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Abstract

We deal with computational issues of loading a �xed�architecture neural network with a set of positive

and negative examples� This is the �rst result on the hardness of loading a simple ��node architecture

which do not consist of the binary�threshold neurons� but rather utilize a particular continuous activation

function� commonly used in the neural network literature�

We observe that the loading problem is polynomial�time if the input dimension is constant� Otherwise�

however� any possible learning algorithmbased on particular �xed architectures faces severe computational

barriers� Similar theorems have already been proved by Megiddo and by Blum and Rivest� to the case of

binary�threshold networks only� Our theoretical results lend further suggestion to the use of incremental

�architecture�changing� techniques for training networks rather than �xed architectures� Furthermore�

they imply hardness of learnability in the probably�approximately�correct sense as well�



� Introduction

Neural networks have been proposed as a tool for machine learning� In this role� a network is trained

to recognize complex associations between inputs and outputs that were presented during a supervised

training cycle� These associations are incorporated into the weights of the network� which encode a

distributed representation of the information that was contained in the patterns� Once trained� the

network will compute an input�output mapping which� if the training data was representative enough� will

closely match the unknown rule which produced the original data� Massive parallelism of computation�

as well as noise and fault tolerance� are often o�ered as justi�cations for the use of neural nets as learning

paradigms�

By 	neural network
 we always mean� in this paper� feedforward ones of the type routinely employed

in arti�cial neural nets applications� That is� a net consists of a number of processors �	nodes
 or

	neurons
� each of which computes a function of the type

y � �

�
kX

i��

aiui � b

�
�
�

of its inputs u�� � � � � uk� These inputs are either external �input data is fed through them� or they represent

the outputs y of other nodes� No cycles are allowed in the connection graph �feedforward nets rather

than 	recurrent
 nets� and the output of one designated node is understood to provide the output value

produced by the entire network for a given vector of input values� The possible coe�cients ai and b

appearing in the di�erent nodes are the weights of the network� and the functions � appearing in the

various nodes are the node or activation functions� An architecture speci�es the interconnection structure

and the ��s� but not the actual numerical values of the weights themselves�

This paper deals with basic theoretical questions regarding learning by neural networks� There are

three types of such questions that one may ask� all closely related and complementary to each other� We

next describe all three� keeping for the end the one that is the focus of this paper�

A possible line of work deals with sample complexity questions� that is� the quanti�cation of the

amount of information �number of samples� needed in order to characterize a given unknown mapping�

Some recent references to such work� establishing sample complexity results� and hence 	weak learnabil�

ity
 in the Valiant model� for neural nets� are the papers ��� ��� 

� 
��� the �rst of these references deals

with networks that employ hard threshold activations� the second and third cover continuous activation

functions of a type �piecewise polynomial� close to those used in this paper� and the last one provides

results for networks employing the standard sigmoid activation function�

A di�erent perspective to learnability questions takes a numerical analysis or approximation theoretic

point of view� There one asks questions such as how many hidden units are necessary in order to

approximate well� that is to say� with a small overall error� an unknown function� This type of research

ignores the training question itself� asking instead what is the best one could do� in this sense of overall

error� if the best possible network with a given architecture were to be eventually found� Some recent

papers along these lines are �
� 
�� ��� which deal with single hidden layer nets� and ���� which dealt with

multiple hidden layers�

Yet another direction in which to approach theoretical questions regarding learning by neural net�

works� and the one that concerns us here� originates with the work of Judd �see for instance �
�� 
��� as






well as the related work ��� 
�� ����� Judd� like us� was motivated by the observation that the 	back�

propagation
 algorithm often runs very slowly� especially for high�dimensional data� Recall that this

algorithm is used in order to �nd a network �that is� �nd the weights� assuming a �xed architecture�

that reproduces the observed data� Of course� many modi�cations of the vanilla 	backprop
 approach

are possible� using more sophisticated techniques such as high�order �Newton�� conjugate gradient� or

sequential quadratic programming methods� However� the 	curse of dimensionality
 seems to arise as a

computational obstruction to all these training techniques as well� when attempting to learn arbitrary

data using a standard feedforward network� For the simpler case of linearly separable data� the perceptron

algorithm and linear programming techniques help to �nd a network �with no 	hidden units
� relatively

fast� Thus one may ask if there exists a fundamental barrier to training by general feedforward networks�

a barrier that is insurmountable no matter which particular algorithm one uses� �Those techniques which

adapt the architecture to the data� such as cascade correlation or incremental techniques� would not be

subject to such a barrier��

In this paper� we consider the tractability of the training problem� that is� of the question �essentially

quoting Judd�� 	Given a network architecture �interconnection graph as well as choice of activation

function� and a set of training examples� does there exist a set of weights so that the network produces

the correct output for all examples�


The simplest neural network� i�e�� the perceptron� consists of one threshold neuron only� It is easily

veri�ed that the computational time of the loading problem in this case is polynomial in the size of the

training set irrespective of whether the input takes continuous or discrete values� This can be achieved

via a linear programming technique� On the other�hand� loading recurrent networks �i�e� networks with

feedback loops� is a hard problem� Bruck and Goodman��� showed that a recurrent threshold network of

polynomial size cannot solve NP�complete problems unless NP�co�NP� The result was further extended

by Yao���� who showed that a polynomial size threshold recurrent network cannot solve NP�complete

problems even approximately within a guaranteed performance ratio unless NP�co�NP�

In the rest of this paper� we focus on feedforward nets only� We show that� for networks employing a

simple� saturated piecewise linear activation function� and two hidden units only� the loading problem is

NP�complete� Recall that if one establishes that a problem is NP�complete then one has shown� in the

standard way done in computer science� that the problem is at least as hard as most problems widely

believed to be hard �the 	traveling salesman
 problem� Boolean satis�ability problem� and so forth�� This

shows that� indeed� any possible neural net learning algorithm �for this activation function� based on �xed

architectures faces severe computational barriers� Furthermore� our result implies non�learnability in the

PAC sense under the complexity�theoretic assumption of RP �� NP � We generalize our result to another

similar architecture�

The work most closely related to ours is that due to Blum and Rivest� see ���� They showed a similar

NP�completeness result for networks having the same architecture but where the activation functions

are all of a hard threshold type� that is� they provide a binary output y equal to 
 if the sum in

equation �
� is positive� and � otherwise� In their papers� Blum and Rivest explicitly pose as an open

problem the question of establishing NP�completeness� for this architecture� when the activation function

is 	sigmoidal
 and they conjecture that this is indeed the case� �For the far more complicated architectures

considered in Judd�s work� in contrast� enough measurements of internal variables are provided that there

is essentially no di�erence between results for varying activations� and the issue does not arise there�

However� it is not clear what the consequences are for practical algorithms when the obstructions to

�



learning are due to considering such architectures� In any case� we address here the open problem exactly

as posed by Blum and Rivest��

It turns out that a de�nite answer to the question posed by Blum and Rivest is not possible� It is shown

in ���� that for certain activation functions �� the problem can be solved in constant time� independently

of the input size� and hence the question is not NP�complete� In fact� there exist 	sigmoidal
 functions�

innocent�looking qualitatively �bounded� in�nite di�erentiable and even analytic� and so forth� for which

any set of data can be loaded� and hence for which the loading problem is not in NP �just answer 	yes
 to

the question 	do there exist weights that learn the given data�
��� The functions used in the construction

in ���� are however extremely arti�cial and in no way likely to appear in practical implementations�

