 9. Also refer to Figure 17. They are designed
in such a way that the edge robot out can only be moved to the inside terminal position if
edge robots in1 and in2 are both moved to their outside terminal positions. Indeed, the edge
robot out can move to the inside terminal position only if the two yellow discs of radius 1/2
below it move to the left and to the right, respectively. These yellow discs can move left and
right only if both radius-1 violet discs touching them move down, which by Lemma 2 can
happen only if both edge robots in1 and in2 move to their outside terminal positions. In
Section 3.2 we will prove the following lemma.

I Lemma 3. In the AND gadgets, the edge robot ‘out’ can be moved to the inside terminal
position only if the edge robots ‘in1’ and ‘in2’ are both moved to (or beyond) their outside
terminal positions. The edge robot ‘in1’ (‘in2’) can be moved to its inside terminal position
only if the edge robot ‘out’ is moved to (or beyond) its outside terminal position.

Protected OR gadgets. Similarly to the AND gadgets, there are two versions of the protected
OR gadget shown in Figure 10. Also refer to Figure 18. The protected OR gadgets are
designed in such a way that the edge robot out can move to the inside terminal position of
the gadget if and only if either in1 or in2 move to their outside terminal positions. Indeed,
the edge disc out can move to the inside terminal position only if the yellow discs of radius
1/2 below it move to the left or to the right. These yellow discs can move left or right only if
at least one of the adjacent radius-1 violet discs moves one unit down, which by Lemma 2
can happen only if both edge robots in1 and in2 move to their outside terminal positions. In
Section 3.3 we will prove that the ‘protected’ property of this gadget is preserved. That is,
we will show a correspondence between a valid reconfiguration of the robots and a sequence
of edge flips in the graph G, such that no two input edges of a protected OR in G are both
directed inwards at the same time. In Section 3.2 we will prove the following lemma.

I Lemma 4. In the protected OR gadgets, the edge robot ‘out’ can be moved to the inside
terminal position only if at least one of the edge robots ‘in1’ and ‘in2’ is moved to (or beyond)
their outside terminal positions. The edge robot ‘in1’ (‘in2’) can be moved to its inside
terminal position only if the edge robot ‘out’ is moved to (or beyond) its outside terminal
position.

Connector gadgets. Our last type of gadget, the connector gadget, is shown in Figure 11.
The two versions of the connector gadget represent a corner piece of an edge (Figure 11
(left)) and a straight piece of an edge (Figure 11 (right)). The connector gadgets consist of
a chain of parallel and/or perpendicular components, possibly extended by a sequence of
aligned unit discs. The following lemma follows directly from Lemma 2.

10 Multi-robot motion planning of k-colored discs is PSPACE-hard

Figure 12 An instance of k-DRMP built for the NCL constraint graph G from Figure 3.

I Lemma 5. In the connector gadget, an edge robot can only be moved to its inside terminal
position if the other edge robot is moved to (or beyond) its outside terminal position.

Using the three described types of gadgets, we now build a complete 2-DRMP instance
corresponding to the NCL machine on a constraint graph G. We fill the cells of the grid-like
environment, dual to an orthogonal drawing of G, with the AND, protected OR, and connector
gadgets. Figure 12 shows an example of a 2-DRMP instance constructed for the constraint
graph from Figure 3. The construction of the 2-DRMP instance, and Lemmas 3, 4, and 5,
imply the main results of this paper, which we formally prove in the next section.

I Theorem 6. The multi-to-multi, multi-to-single, and multi-to-single-in-class k-DRMP
problems are PSPACE-hard for two classes of unlabeled disc robots moving amidst obstacles
constructed out of line segments and circular arcs.

Finally, we argue that the circular arcs in the construction can be approximated with
circumscribed polygonal chains without changing the validity of the reduction.

I Theorem 7. The multi-to-multi, multi-to-single, and multi-to-single-in-class k-DRMP
problems are PSPACE-hard for two classes of unlabeled disc robots moving in a polygonal
environment.

3.2 Correctness of the gadgets
We now prove that the gadgets described in the previous section indeed correspond to their
respective nodes in a constraint graph. Let us first take a closer look at the parallel and
perpendicular components that make up our gadgets.