Nonetheless� the mere existence of such examples means that the mathematical question is far from

trivial�

The main open question� then� is to understand if 	reasonable
 activation functions lead to NP�

completeness results similar to the ones in the work by Blum and Rivest or if they are closer to the

other extreme� the purely mathematical construct in ����� The most puzzling case is that of the standard

sigmoid function� 
��
� e�x�� For that case we do not know the answer yet� but we conjecture that NP�

completeness will indeed hold� �H�o�gen�
�� proves the hardness of the interpolation problem by sigmoidal

nets with two hidden units when the weights are just binary values� however this is di�erent from the

problem we are considering�� It is the purpose of this paper to show an NP�completeness result for

piecewise linear or 	saturating
 activation function that has appeared in the neural networks literature�

especially in the context of hardware implementations� and which is relatively simpler to analyze than

the standard sigmoid�

We view our result as a �rst step in dealing with the general case of arbitrary piecewise linear functions�

and as a further step towards elucidating the complexity of the problem in general�

The rest of the paper is organized as follows�

� In section � we introduce the model �in particular� the � ��node architecture� and summarize some

previous results� We also distinguish the case of �xed versus varying input dimension �and analog

versus binary inputs�� and observe that the problem is solvable in polynomial time for �xed input

dimension using standard linear�programming techniques �see ���� for further positive results on

PAC�learnability when the input dimension is a �xed constant and the activation functions are

piecewise polynomials�� In the rest of the paper we concentrate on binary inputs only� where the

input dimension is not constant�

� In section � we prove the hardness of the loading problem for the � ��node architecture and use this

result to show the impossibility of learnability for binary inputs under the assumption of RP �� NP �

� In section � we generalize the hardness of the loading problem to include another similar architec�

tures with more nodes in the hidden layer�

� In section � we conclude with some open problems�

Before turning to the next section� we provide a short overview on complexity classes and probabilistic

learnability�

�



��� Some complexity classes

We informally discuss some well known structural�complexity classes �the reader is referred to any stan�

dard text on structural complexity classes �e�g� ��� 
��� for more details�� Here� whenever we say polyno�

mial time we mean polynomial time in the length of any reasonable encoding of the input� and problems

referred to here are always decision problems�

A problem is in the class P when there is a polynomial time algorithm which solves the problem�

A problem is in NP when a 	guessed
 solution for the problem can be veri�ed in polynomial time� A

problem X is NP�hard if and only if any problem Y in NP can be transformed by a polynomial time

transformation f to X � such that given an instance I of Y � I has a solution if and only if f�I� has

a solution� A problem is NP�complete if and only if it is both NP and NP�hard� Examples of NP�

complete problems include the traveling salesperson problem� the Boolean satis�ability problem and the

set�splitting problem�

A problem X is in the complexity class RP �	random polynomial
� with error parameter � ��� � 
�

if and only if there is a polynomial time algorithm A such that for every instance I of X the following

holds�

If I is a 	yes
 instance of X then A outputs 	yes
 with probability at least �� and if I is a

	no
 instance of X then A always outputs 	no
�

It is well known that P � RP � NP � but whether any of the inclusions is proper is an important

open question in structural complexity theory�

��� Probabilistic learnability

A concept is a function f � f�� 
gn � f�� 
g where n is an integer� We focus on functions computable by

architectures �de�ned in section ����� hence� we use the terms function and architecture interchangeably�

The set of inputs f����� � fx j x � f�� 
gn� f�x� � �g is the set of negative examples� where the set of

inputs f���
� � fx j x � f�� 
gn� f�x� � 
g is the set of positive examples�

Let Cn be the set of Boolean functions on n variables de�ned by a speci�c architecture A� Then

C � ��i��Cn is a class of representations achievable by the architecture A for all binary input strings� For

example� C may be the class of Boolean formulae computable by one hidden�layer net with two sigmoidal

hidden units and a single threshold output unit� Given some function f � C� POS�f� �resp� NEG�f��

denotes the source of positive �resp� negative� examples for f � Whenever POS�f� �resp� NEG�f�� is

called� a positive or ��� �resp� negative or ���� example is provided according to some arbitrary probability

distribution D� �resp� D�� satisfying the condition�

X
x�f�����

D��x� � 


X
x�f�����

D��x� � 


�



A learning algorithm is an algorithm that may access POS�f� and NEG�f�� Each access to POS�f�

or NEG�f� is counted as one step� A class C of representations of an architecture A is said to be ��� ���

learnable if and only if� for some given �xed constants � � �� � � 
� there is a learning algorithm L such

that for all n � N � all functions f � Cn� and all possible distributions D
� and D��

�a� L halts in a number of steps polynomial in n� �
�
� �

�
� and jjAjj �where jjAjj denotes the size of the

architecture A��

�b� L outputs a hypothesis g � Cn such that with probability at least 
� � the following conditions are

satis�ed�

X
x�g�����

D��x� � �

X
x�g�����

D��x� � �

A class C of representations of an architecture A is said to be learnable�
�� if and only if it is ��� ���

learnable for all � and � �where � � �� � � 
��

Remark ��� To prove that a class of representations of an architecture A is not learnable� it is su��

cient to prove that it is not ��� ���learnable for some particular values of � and �� and some particular

distributions D� and D��

As we will see later� our results on NP�completeness of the loading problem will imply the non�

learnability of the corresponding concept under the assumption of RP �� NP �

� Preliminaries and previous works

In this section we de�ne our model of computation precisely and state some previous results for this

model�

��� Feedforward networks and the loading problem

Let  be a class of real�valued functions� where each function is de�ned on some subset of IR� A  �net

C is an unbounded fan�in directed acyclic graph� To each vertex v� an activation function �v �  is

assigned� and we assume that C has a single sink z�

The network C computes a function fC � ��� 
�
n � IR� where n is the input dimension� as follows� The

components of the input vector 	x � �x�� � � � � xn� � ��� 
�
n are assigned to the sources of C� Let v�� � � � � vk

be the immediate predecessors of a vertex v� The input for v is then sv�x� �
Pk

i�� aiyi � tv � where yi is

the value assigned to vi and ai and tv are weights and threshold of v� We assign the value �v�sv�x�� to

v� Then fC � sz is the function computed by C where z is the unique sink of C�

�



The architecture A of the  �net C is the structure of the underlying directed acyclic graph� Hence

each architecture A de�nes a behavior function 
A that maps from the r real weights �corresponding

to all the weights and thresholds of the underlying directed acyclic graph� and the input string into a

binary output� We denote such a behavior as the function 
A�IR
r� ��� 
�n� �� f�� 
g � The set of inputs

which cause the output of the network to be � �resp� 
� are termed as the set of negative �resp� positive�

examples� The size of the architecture A is the number of nodes and connections of A plus the maximum

number of bits needed to represent any weight of A�

The loading problem is de�ned as follows� Given an architecture A and a set of positive and negative

examples M � f�	x� y� j x � ��� 
�n� y � f�� 
gg� so that jM j � O�n�� �nd weights 	w so that for all pairs

�	x� y� �M �


A�	w� 	x� � y �

The decision version of the loading problem is to decide �rather than to �nd the weights� whether such

weights exist that load M onto A�

We henceforth assume that sink z is restricted to be a threshold gate� This is indeed true for the

purpose of analysing the complexity of the decision version of the loading problem for the activation

functions that we consider�

For the purpose of this paper we will be concerned with a very simple architecture as described in

the next section�

��� The k 
�node architecture

Here we focus on 
 hidden layer �
HL� architectures� The k  �node architecture is a 
HL architecture

with k hidden ��units �for some � �  �� and an output node with the threshold activation H� The �

 �node architecture consists of two hidden nodes N� and N� that compute�

N��	a� 	x� � ��
nX

i��

aixi��

N��	b� 	x� � ��
nX

i��

bixi��

respectively�

The output node N� computes the threshold function of the inputs received from the two hidden

nodes� namely a binary threshold function of the form

N��N�� N�� �� 
� �� �

�

 �N��	a� 	x� � 
N��	b� 	x� 
 �

� �N��	a� 	x� � 
N��	b� 	x� � �

for some parameters �� 
� and �� Fig� 
 illustrates a �  �node architecture�

The two activation function classes  that we consider are the threshold functions H

H�x� �

�
� if x � �


 if x 
 �

and the piecewise linear or 	saturating
 activation functions � �which appears quite frequently in

neural networks literature��� �� 
�� ���� de�ned as

�



��x� �

���
��
� if x � �

x if � � x � 



 if x 
 
 �

���

Another model� called the ��cascade architecture� was investigated by Lin and Vitter�
��� A ��cascade

architecture consists of two processors N� and N� each of which computes a binary threshold function H�

The output of the node N� in the hidden layer is provided to the input of the output node N�� Moreover�

all the inputs are connected to both the nodes N� and N��

��� Loading the k H�Node Architecture

We consider two kinds of inputs� analog �with �xed input dimension� and binary �with varying input

dimension�� An analog input is in ��� 
�n� where n is a �xed constant� In the binary case� the input is in

f�� 
gn where n is an input parameter�

Blum and Rivest��� showed when the inputs are binary and the training set is sparse �i�e� if n is

the length of the longest string in the training set M � then jM j is polynomial in n� the loading problem

is NP�Complete for the � H�node architecture� In another related paper� Lin and Vitter�
�� proved a

slightly stronger result by showing that the loading problem of ��cascade threshold net with binary inputs

is NP�complete�

However� when the input is analog �and the dimension is hence constant�� loading a 
�hidden layer

network requires a polynomial time only in the size of the training set� This result is achieved by utilizing

a result described by Megiddo �����

Theorem ��� Let k 
 � be an integer� It is possible to load any k H�node architecture in polynomial

time if the input dimension is constant�

Before proving Theorem ��
� we summarize the related result of Megiddo in ���� regarding polyhedral

separability in �xed dimension�

The following de�nition is due to Megiddo �����

De�nition ��� k�Polyhedral Separability� Given two sets of points A and B in IRd� and an integer

k 
 �� decide whether there exist k hyperplanes

Hj � f	p � � 	xj�
T 	p � xj�g� � 	xj � IRd� xj� � IR� j � 
� � � � � k�

that separate the sets through a Boolean formula� That is� associate a Boolean variable vj with each

hyperplane Hj � The variable vj is true at a point 	p � IRd if � 	xj�T	p 
 x
j
�� false if �

	xj�T 	p � x
j
�� and

unde�ned at points lying on the hyperplane itself� A Boolean formula � � ��v�� � � � � vk� that separates

the sets A and B is true for each point 	a � A and false for each point 	b � B�

The following Lemma is from �����

Lemma ��� ���� Let d� k be constants� and Z represents the integers numbers� M is a set of points in

Zd which are labeled ���� Then� there exists an algorithm to decide whether a set of classi�ed points

M can be separated by k hyperplanes which takes time polynomial in jM j�

�



Proof of Theorem ���� The computational view of the loading problem of analog input is very

similar to the model of Lemma ���� However� in this case the points are in ��� 
�d rather than Zd� The

second discrepancy is that the output of the k H�node architecture is a linear threshold function of the

hyperplanes rather than an arbitrary Boolean function� The proof of Lemma ��� holds for the analog

inputs as well� We add a polynomial algorithm to test each separating con�guration of the hyperplanes

to assure that the output of the network is indeed a linear threshold function of the hyperplanes��

Remark ��� A k H�node network �where k is a constant� with �xed input dimension is also learnable�

this follows as a consequence of a result proven in �	
��

� The Loading Problem For the � ��node Architecture

One can generalize Theorem ��
 and show that it is possible to load the � ��node architecture with analog

inputs in polynomial time� In this section we show that the loading problem for the � ��node architecture

is NP�complete when binary inputs are considered� The main theorem of this section is as follows�

Theorem ��� The loading problem for the � ��node architecture �L�AP� with binary inputs is NP�

complete�

A corollary of the above theorem is as follows�

Corollary ��� The class of Boolean functions computable by the � ��node architecture with binary inputs

is not learnable� unless RP � NP �

To prove theorem ��
 we reduce a restricted version of the set splitting problem� which is known to

be NP�complete���� to this problem in polynomial time� However� due to the continuity of this activation

function� many technical di�culties arise� The proof is organized as follows�


� Providing a geometric view of the problem �subsection ��
��

�� Introducing the �k� l��set splitting problem and the symmetric ��SAT problem �subsection �����

�� Proving the existence of a polynomial algorithm that transforms a solution of the ������set splitting

problem into a solution of its associated ������set splitting problem �using the symmetric ��SAT

problem� �subsection �����

�� De�ning the ��hyperplane problem and proving it is NP�complete by reducing from the ������set

splitting problem �subsection �����

�� Proving that the L�AP is NP�complete� This is done using all the above items�subsection �����

In subsection ���� we prove the corollary�

�



��� A Geometric View Of The Loading Problem

We start by categorizing the di�erent types of classi�cations produced by the � ��node architecture�

Without loss of generality we assume �� 
 �� � �if � � � or 
 � � the network reduces to a simple

perceptron which can be trained in polynomial time�� Consider the � hyperplanes P� �
Pn

i�� aixi � ��

P� �
Pn

i�� aixi � 
� Q� �
Pn

i�� bixi � �� and Q� �
Pn

i�� bixi � 
 �refer to Fig� ��� Let Fc��c� denote

the set of points which lie on the intersection of two n�dimensional hyperplanes
Pn

i�� aixi � c� andPn
i�� bixi � c�� Consider the set of points W � fF���� F���� F���� F���g� As all points belonging to the

same set Fi�j are labeled the same� we consider 	labeling sets Fi�j in W
 rather than the individual points

in f�� 
gn�

Type �� Either all the sets in W are labeled ��� or all the sets in W are labeled ���� In that case� all

the examples are labeled ��� or ���� respectively�

Type �� Exactly one set in W is labeled ���� Assume that this set is F���� Then� two di�erent types of

separations exist�

�a� There exist two halfspaces

H� � ��
nX

i��

aixi� 
 �

H� � 
�
nX

i��

bixi� 
 �

such that all the ��� points belong to H� 	H� and all the
��� points belong to H� 
H� �H�

and H� may be identical��

�b� There exist three halfspaces of the following form �Fig� ��b���

H� � ��
nX

i��

aixi� 
 �

H� � 
�
nX

i��

bixi� 
 �

H� �
nX
i��

��ai � 
bi�xi 
 �

where � 
 �� �� 
 � � � � �hence � 
 ���� and all the ��� and ��� points belong toH�	H�	H�

and H� 
H� 
H�� respectively �here� as well� H� and H� may be identical��

If any other set is marked ���� a similar separation is produced�

Type �� Two sets in W are marked ��� and the remaining two are labeled ���� Because the labeling

must be linearly separable� only the following types of classi�cations are possible�

�



�a� F��� and F��� are
��� �Fig� ��d��� Then� the input space is partitioned via the three halfspaces�

H� � ��
nX

i��

aixi� 
 � � 


H� � ��
nX

i��

aixi� 
 �

H� �
nX
i��

��ai � 
bi�xi 
 �


 
 �� � � � � �� �� 
 � �

If 
 � � then all the ��� and ��� points lie in H�
 �H�	H�� and H�
 �H�	H��� respectively�

If 
 
 � then all the ��� and ��� points lie in H�
 �H�	H�� and H�
 �H�	H��� respectively�

�b� F��� and F��� are
��� �Fig� ��c��� Then� the input space is partitioned via the three halfspaces�

H� � 
�
nX

i��

bixi� 
 � � �

H� � 
�
nX

i��

bixi� 
 �

H� �
nX
i��

��ai � 
bi�xi 
 �

� 
 �� 
 � � � �� �� 
 � �

If � � � then all the ��� and ��� points lie in H�
 �H�	H�� and H�
 �H�	H��� respectively�

If � 
 � then all the ��� and ��� points lie in H�
 �H�	H�� and H�
 �H�	H��� respectively�

�c� F��� and F��� are
��� �similar to Fig� ��d� with the labeling of ��� and ��� points interchanged��

This is the symmetrically opposite case of type ��a��

�d� F��� and F��� are
��� �similar to Fig� ��c� with the labeling of ��� and ��� points interchanged��

This is the symmetrically opposite case of type ��b��

Type 	� Three sets in W are labeled ���� This case is symmetrically opposite to type �� and thus

details are precluded� Note that two types are possible in type �� namely type ��a� and type ��b��

depending upon whether two or three halfspaces are involved� respectively �similar to type ���


�



��� The Set Splitting and Symmetric ��SAT Problems

The following problem is referred to as the �k� l��set splitting problem �SSP� for k � ��

INSTANCE� A set S � fsi j 
 � i � ng� and a collection C � fcj j 
 � j � mg of subsets of S� all of

exactly size l�

QUESTION� Are there k sets S�� � � � � Sk� such that Si � Sj � � for i �� j� �ki��Si � S� and cj �� Si for


 � i � k and 
 � j � m�

Note that the �k� l��SSP is solvable in polynomial time if both k � � and l � �� but remains NP�

complete if k � � and l � � �see �����

For later purposes we consider the symmetric ��SAT problem�

INSTANCE�Variables v�� v�� 
 
 
 � vn and a collectionD of one or two literal disjunctive clauses satisfying

the condition�

�i� j ��vi 
 ��vj�� �� D� ! ����vi� 
 vj� �� D�

QUESTION� Does there exist a satisfying assignment�

Note that the clause �vi
 vj� �resp� ���vi�
 ��vj��� is equivalent to both the implications ��vi � vj�

and ��vj � vi� �resp� �vi � �vj� and �vj � �vi�� while the clause vi �resp� �vi� is equivalent to the

implication ��vi � vi� �resp� �vi � �vi� � only� These two forms of disjunction and implication are

used interchangeably� In a manner similar to ����� we create a directed graph G � �V�E�� where V �

fdi� di j vi is a variableg� and E � f�li� lj� j �i� j � f
� � � � � ng�� �li � fdi� dig�� �lj � fdj� djg�� �gi � gj� �

D where gi �resp� gj� is vi �resp� vj� if li �resp� lj� is di �resp� dj� and �vi �resp� �vj� otherwiseg� Note

that an edge �li� lj� in E is directed from li to lj � In the symmetric ��SAT problem� the graph G has the

following crucial property�

��� Complemented and uncomplemented vertices alternate in any path� This is because the edges in G

are only of the form �di� dj� or �di� dj� for some two indices i and j �i � j is possible��

The following algorithm �nds a satis�able assignment if it exists or� stops if there is no one �see� for

example� ���� pp� ����������


� Denote by � the transitive closure of �� For any variable vi such that vi � �vi �resp �vi � vi�

set vi to false �resp� true��

�� Repeat until there is no edge directed into a false literal or from a true literal�

� Pick an edge directed into a false literal� i�e� of the type vr � �vs �resp� �vr � vs� so that

the variable vs is set to true �resp� false� and set vr to false �resp� true��







� Pick an edge directed from a true literal� i�e� of the type vr � �vs �resp� �vr � vs� so that

the variable vr is set to true �resp� false� and set vs to false �resp� true��

�� If there is still an unassigned variable� set it arbitrarily and return to step �� Otherwise� halt�

The above algorithm produces a satisfying assignment provided the following condition holds�

The instance of the ��SAT problem has a solution if and only if there is no directed cycle in

G which contains both the vertices di and di for some i�

It is easy to check the above condition in O�j V j� � O�n� time by �nding the strongly connected

components of G� Hence� computing a satisfying assignment or reporting that no such assignment exists

can be done in time polynomial in the input size�

��� The �k� l��Reduction Problem

We prove that under certain conditions� a solution of the �k� l��set splitting instance �S�C� can be trans�

formed into a solution of the associated �k�
� l��set splitting problem� More formally� we de�ne the

�k� l��reduction problem� named �k� l��RP� as follows�

INSTANCE� An instance �S�C� of the �k� l��SSP� and a solution �S�� S�� � � � � Sk��

QUESTION� Decide whether there exists a solution �S��� S
�
�� � � � � S

�
k��� to the associated �k�
� l��SSP

and construct one if it exists� where� for all i� j � f
� �� � � � � k � 
g i �� j�

S�i � Si � Ti

Ti � Sk

�Ti � Tj� � �

�k��p��Tp � Sk

We next state the existence of a polynomial algorithm for the ��� ���reduction problem� Since we are

interested in placing elements of S� in S� or S�� we focus on sets having at least one element of S�� Since

�S�� S�� S�� is a solution of the ��� ���SSP� no set contains � elements of S�� Let C
� � fcj j 
 � i � mg � C

be the collection of sets which contain at least one element of S�� Obviously� �j�cj �� S��	�cj �� S��	�cj ��

S���

Let A � fai j 
 � i � jSjg and B � fbi j 
 � i � jSjg be two disjoint sets� Each element of A � B is

to be colored �red� or �blue� so that the overall coloring satis�es the valid coloring conditions�

�a� For each set fxi� xj � xpg � C�� where xi� xj � S�� at least one of ai or aj should be colored red if

xp � S� and at least one of bi or bj has to be colored red if xp � S��

�b� For each i� 
 � i � jSj� at least one of ai or bi has to be colored blue�

�c� For each set fxi� xj� xpg such that xp � S� and xi� xj � S� �resp� xi� xj � S��� ap �resp� bp� must be

colored red�


�



Theorem ��� The following two statements are true�

�a� The ��� ���reduction problem is polynomially solvable�

�b� If the ��� ���RP has no solution� no valid coloring of A
S
B exists�

Proof�

�a� We show how to reduce the ��� ���reduction problem in polynomial time to the symmetric ��SAT�

As the later is polynomially solvable� part �a� will be proven� Assume an instance �S�C� S�� S�� S�� is

given and �S��� S
�
�� is to be found� For each element xi � S� assign a variable vi� vi � TRUE �resp�

vi � FALSE� indicates that the element xi is placed in S� �resp� S��� For each set ck � fxi� xj � xpg�

where xi� xj � S�� if xp is in S�� create the clause �vi 
 �vj �indicating both vi and vj should not be

true� since otherwise ck � S���� if xp is in S� create the clause vi 
 vj � for each set ck � fxi� xj � xpg� where

xi� xj � S� �resp� � S��� create the clause �vp �resp� vp�� Let D be the collection of all such clauses�

This instance of the symmetric ��SAT problem has a satisfying assignment if and only if the ��� ���RP

has a solution� for each variable vj � vj is true �resp� false� in the satisfying assignment if and only if xj
is assigned into S� �resp� S���

�b� Construct the graph G from the collection of clauses D as described in section ���� If no satisfying

assignment exists� the graph G has a directed cycle containing both di and di for some i� We show that

in that case no valid coloring of all the elements of A�B is possible� rearrange the indices and names of

the variable� if necessary� so that the cycle contains d� and d�� and �due to property ��� of G of section

���� is of the form d� � d� � d� � 
 
 
 � dr � d� � d�� � d�� � d�� � 
 
 
 � ds� � d�� where r and s
�

are two positive integers and x � y denotes an edge directed from vertex x to vertex y in G �not all of

the indices 
� �� � � � � r� 
�� ��� � � � � s� need to be distinct�� Next� we consider the following � cases�

Case �� Assume a� is colored red� Hence� b� must be colored blue due to coloring condition �b��

Consider the path from P from d� to d� �i�e�� the path d� � d�� where � denotes the sequence of

one or more edges in G�� The following subcases are possible�

Case ���� P contains at least one edge of the form dt� � dt� or dt� � dt� for some index t��

Consider the �rst such edge along P as we traverse from d� to d��

Case ������ The edge is of the form dt� � dt�� �that is� the associated clause is �xt��� Consider

the path P � � d� � dt� � P
� is of the form d� � d�� � d�� � 
 
 
 � dt��� � dt� and t� is

odd �t� � 
 is possible�� Now� due to coloring condition �a� and �b�� bt� is colored red �see

below��

i � 
 i � 
� i � �� � � � i � t� � 
 i � t�

ai � blue red 
 
 
 red

bi � blue red blue 
 
 
 blue red

On the other hand� at� is colored red due to coloring condition �c� and the edge dt� � dt��

But� coloring condition �b� prevents both at� and bt� to be colored red�


�



Case ������ The edge is of the form dt� � dt� �that is� the associated clause is xt��� Consider

the path P � � d� � dt� � P
� is of the form d� � d�� � d�� � 
 
 
 � dt��� � dt� and t� is

even� Now� due to coloring condition �a� and �b�� at� is colored red �see below��

i � 
 i � 
� i � �� � � � i � t� � 
 i � t�

ai � blue red 
 
 
 blue red

bi � blue red blue 
 
 
 red

On the other hand� bt� is colored red due to coloring condition �c� and the edge dt� � dt��

But� coloring condition �b� prevents both at� and bt� to be colored red�

Case ���� P contains no edge of the form dt� � dt� or dt� � dt� for any index t
��

Then� s� is even� and because of the coloring conditions �a� and �b� we must have bs� colored

blue �see below��

i � 
 i � 
� i � �� � � � i � s� � 
 i � s�

ai � blue red 
 
 
 blue

bi � blue red blue 
 
 
 red blue

Now� b� must be colored red because of the edge ds� � d�� a contradiction�

Case �� Assume a� is colored blue�

This case is symmetric to Case 
 if we consider the path d� � d� instead of the path d� � d��

Hence� part �b� is proved� �

��� The ��hyperplane Problem

We prove the following problem� which we term as the ��hyperplane problem ��HP�� to be NP�complete�

INSTANCE� A set of points in an n�dimensional hypercube labeled ��� and ����

QUESTION� Does there exist a separation of one or more of the following forms�

�a� A set of two halfspaces 	a	x 
 a� and H� � 	b	x 
 b� such that all the
��� points are in H� 	H�� and all

the ��� points belong to H� 
H��

�b� A set of � halfspaces H� � 	a	x 
 a�� H� � 	b	x 
 b� and H� � 	�a� b�	x 
 c� such that all the ��� points

belong to H� 	H� 	H� and all the ��� points belong to H� 
H� 
H��

Theorem ��� The 
�hyperplane problem is NP�complete�

Proof� We �rst notice that this problem is in NP as an a�rmative solution can be veri�ed in polynomial

time� To prove NP�completeness of the �HL� we reduce the ������set splitting problem to it�

Given an instance I of the ������SSP�

I � S � fsig� C � fcjg� cj � S� j S j� n� j cj j� � for all j


�



we create the instance I � of the ��hyperplane problem �like in �����

� The origin ��n� is labeled ���� for each element sj � the point pj having 
 in the jth coordinate

only is labeled ���� and for each clause cl � fsi� sj � skg� we label with ��� the point pijk which

has 
 in its ith� jth� and kth coordinates�

We next prove that

An instance I � of the ��hyperplane problem has a solution if and only if instance I of the ������SSP

has a solution�

�

Given a solution �S�� S�� of the ������SSP� we create the following two halfspaces� H� �
Pn

i�� aixi 
 ��
� �

where ai � �
 if si � S� and ai � � otherwise� H� �
Pn

i�� bixi 
 ��
� � where bi � �
 if si � S� and bi � �

otherwise� This is a solution of type �a� of the ��hyperplane problem�

�

�A� If there is a separation of type �a�� the solution of the set�splitting is analogous to ���� Let S� and

S� be the set of
��� points pj separated from the origin by H� and H�� respectively �any point

separated by both is placed arbitrarily in one of them�� To show that this separation is indeed a

valid solution� assume a subset cd � fxi� xj� xkg so that pi� pj � pk are separated from the origin by

H�� Then� also cd is separated from the origin by the same hyperplane� contradicting its positive

labeling�

�B� Otherwise� let H� �
Pn

i�� aixi 
 ��
� � H� �

Pn
i�� bixi 
 ��

� and H� �
Pn

i���ai � bi�xi 
 c be the

three solution halfspaces of type �b�� where � 
 c �since the origin is labeled ����� We show how to

construct a solution of the set splitting problem�

Let S� and S� be the set of
��� points pj separated from the origin by H� and H�� respectively �any

point separated by both is placed arbitrarily in one of the sets�� and let S� be the set of points

pj separated from the origin by H� but by neither H� nor H�� If S� � � then S� and S� imply a

solution as in �A� above� Otherwise� the following properties hold�

�I� There cannot be a set cj � fsx� sy� szg where px� py and pz all belong to S�� Otherwise�

ax� ay� az � c � �� and the ��� point corresponding to cj is classi�ed ��� by H�� Similarly� no

set cj exists that is included in either S� or S��

�II� Consider a set fsx� sy� szg� where px� py � S�� pz � S�� Since az � ��
� and az � ax � ay 
 ��

� �

we conclude ax � ay 
 �� Hence� at least one of ax or ay must be strictly positive� Similarly�

if pz � S�� at least one of bx� by is strictly positive�

�III� Consider any element sx of S�� Since the associated point px is classi�ed as
��� by H��

ax � bx � c � �� Hence� at least one of ax and bx is negative for each px�

�IV� If there is a set fsx� sy� szg where sx � S�� and sy � sz � S� �resp� sy � sz � S�� then ax
�resp� bx� is positive� This is because since sy � sz � S� �resp� sy � sz � S��� ay � az � ��

� �resp�

by� bz � ��
��� but ax � ay � az 
 ��

� �resp� bx � by � bz 
 ��
��� and hence ax 
 �

� �resp�

bx 

�
���


�



As for condition �I�� �S�� S�� S�� can be viewed as a solution of the ������SSP� We show that this

solution can be transformed into a solution of the required ������SSP�

Let A � fai j 
 � i � tg� B � fbi j 
 � i � tg� S�� S� and S� be as in theorem ���� Each

element x of A�B is colored red �resp� blue� if x 
 � �resp� x � ��� Conditions �a�� �b� and �c� of

valid coloring of A � B hold because of conditions �II�� �III� and �IV� above� Thus� �S�� S�� S�� is

transformed into �S ��� S
�
��"a solution of the ������SSP� �

��� Loading The � ��node Architecture is NP�complete

Next� we prove that loading the � ��node architecture is NP�complete� We do so by comparing it to the

��hyperplane problem� To this end� we construct a gadget that will allow the architecture to produce

only separations of type � �section ��
�� which are similar to those of the �HP�

We construct such a gadget with two steps� �rst� in Lemma ��
� we exclude separations of type ��

and then we exclude in separations of type � in Lemma ����

Lemma ��� Consider the ��dimensional hypercube in which �
�
�� ����� are labeled ���� and ���
�� �
���

are labeled ���� Then the following statements are true�

�a� There do not exist three halfspaces H�� H�� H� as described in type ��a���d� in section 
�� which

correctly classify this set of points�

�b� There exist two halfspaces of the form H� � 	a	x 
 a� and H� � 	b	x 
 b�� where a�� b� � �� such that all

the ��� and ��� points belong to H� 	H� and H� 
H�� respectively�

Lemma ��� Consider the labeled set A� �
�
�
�� ���
���� �
����� are labeled ���� and �
�
���� �
���
��

���
�
�� ������� are labeled ���� Then� there does not exist a separation of these points by type � halfspaces

as described in section 
���

The proof of Lemmas ��
 and ��� involve a long case�by�case analysis and is provided in the appendix�

Consider the following classi�cation again on a ��dimensional hypercube� �������� �
���
�� and ���
�
�

are labeled ���� and �����
�� ���
���� �
������ and �
�
�
� are labeled ���� Then� the following statements

are true due to the result in ����

�a� No single hyperplane can correctly classify the ��� and ��� points�

�b� No two halfspaces H� and H� exist such that all the
��� points belong to H� 
 H� and all the