Properties of parallel and perpendicular components. Figure 13 shows a detailed design
of the parallel (left) and perpendicular (right) components. Discs A and B have radius 1,

T. Brocken, G. W. van der Heijden, I. Kostitsyna, L. E. Lo-Wong, and R. J. A. Surtel 11

A

B

a d

C

b

c

t1t2

(a) Perpendicular component

t′1t′2

c′

b′

a′

d′

C ′
B′

A′

(b) Parallel component

Figure 13 Detailed design of the perpendicular (a) and parallel (b) components which are present
in every gadget. The two possible components of corner situations inside a gadget.

disc C has radius 1/2, and the dashed circles have radius 2. These configurations can be
mirrored and rotated by 90◦, 180◦ and 270◦. We will chain the components to enforce the
terminal positions of the edge robots. The red arrows indicate movement of the unit discs in
the sketched situation. The dashed circles indicate the circular segments of the boundary of
the free space. The white dots indicate terminal positions of A and B.

We first look at the definition of the perpendicular component as shown in Figure 13
(left). Let point a be at (0, 0). Then points b = (−1, 1), c = (

√
3−2,−1), and d = (1, 2−

√
3).

Points t1 = (−1, 0) and t2 = (−2, 0) are terminal positions of disc A. Indeed, by construction
the center of disc A must lie on the closed segment t1t2. In the configuration of the discs
depicted in the figure, disc A is centered at t1, disc B is centered at (0, 2), and disc C is
centered at (0.5, 2−

√
2). The circular segments ac and ad are arcs of 30◦ of radius-2 circles

centered at t2 and (0, 2) respectively.
Now we define the parallel component as shown in Figure 13 (right). Let point a′ be at

(0, 0). Then b′ = (1,−1), c′ = (
√

3− 1,−2), and d′ = (2−
√

3, 1). Points t′1 = (0,−1) and
t′2 = (−1,−1) are terminal positions of disc A′. In the example depicted in the figure, disc
A′ is centered at t′1, disc B′ is centered at (2, 0), and disc C ′ is centered at (2 −

√
2, 0.5).

The circular segments b′c′ and a′d′ are arcs of 30◦ of the radius-2 circles centered at t′2 and
(2, 0) respectively.

I Lemma 8. In the perpendicular component, disc B can not move down before disc A has
moved by distance of at least

√
2− 1 from t1 towards t2.

Proof. Consider the perpendicular configuration depicted in Figure 13a. Since the arc ad
belongs to a circle of radius 2, B can not move before the x-coordinate of the center of C is
smaller than the x-coordinate of a. When the x-coordinate of the center of C is equal to
the x-coordinate of a, B is still in its topmost position, but A must have moved by at least√

2− 1 from t1 to prevent overlap with C (see Figure 14a). J

I Lemma 9. In the parallel component, disc B′ can not move left before disc A′ has moved
by a distance at least

√
5

2 −
1
2 from t′1 towards t′2.

Proof. Consider the parallel configuration depicted in Figure 13b. Since the arc a′d′ belongs
to a circle of radius 2, B′ can not move before the y-coordinate of C ′ becomes smaller than
the y-coordinate of a′. When the y-coordinate of C ′ is equal to the y-coordinate of a′, B′ has

12 Multi-robot motion planning of k-colored discs is PSPACE-hard

A

B

a d
C

(a) Small disc on the corner and on the
same axis as B

a d

B

C
A

(b) Small disc on the corner and on the
same axis as A

Figure 14 Perpendicular movement with the discs shifted

C ′a′

d′

B′

A′

(a) Small disc on the corner and on the
same axis as B

a′

d′

C ′

B′

A′

(b) Small disc on the corner and on the
same axis as A

Figure 15 Perpendicular movement with the discs shifted

not been able to move yet, but A′ must have moved by at least
√

5
2 −

1
2 to prevent overlap

with C ′ (see Figure 15a). J

Proof of Lemma 2. The proof directly follows from Lemmas 8 and 9. Consider, as an
example a chain of a perpendicular and a parallel component as depicted in Figure 16. By
Lemma 9, disc B′ can only move away from its terminal position t′2 when the radius-(1/2)
disc C ′ moves left beyond point a′. Thus, disc B has to move down by at least

√
5

2 −
1
2

before B′ can move. However, if disc B moves 2−
√

2 or more, by Lemma 8, A must be in
the terminal position t2. As 2−

√
2 <

√
5

2 −
1
2 , we have that either disc B′ must be in its

terminal position t′2, or disc A must be in its terminal position t2. If the chain of parallel
and perpendicular components is longer, the extremal positions of the radius-1 discs beyond
either A or B′ are enforced. Thus, if there is a perpendicular and a parallel component in
the chain, the lemma holds. J

Correctness of connector gadgets. The correctness of the connector gadgets follows im-
mediately from Lemma 2.

Proof of Lemma 5. As the connector gadgets consist of chains containing a parallel and a

T. Brocken, G. W. van der Heijden, I. Kostitsyna, L. E. Lo-Wong, and R. J. A. Surtel 13

a

B/A′

C
A

C ′

B′

a′

Figure 16 A parallel and a perpendicular component chained. If disc C is horizontally aligned
with a, and disc C′ is vertically aligned with a′, then disc B must overlap either C or C′.

out

in2in1

a a′
b

c d d′ c′

b′
C

A

C ′

B B′

in2in1

out

a a′
b

c d d′ c′

b′B B′A

C C ′

Figure 17 A close-up view of the functionality of the AND gadgets, the full gadgets can be seen
in Figure 9.

perpendicular component, by Lemma 2, the current lemma holds. J

Correctness of AND gadgets. The AND gadgets, as shown in Figure 9, use two small disc
robots with a radius of 1/2. They have a specific layout of the obstacles, which enable the
functionality of the gadgets. A close-up view of this layout can be seen in Figure 17. Disc
robots B and B′ can move along the arc a′a which lies on a circle of radius 2. This means
that A can not move as long as either disc B or disc B′ is on the arc a′a. Arcs cd, c′d′, bc,
and b′c′ lie on circles of radius 1. Thus discs C and C ′ tightly fit along the respective arcs bc
and b′c′. Points c and c′ are terminal position of the discs B and B′. Indeed, they cannot
move further than c (or c′), otherwise they would overlap with disc C (or C ′). Thus, discs B
and B′ cannot both fit in the free space above C or in the free space above C ′. Therefore,
both discs C and C ′ must move down to enable disc A to move down. If A is able to reach
the arc aa′, the discs B and B′ should have x-coordinates at most a − 1/2 and at least
a′ + 1/2 respectively. Then, discs C and C ′ must move down by at least distance 0.8539. A
similar argument to the one in Lemmas 8 and 9 will force the radius-1 discs to be moved to
their terminal positions in the direction away from A.

Proof of Lemma 3. In Figure 17 the AND gadget is depicted in more detail. Since the
construction is similar to the connector gadget, we know by Lemma 5 that discs C and C ′

14 Multi-robot motion planning of k-colored discs is PSPACE-hard

C

out

a

A

B B′

C

b c d

a′

out

a

A
B B′

C

b c d

a′

Figure 18 A close-up view of the functionality of the protected OR gadget, the full gadget can be
seen in Figure 10.

from Figure 17 can only move when the input edge robots are in their terminal configurations.
By the described construction above, disc A can only move if both C and C ′ have moved
down. Since C and C ′ can only move when the inputs are in a terminal configuration, the
edge robot out can only move when both edge robots in1 and in2 are in their outside terminal
configuration. J

Correctness of protected OR gadgets. The protected OR gadgets, as shown in Figure 10,
use two small disc robots with a radius of 1/2, just like the AND gadgets. However, unlike in
the AND gadgets, the protected OR gadgets have a different layout of the obstacles, which
changes the functionality of the gadgets. A close-up view of this layout can be seen in
Figure 18. Disc robots B and B′ can move along the arc a′a which lies on a circle of radius
2. As long as B or B′ lies on this arc, disc A can not move. Disc C might move down, which
makes space for discs B and B′ to move above C. The arc bc lies on a circle of radius 1.
Discs B and B′ have a radius of 1/2, so they tightly fit along arc bc when C has made space.
Since the arc cd lies on a circle of radius 2, both B and B′ fit above C. When both B and B′
have moved into one of the sides, A can move down such that the edge disc can move inside
the gadget. In our construction we forbid the two robots B and B′ to separate and move
into the free space pockets above the two different radius-1 discs. We can do so because, as
we will argue later, for any valid reconfiguration of robots that separates the discs, there will
be an equivalent reconfiguration which keeps the discs always together.

Proof of Lemma 4. The proof directly follows from Lemma 2. J

Observe that, after putting all the gadgets together, all edge robots have a limited set of
movements and that inner gadget robots remain in their gadgets.

I Observation 10. Each edge robot can be in at most two distinct terminal configurations.

3.3 Reduction
We are now ready to prove our main results.

I Theorem 6. The multi-to-multi, multi-to-single, and multi-to-single-in-class k-DRMP
problems are PSPACE-hard for two classes of unlabeled disc robots moving amidst obstacles
constructed out of line segments and circular arcs.

T. Brocken, G. W. van der Heijden, I. Kostitsyna, L. E. Lo-Wong, and R. J. A. Surtel 15

Proof. For a given NCL machine built on a constraint graph G, consider the corresponding
instance of the k-DRMP problem constructed as described above. Furthermore, consider a
state σ of the NCL machine, and a corresponding 2-configuration S. The positions of the edge
robots in S correspond to the orientation of the respective edges of G in σ. By Lemmas 3, 4,
and 5, if an edge e ∈ G cannot be flipped, the corresponding inner-gadget radius-1 robots
are forced to be in one of their terminal positions, and cannot move. If, however, e can be
flipped, some of the corresponding radius-1 robots are able to move between their terminal
positions (refer to Figure 12 for an example). By Lemmas 3, 4, and 5, a flip of the edge e is
valid if and only if the corresponding edge robot can move to the opposite terminal position.

Consider the first problem, the multi-to-multi k-DRMP. We will show that it is PSPACE-
hard by a reduction from the state-to-state NCL problem. Recall that the state-to-state
NCL problem asks whether for a given constraint graph G and for two valid states σ1 and
σ2 of the NCL machine, σ1 can be transformed into σ2 with edge-flip operations. From S
and T we construct two 2-configurations S ′ and T ′, such that all the edge robots are in the
same positions as in S and T , all inner radius-1 and radius-(1/2) robots are shifted to their
terminal positions consistent with the orientation of the corresponding edges in G. We claim
that σ1 can be transformed into σ2 with edge-flip operations if and only if the robots can be
reconfigured from S ′ to T ′.

Assume that there is a sequence of edge flips transforming σ1 into σ2. For each flip, by
Lemmas 3, 4, and 5, we can reconfigure the robots of the k-DRMP instance in correspondence
to the changes of orientations of the flipped edges.

It remains to show that if the robots of the k-DRMP instance can be reconfigured from
S ′ to T ′, then there is a valid edge-flip sequence transforming σ1 into σ2. Consider the
reconfiguration over time, and extract the order in which the edge robots reach one of their
terminal configurations. If two edge robots are both in some intermediate positions between
their terminal locations, then these edge robots can move independently from one another.
We can modify the reconfiguration schedule such that at each moment in time only one edge
robot can be located at an intermediate position between its terminal positions.

We still need to argue that we can preserve the ‘protected’ property of the protected OR
gadgets. Suppose that in the process of reconfiguration, at some moment, two input edge
robots are moved to the outside terminal positions. If one of them, say in1, reverts before the
robot out moves to its inner terminal position, then we simply ignore the move of in1 (and
the robots in the chain from in1 to out) outside. Let robot out move to the inner terminal
position. Consider the positions of the discs B and B′ (recall Figure 18). If they both are
located above one radius-1 disc in the chain from in1 to out, then we can change the schedule
to stop in2 from moving to the outside terminal position. If B and B′ are separated, then
we can modify the schedule to move B and B′ into the same free-space pocket, and stop
the other input edge robot from moving outside. In all cases, we can modify the schedule to
prevent both input edge robots to be in their outside terminal positions. Thus, we have a
reconfiguration schedule which preserves the ‘protected’ property of the protected OR nodes,
and has edge robots move between their terminal positions one at a time.

The order in which the edge robots move between their terminal positions gives the order
of valid edge flips in G. Indeed, by Lemmas 3, 4, and 5, if an edge robot, corresponding to
some edge e = (u, v) ∈ G, can move, the in-flow property of the two corresponding nodes u
and v in G is satisfied by the edges other than e. Thus, the multi-to-multi k-DRMP problem
is PSPACE-hard.

Now, consider the multi-to-single and multi-to-single-in-class versions of the k-DRMP
problem. By a reduction from state-to-edge NCL problem, we show that these two problems

16 Multi-robot motion planning of k-colored discs is PSPACE-hard

are PSPACE-hard. The argument follows the same lines as for the multi-to-multi case,
except that instead of the target 2-configuration T , we are given a target location for a robot.
We will select the edge robot corresponding to the edge to be flipped in the NCL problem,
and specify a proper terminal positions as the target location for the robot. J

Remark. Note, that we can remove the use of circular arcs in our construction. Consider a
small fixed value ε > 0. There exists a value d(ε) > 0, such that, if we replace the arcs in the
construction with circumscribed polygonal chains with edge length at most d, the edge robots
will be bound to ε-neighborhoods of the terminal positions. Indeed, for small enough ε,
Lemmas 3, 4, and 5 will still hold, with modified statements considering the ε-neighborhoods
of the terminal positions instead of simply the terminal positions. Thus, the following result
holds.

I Theorem 7. The multi-to-multi, multi-to-single, and multi-to-single-in-class k-DRMP
problems are PSPACE-hard for two classes of unlabeled disc robots moving in a polygonal
environment.

4 Conclusion

In this paper we have shown that the three variants of the disc-robot motion planning
problem are PSPACE-hard, even for two classes of unlabeled disc robots with two different
radii, moving in a polygonal environment. This is a first step towards settling the complexity
of unlabeled unit disc robot motion planning. Our gadgets do not seem to generalize to a
single class of robots. The complexity of unlabeled unit disc robot motion planning remains
an interesting open problem.

References
1 Aviv Adler, Mark de Berg, Dan Halperin, and Kiril Solovey. Efficient multi-robot motion

planning for unlabeled discs in simple polygons. IEEE Transactions on Automation Science
and Engineering, 12(4):1309–1317, 2015. doi:10.1109/TASE.2015.2470096.

2 Tiziana Calamoneri and Rossella Petreschi. An efficient orthogonal grid drawing algorithm for
cubic graphs. In International Computing and Combinatorics Conference (COCOON), LNCS,
volume 959, pages 31–40. 1995. doi:10.1007/BFb0030817.

3 Gary W. Flake and Eric B. Baum. Rush Hour is PSPACE-complete, or “Why you should
generously tip parking lot attendants”. Theoretical Computer Science, 270(1-2):895–911, 2002.
doi:10.1016/S0304-3975(01)00173-6.

4 Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computation. Theoretical
Computer Science, 343(1-2):72–96, 2005.

5 John E. Hopcroft, Jacob T. Schwartz, and Micha Sharir. On the complexity of motion planning
for multiple independent objects; PSPACE-hardness of the “Warehouseman’s Problem”. The
International Journal of Robotics Research, 3(4):76–88, 1984.

6 Kiril Solovey and Dan Halperin. k-Color multi-robot motion planning. The International
Journal of Robotics Research, 33(1):82–97, 2014. doi:10.1177/0278364913506268.

7 Kiril Solovey and Dan Halperin. On the hardness of unlabeled multi-robot motion planning.
The International Journal of Robotics Research, 35(14):1750–1759, 2016.

8 Kiril Solovey, Jingjin Yu, Or Zamir, and Dan Halperin. Motion planning for unlabeled discs
with optimality guarantees. In Robotics: Science and Systems XI. Robotics: Science and
Systems Foundation, 2015. doi:10.15607/RSS.2015.XI.011.

https://doi.org/10.1109/TASE.2015.2470096
https://doi.org/10.1007/BFb0030817
https://doi.org/10.1016/S0304-3975(01)00173-6
https://doi.org/10.1177/0278364913506268
https://doi.org/10.15607/RSS.2015.XI.011

T. Brocken, G. W. van der Heijden, I. Kostitsyna, L. E. Lo-Wong, and R. J. A. Surtel 17

9 Paul Spirakis and Chee K. Yap. Strong NP-hardness of moving many discs. Information
Processing Letters, 19(1):55–59, 1984.

10 John Tromp and Rudi Cilibrasi. Limits of rush hour logic complexity. Manuscript, 2005. URL:
http://arxiv.org/abs/cs/0502068.

http://arxiv.org/abs/cs/0502068

	1 Introduction
	2 Problem statement and preliminaries
	2.1 Nondeterministic constraint logic

	3 From NCL to 2-DRMP
	3.1 Gadgets
	3.2 Correctness of the gadgets
	3.3 Reduction

	4 Conclusion