���

points belong to H� 	H��

�c� There exist two halfspaces H� �
P�

i�� �ixi 
 �� and H� �
P�

i�� 
ixi 
 
� such that all the ��� points

lie in H� 	H�� and all the ��� points lie in H� 
H� �where X � �x�� x�� x�� is the input��

Now� we can show that the loading problem for the � ��node architecture is NP�complete�

Proof of theorem ���� First we observe that the problem is in NP as follows� The classi�cations of

the labeled points produced by the � ��node architecture �as discussed in section ��
� are ��polyhedrally


�



separable� Hence� from the result of ���� one can restrict all the weights to have at most O�n logn� bits�

Thus� a 	guessed
 solution can be veri�ed in polynomial time�

Next� we show that the problem is NP�complete� Consider an instance I � �S�C� of the ������SSP�

We transform it into an instance I � of the problem of loading the � ��node architecture as follows� we

label points on the �jSj� ���dimensional hypercube similar to as is � �section �����

The origin ��jSj��� is labeled ���� for each element sj � the point pj having 
 in the

jth coordinate only is labeled ���� and for each clause cl � fsi� sj � skg� we label

with ��� the point pijk which has 
 in its ith� jth� and kth coordinates� The points

��n� �� �� �� �� ��� ��n� �� �� �� 
� 
�� ��n� 
� �� 
� �� �� and ��n� �� 
� 
� �� �� are marked ���� and the

points ��n� �� �� �� 
� ��� ��n� �� �� �� �� 
�� ��n� �� �� 
� �� ��� ��n� �� 
� �� �� ��� ��n� 
� �� �� �� �� and

��n� 
� 
� 
� �� �� are labeled ����

Next� we show that a solution for I exists if and only if there exists a solution to I �� Given a solution

to the ������SSP� by lemma ��
�part�b�� and the result in ��� the two solution halfspaces to I � are as

follows �assume the last � dimensions are xn�� to xn����

H� � �
nX
i��

aixi�� xn�� � xn�� � xn�� � xn�	 � xn�� 
 �



�

H� � �
nX

i��

bixi� � xn�� � xn�� � xn�� � xn�	 � xn�� 
 �



�

where

ai �

�
�
 if si � S�
� otherwise

bi �

�
�
 if si � S�
� otherwise

We map the two solution halfspaces into the � ��node architecture as follows��

N� � �����
nX
i��

aixi�� xn�� � xn�� � xn�� � xn�	 � xn���� �

N� � �����
nX
i��

bixi� � xn�� � xn�� � xn�� � xn�	 � xn���� �

N� �

�

 �N� �N� 
 �


� �N� �N� � �
 �

Conversely� given a solution to I �� by Lemma ��
�part �a��� Lemma ��� and the result in ��� �as

discussed above� the only type of classi�cation produced by the � ��node architecture consistent with the

classi�cations on the lower � dimensions is of type ��a� �with H� �� H�� or ��b� only� which was shown

to be NP�complete in theorem ���� �

Remark ��� From the above proof of theorem 
�� it is clear that the NP�completeness result holds even

if all the weights are constrained to lie in the set f����
� 
g� Thus the hardness of the loading problem

holds even if all the weights are �small� constants�
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��� Learning the � ��node Architecture

Here� we prove corollary ��
 which states that the functions computable by the � ��node architecture

with binary inputs is not learnable unless RP � NP � As it is not believed that NP and RP are equal�

the corollary implies that most likely the � ��node architecture is not learnable �i�e� there are particular

values of � and � such that it is not ��� ���learnable��

Proof of Corollary ���� The proof uses a similar technique to the one applied in the proof of theorem

� of �
��� We assume that the functions computed by the � ��node architecture are learnable and show

that it implies an RP algorithm for solving a known NP�complete problem� that is� NP�RP�

Given a instance I � �S�C� of the ��� ���SSP� we create an instance I � of the � ��node architecture

and a set of labeled points M �this was used in the proof of theorem ��
��

The origin ��jSj��� is labeled ���� for each element sj � the point pj having 
 in the

jth coordinate only is labeled ���� and for each clause cl � fsi� sj � skg� we label

with ��� the point pijk which has 
 in its ith� jth� and kth coordinates� The points

��n� �� �� �� �� ��� ��n� �� �� �� 
� 
�� ��n� 
� �� 
� �� �� and ��n� �� 
� 
� �� �� are marked ���� and the

points ��n� �� �� �� 
� ��� ��n� �� �� �� �� 
�� ��n� �� �� 
� �� ��� ��n� �� 
� �� �� ��� ��n� 
� �� �� �� �� and

��n� 
� 
� 
� �� �� are labeled ����

Let D� �resp� D�� be the uniform distribution over these ��� �resp� ���� points� Choose � �

minf �
jSj�� �

�
jCj�	g� and � � 
� �� To prove the corollary it is su�cient to show that for the above choice

of �� �� D� and D�� ��� ���learnability of the � ��node architecture can be used to decide the outcome of

the ��� ���SSP in random polynomial time�

� Suppose I is an instance of the ��� ���SSP and let �S�� S�� be its solution� Then� from the proof of

the 	only if
 part of Theorem ��
 �see previous subsection�� there exists a solution to I � which is

consistent with the labeled points ofM � So� if the � ��node architecture is ��� ���learnable� then due

to the choice of � and � �and� by Theorem ��
�� the probabilistic learning algorithmmust produce a

solution which is consistent withM with probability at least 
��� thereby providing a probabilistic

solution of the ��� ���SSP� That is� if the answer to the ��� ���SSP question is 	YES
� then we answer

	YES
 with probability at least 
� ��

� Now� suppose that there is no solution possible for the given instance of the ��� ���SSP� Then� by

Theorem ��
� there is no solution of the � ��node architecture which is consistent with M � Hence�

the learning algorithmmust always either produce a solution which is not consistent withM � or fail

to halt in time polynomial in n� �
�
� and �

�
� In either case we can detect that the learning algorithm

was inconsistent with labeled points or did not halt in stipulated time� and answer 	NO
� In other

words� if the answer to the ��� ���SSP is 	NO
� we always answer 	NO
�

Since the ��� ���SSP is NP�complete �i�e�� any problem in NP has a polynomial time transformation

to ��� ���SSP�� it follows that any problem in NP has a random polynomial time solution� i�e�� NP � RP �

But it is well�known that RP � NP � hence we have RP � NP � �


�



Remark ��� In a similar manner� the subsequent NP�completeness result of the loading problem proven

in the next section can be used to provide a proof of the impossibility of learnability of the associated

concept under the assumption of RP �� NP �

� Another Architecture Which is Hard to Load

In this section we discuss an extension of the NP�completeness result� Inspired by Blum and Rivest���

who considered loading a few variations of the k H�node network� in which all activations functions were

discrete� we consider a variations of the k  �node architecture in which two nodes compute continuous

activation functions� The result of this section has theoretical importance only� as binary threshold units

are not popular in applications�

Consider a unit G that computes H�
Pn

i�� �ixi � ��� where �i�s are real constants and x� to xn are

input variables which assume any real value in ��� 
�� We say that this unit G computes a Boolean

NAND �i�e�� negated AND� function of its inputs provided its weights and threshold satisfy the following

requirements�

�i � � � � 
 � i � n ���

For justi�cation� assume that the inputs to node G are binary� Then� the output of G is one if and only

if all its inputs are zeroes�

Our model consists of r � � hidden nodes N�� N�� � � � � Nr�� �where r is a �xed polynomial in n�

the number of inputs� and one output node� The nodes N�� N�� � � � � Nr in the hidden layer compute

the binary threshold functions H� and the two remaining hidden nodes Nr�� and Nr�� compute the

	saturating activation
 functions � �equation ��� The output node Nr�� computes a Boolean NAND

function �Fig� ��� We term this as the �Restricted� ��� r� ���H��node architecture�

One can generalise Theorem ��
 and show that the 	Restricted
 ��� r� ���H��node architecture can be

loaded in polynomial time in the case when the input dimension is �xed� However� the loading problem

becomes NP�complete when �binary� inputs of varying dimensions are considered� The main theorem of

this section is as follows�

Theorem 	�� The loading problem for the �Restricted� ��� r� ���H��node architecture with binary inputs

of varying dimension is NP�complete�

Before proving Theorem ��
 we show� given an instance I of the ��� ���SSP� how to construct an

instance I � of the �r � �� ���SSP such that I has a solution if and only if I � has one�

Let I � �S�C� be a given instance of the ��� ���SSP� We construct I � by adding �r � � new elements

Y � fyi j 
 � i � �r� �g and creating the following new sets�

� Create the sets fsi� yj� ykg for all 
 � i � n� 
 � j� k � �r � �� j �� k� This ensures that if a set in

a solution of the set�splitting problem contains an element of S� it may contain at most one more

element of Y �

� Create the sets fyi� yj� ykg for all 
 � i� j� k � �r � �� i �� j �� k� This ensures that no set in a

solution of the set�splitting problem may contain more than two elements of Y �


�



Let I � � �S��C�� be the new instance of the �r� �� ���SSP� where S� � S � Y � and C� contains all the

sets of C and the additional sets as described above�

Lemma 	�� The instance I � of the �r � �� ���SSP has a solution if and only if the instance I of the

��� ���SSP has a solution�

Proof�

�

Let �S�� S�� be a solution of I � Then� a solution �T�� T�� 
 
 
 � Tr��� of the instance I
� is as follows�

Ti � fy�i��� y�ig for 
 � i � r

Tr�� � S� � fy�r��g

Tr�� � S� � fy�r��g

�

Let �T�� T�� 
 
 
 � Tr��� be a solution of I
��

Case �� There are at most two sets of T�� T�� 
 
 
 � Tr�� which contain all the elements of S� Then these

two sets constitute a solution of I �

Example� Let n � �� If T� � fx�� x�� x�� y�g and T� � fx�� x�� y�g are the two sets that contain all the

elements of S � fx�� x�� x�� x�� x�g� then the two solution sets S� and S� are�

S� � fx�� x�� x�g

S� � fx�� x�g

Case �� Otherwise� there are m �m � �� sets� T�� � � � � Tm� each containing a distinct element of S� At

most one element of Y occurs in each Ti �since two elements of Y cannot be in the same set with an

element of S without violating the set�splitting constraint�� hence m � r � �� So� there are r � � �m

remaining sets in the solution of the instance I � and at least �r � � �m elements of Y to be placed in

those sets� By the pigeonhole principle� one of these remaining r���m sets must contain at least three

elements of Y �since m � ��� thus violating the set�splitting constraint� So� case � is not possible� �

Proof of Theorem 	��� The ��� and ��� points are �r � ���polyhedrally separated by the output of

the network in which the Boolean formula for the polyhedral separation is the formula for the NAND

function� Hence� from the result of ���� we can restrict all the weights to have at most p�n�r� bits �where

p�x� is some polynomial in x�� Since r is a polynomial in n� any 	guessed
 solution may be veri�ed in

polynomial time� So� the problem is in NP�

��



We next show that the problem is NP�complete� Given an instance I of the ��� ���SSP� we construct

an instance I � of the 	Restricted
 ��� r� ���H��node architecture as follows� We create �rst an instance

I �� of the �r � �� ���SSP �see Lemma ��
�� We then add the following labeled points� thus constructing

the associated instance I ��

The instance I � is the architecture along with the following set of points� The origin ��jS
�j�

is labeled ���� for each element sj � S�� the point pj having 
 in the j
th coordinate only is

labeled ���� and for each clause cl � fsi� sj � skg � C�� we label with ��� the point pijk which

has 
 in its ith� jth� and kth coordinates�

�

Given a solution �S�� S�� of I � we construct a solution �T�� T�� 
 
 
 � Tr��� of I
�� as described in the proof

of Lemma ��
� Consider the following r � � halfspaces�

Hi �
nX

j��

�i�jxj 
 �



�
�
 � i � r� ��

where�

�i�j �

�
�
 if sj � Ti
� otherwise

All labeled points of I � are separated by these halfspaces� the ��� points lie in 	r��i��Hi and the ���

points lie in 
r��i��Hi�

We map the r�� halfspaces to the 	Restricted
 ��� r� ���H��node architecture as follows� The hidden

nodes compute�

Ni � H���
nX

j��

�i�jxj�� i � 
 � � �r

Nr�� � ����
nX

j��

�r���jxj��

Nr�� � ����
nX

j��

�r���jxj�� �

and the output node Nr�� computes�

Nr�� �

�

 if ��

Pr��
i�� Ni� 
 ��

�

� if ��
Pr��

i�� Ni� � ��
�

�

Conversely� given a solution to the instance I �� we construct a solution to I � The classi�cation produced by

the 	Restricted
 ��� r� ���H��node architecture is as follows� Each hidden threshold node Ni �
 � i � r�

de�nes a halfspace Hi�

�




Hi �
nX

j��

�i�jxj 
 �i

for some real numbers �i��� 
 
 
 � �i�n and �i� From the classi�cations produced by the � ��node architecture

as described in section ��
 and since the output node Nr�� computes a Boolean NAND function� there

are at most j halfspaces �for � � j � �� corresponding to the nodes Nr�� and Nr���

Hr�� �
nX

i��

aixi 
 a�

Hr�� �
nX

i��

bixi 
 b�

Ht �
nX
i��

�ai � bi�xi 
 c� �r� � � t � r � j�

All the ��� points lie in 	r�j
i��Hi� and all the

��� points lie in 
r�j
i��Hi�

Let Ti be the
��� points separated from the origin by the halfspace Hi of the output of the network

�for 
 � i � r� j� � � j � ��� No Ti contains three elements of the same set of the instance I
�� otherwise

the set itself will be in Ti as well� contradicting its positive labeling� Consider the sets Ti as the solution

of the instance I ��� By Theorem ��� the sets Tr�� to Tr�j can be combined to � sets� say T
�
r�� and T

�
r���

without violating the set�splitting constraints� Hence� we have r�� sets� T�� T�� 
 
 
 � Tr� T �
r��� T

�
r��� as the

r�� solution sets for the instance I �� which satisfy the set�splitting constraint� Hence� by Lemma ��
 we

can construct the two solution sets �S�� S�� of the instance I � �

� Conclusion and Open Problems

We have shown that the loading problem is NP�complete even for a simple feedforward network with a

speci�c 	saturated linear 
 �analog type� activation functions� This adds to the previously known results

stating that the loading of a simple net with discrete activations is NP�complete ����� and a net with a

speci�c �somehow arti�cial� analog activation function has a fast loading ������� Unfortunately� our proof

does not seem to generalize to other activation functions� The following open problems may be worth

investigating further�

� Does the NP�completeness result hold for the � ��node architecture� where � is a more complicated

activation function �e�g� when � is the quadratic spline activation function or the standard sigmoid��

� What is the complexity of the loading problem for networks with more layers� Note that hardness

of the loading problem for networks with one hidden layers does not necessarily imply the same

for networks with more hidden layers� In fact� it is already known that there are functions which

cannot be computed by threshold networks with one hidden layer and a constant number of nodes�

but can be computed by threshold networks with two hidden layers and a constant number of nodes�

see ��
��

� Is there a characterization of the activation functions for which the loading problem is intractable�

��
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APPENDIX

Proof of Lemma ���� �a� Since the origin is labeled ��� it is not possible for � halfspaces of type ��c�

or type ��d� to correctly classify the above set of points in the ��dimensional hypercube�

Note that the origin is labeled ���� and hence it must lie in at least one of H� or H� for the three

halfspaces of type ��a� or type ��b��

Consider the halfspaces as in type ��a�� There are two cases�

Case 
� 
 
 �� Since H� � H� and H� � H�� all the
��� points must belong to H� and all the

��� points

must belong to H�� Hence� ���
� and �
��� must belong to H� and we have

�a� � � ���

�a� � � ���

Adding inequalities � and �� and since � � �� we get

��a� � a�� � �� � � � � ���

Inequality � implies that the ��� point �
�
� belongs to H� and hence in H� 	 H�� Hence� we must

have

��a� � a�� 
 � � 
 ���

��a� � a�� � 
�b� � b�� 
 � ���

We �nd the following three cases�

Case ���� Both the ��� points ���
� and �
��� belong to H� 	H�� Then� we must have

�a� � 
b� � � ���

�a� � 
b� � � �
��

�

�

Adding inequalities � and 
� and since � � � we get

��a� � a�� � 
�b� � b�� � �� � � �
��

Inequality 
� contradicts inequality ��

Case ���� Both the ��� points belong to H�� Then� we must have

�a� � � � 
 �
��

�a� � � � 
 �
��

�
��

Adding inequalities 
� and 
� and since � � 
� we get

��a� � a�� � ��� � 
� � � � 
 �
��

��



Inequality 
� contradicts inequality ��

Case ���� One of the negative points belongs to H� but not to H� 	 H� and the other negative

point belongs to H� 	H� but not to H��

Case ������ ���
� belongs to H� 	H� and �
��� belongs to H�� Since �
��� belongs to H�� we must

have

�a� � � � 
 �
��

From inequalities � and 
� we must have �a� 
 �� On the other hand� inequality � claims that

�a� � �� We get � � �� which is impossible since � � ��

Case ������ �
��� belongs to H� 	H� and ���
� belongs to H�� Similar to case ��
�

Case �� 
 � �� Again� since H� and H� are parallel� all the
��� points must lie in H�� and all the

���

points must belong to H�� Hence �
��� and ���
� must belong to H� which gives

�a� � � � 
 �
��

�a� � � � 
 �
��

����

By adding inequalities 
� and 
�� we get

��a� � a�� � �� � �
 ��
�

Since 
 
 �� we have �� � �
 � � � 
� Hence� from inequality �
 we get ��a� � a�� � � � 
� Hence�

the point �
�
� lies in H�� and hence in H� 	H�� Then� we have

��a� � b�� � 
�b� � b�� 
 � ����

��a� � a�� 
 � ����

����

Now� we have the following � cases�

Case ��
� Both the negative points �
�������
� lie in H� 	H�� Then� we have

�a� � 
b� � � ����

�a� � 
b� � � ����

����

Adding inequalities �� and �� we get

��a� � a�� � 
�b� � b�� � �� ����

From inequalities �� and �� we get � � ��a�� a��� 
�b�� b�� � ��� which is impossible since � � ��

Case ���� Both the negative points ���
���
��� lie in H�� Then� we have

�a� � � ����

�a� � � ����

��
�

��



Adding inequalities �� and �� we get ��a� � a�� � �� � � �since � � �� which contradicts inequality

���

Case ���� One of the two negative points lie in H� and the other one lie in H� 	H� but not H��

Case ����
� �
��� lies in H� and ���
� lies in H� 	H� but not in H�� Hence�

�a� � � ����

�a� � 
b� � � ����

�a� 
 � ����

����

From inequalities �� and �� we have �a� 
 �� On the other hand� from inequality 
� we have

�a� � � � 
� It implies that � � � � 
 which contradicts 
 
 ��

Case ������ ���
� lies in H� and �
��� lies in H� 	H� but not in H�� Similar to case ����
�

The proof for the type ��b� halfspaces is similar to that of type ��a� �by interchanging the roles of

the parameters � and 
��

�b�� The following are a set of � possible halfspaces�

x� � x� 
 �



�

�x� � x� 
 �



�
�

Proof of Lemma ���� The case of two halfspaces of type ��a� follows from the result of ���� We prove

the case for halfspaces of type ��b��

Let H� �
P�

i�� aixi 
 a�� H� �
P�

i�� bixi 
 b� and H� �
P�

i�� cixi 
 c� be the three halfspaces of type

��b�� where ci � ai � bi for 
 � i � � �assuming �x�� x�� x�� is the input�� The following observations are

true�

�i� If a� � � �resp� b� � �� c� � �� then all the examples in A except for the origin lie in H� �resp� H��

H��� The reason is as follows� If a� � �� then since �����
�� ���
��� and �����
� are ���� we must

have a�� a�� a� � a�� However� then since a� � �� a� � a� � �a� � a�� a� � a� � �a� � a�� and

a� � a� � a� � �a� � a�� hence the claim follows�

�ii� Consider the same set of examples as in A except that now the origin is not labeled� Then� there

does not exist a single hyperplane that separates the ��� and ��� points in this set� Assume it does�

and let H � ax� � bx� � cx� 
 d be the hyperplane� Since �
�
�
� is ���� we must have

a � b� c � d ����

Since �
���
� and ���
�
� are ���� we must have a� c 
 d� b�c 
 d� Adding the last two inequalities

we get

a� b� �c 
 �d ����

��



From inequalities �� and �� we get

�d� c � a� b� c � d� d � c

which implies that the ��� point �����
� belongs to H � a contradiction�

Since the origin is classi�ed as ��� by at least one of the hyperplanes� at least one of a�� b� and c�
must be negative� We consider the following cases�

Case �� a�� b�� c� � �� By observation �i� above all the ��� points except the origin lie in 	�i��Hi� a

contradiction�

Case �� Two of a�� b�� c�� say a� and b�� are negative�

By observation �i� above all the points �except the origin� are classi�ed as ��� by two of the three

halfspaces� namely halfspaces H� and H�� and by observation �ii� above the remaining halfspace

H� cannot correctly classify all of them�

Case �� One of a�� b� and c� is negative�

Case ���� a� � �� b�� c� � ��

By observation �i� above� all the points except for the origin� lie in H�� By observation �ii�

above both the ��� points �other than the origin� cannot be correctly classi�ed by H� alone or

H� alone�

Case ������ �
���
� lies in H� and ���
�
� lies in H��

Considering the ��� and ��� points �other than the origin� and the corresponding classi��

cations by the hyperplanes H�� H� and H�� we have the following set of inequalities�

a� � a� � �

b� � b� � b� � b�

c� � c�

b� � b� 
 b� 
 �

c� � c� 
 c� 
 �

Since b� � b� � b� � b� and b� � b� 
 b�� we have b� � �� Since c� � c� 
 c� � �� but

c� � c�� we must have c� 
 ��

However� since c� � a� � b�� and a� � �� b� � �� so c� � �� hence a contradiction�

Case ������ �
���
� lies in H� and ���
�
� lies in H�� Similar to case ��
�
�

Case ���� b� � �� a�� c� � �� Similar to case ��
�

Case ���� a�� b� � �� c� � ��

By observation �i� above all the points except for the origin lies in H�� By observation �ii�

above both the ��� points �other than the origin� cannot be correctly classi�ed by H� alone or

H� alone�

��



Case ������ �
���
� lies in H� and ���
�
� lies in H��

Considering the ��� and ��� points �other than the origin� and the corresponding classi��

cations by the hyperplanes H�� H� and H�� we have the following set of inequalities�

a� � a�

a� � a� 
 a� � �

b� � b�

b� � b� 
 b� � �

c� � c� � �

Since b� � b�� and b� � b� 
 b� � �� we must have b� 
 �� Since a� � a�� and a� � a� 


a� � �� we must have a� 
 �� So� c� � a�� b� 
 �� which contradicts the inequality c� � �

above�

Case ������ �
���
� lies in H� and ���
�
� lies in H�� Similar to case ����
� �

��
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Figure �� A �  �node architecture

Figure �� Di�erent classi�cations produced by the ��node network corresponding to

di�erent labeling of the points in the intersection of the hyperplanes�

Figure �� The �Restricted� ��� r� ��
 H��node network�

��


