
Crossing-Optimal Extension of Simple Drawings∗

Robert Ganian †1, Thekla Hamm†1, Fabian Klute ‡2, Irene Parada 3, and Birgit
Vogtenhuber §4

1Algorithms and Complexity Group, TU Wien, Austria
2Utrecht University, The Netherlands

3TU Eindhoven, The Netherlands
4Graz University of Technology, Austria

[rganian|thamm]@ac.tuwien.ac.at, f.m.klute@uu.nl,
i.m.de.parada.munoz@tue.nl, bvogt@ist.tugraz.at

Abstract
In extension problems of partial graph drawings one is given an incomplete drawing of an input

graph G and is asked to complete the drawing while maintaining certain properties. A prominent
area where such problems arise is that of crossing minimization. For plane drawings and various
relaxations of these, there is a number of tractability as well as lower-bound results exploring the
computational complexity of crossing-sensitive drawing extension problems. In contrast, compara-
tively few results are known on extension problems for the fundamental and broad class of simple
drawings, that is, drawings in which each pair of edges intersects in at most one point. In fact, only
recently it has been shown that the extension problem of simple drawings is NP-hard even when the
task is to insert a single edge.

In this paper we present tractability results for the crossing-sensitive extension problem of simple
drawings. In particular, we show that the problem of inserting edges into a simple drawing is fixed-
parameter tractable when parameterized by the number of edges to insert and an upper bound on
newly created crossings. Using the same proof techniques, we are also able to answer several closely
related variants of this problem, among others the extension problem for k-plane drawings. Moreover,
using a different approach, we provide a single-exponential fixed-parameter algorithm for the case in
which we are only trying to insert a single edge into the drawing.

1 Introduction
The study of the crossing number of graphs, that is, the minimum number of edge crossings necessary
to draw a given graph, is a major research direction in the field of computational geometry [10, 34, 37].
More recently, there have been a number of works focusing on minimizing or restricting edge crossings
when the task is not to draw a graph from scratch, but rather to extend a partial drawing that is provided
on the input. Prominently, Chimani et al. [14] showed that extending a plane drawing with a star in
a way that minimizes the number of crossings of the resulting drawing is polynomial-time tractable.
Later, Angelini et al. [1] obtained a polynomial-time algorithm for extending plane drawings so that the
crossing number remains 0 (i.e., the resulting drawing is plane).

While the two results mentioned above give rise to polynomial-time variants of crossing-minimization
extension problems, a number of important cases are known to be NP-hard; a prototypical example is

∗This work was started during the Austrian Computational Geometry Reunion Meeting, August 10 to 14, in Strobl,
Austria. We thank all the participants for the nice working atmosphere as well as fruitful discussions on this as well as
other topics. The authors would also like to thank Eduard Eiben for his insightful comments.

†Supported by the Austrian Science Fund (FWF) via project P31336 (New Frontiers for Parameterized Complexity).
‡Supported by the Netherlands Organisation for Scientific Research (NWO) under project no. 612.001.651.
§Partially supported by Austrian Science Fund (FWF) within the collaborative DACH project Arrangements and

Drawings as FWF project I 3340-N35.

1

ar
X

iv
:2

01
2.

07
45

7v
1

 [
cs

.C
G

]
 1

4
D

ec
 2

02
0

https://orcid.org/0000-0002-7762-8045
https://orcid.org/0000-0002-7791-3604
https://orcid.org/0000-0003-3147-0083
https://orcid.org/0000-0002-7166-4467

the Rigid Multiple Edge Insertion (RMEI) problem, which asks for a crossing-minimal insertion
of k edges into a plane drawing of an n-vertex graph [15, 39]. To deal with this, in recent years the
focus has broadened to also consider a weaker notion of tractability, namely, fixed-parameter tractability
(FPT) [17, 19]. Chimani and Hliněný [15] have shown that RMEI is FPT, i.e., there is an algorithm
which solves that problem in time f(k) · nO(1). Other works have considered various relaxations of
crossing minimization; for instance, recently Eiben et al. [21] established the fixed-parameter tractability
of extending drawings by k edges in a way which does not minimize the total number of crossings, but
rather bounds the number of crossings per edge to at most 1.

It is worth noting that for many questions in the intersection of minimizing the number of crossings
and the study of graph extension problems, an important goal is that the desired extension should
maintain certain properties of the given partial representation. For instance, in the problems studied
by Angelini et al. [1] and Eiben et al. [21], the input is a plane or 1-plane1 drawing, respectively,
and the desired extension must maintain the property of being (1-)plane. In a similar manner, recent
years have seen a wide range of results exploring the algorithmic complexity of such extension problems
maintaining more restricted properties. For plane drawings, classical restrictions of the drawing such
as it being straight-line [35], level-planar [9], upward [32], or orthogonal [3] have been explored. Other
results for planar graphs consider the number of required bends [13] or assume that the partially drawn
subgraph is a cycle [12, 33]. For 1-plane drawings, the same authors as in [21] very recently extended
their results [20].

Leaving planar and just beyond planar graphs, the most prominent class of drawings with respect to
crossing minimization are simple drawings (also called good drawings [8, 22], simple topological graphs [31],
or simply drawings [27]). A drawing is simple if every pair of edges intersect in at most one point that
is either a common endpoint or a proper crossing. Simplicity is an extremely natural restriction that is
taken as a basic assumption in a range of settings, e.g., [2, 5, 11, 29], and it is known that simplicity is
a necessary requirement for crossing-minimal drawings [37].
Contribution. In this work we study the extension problem for simple drawings in the context of
crossing minimization. In other words, our aim is to extend a given simple drawing with k new edges
while maintaining simplicity and restricting newly created crossings. Naturally, the most obvious way of
restricting such crossings is by bounding their number, leading us to our first problem of interest:2

Simple Crossing-Minimal Edge Insertion (SCEI)
Input: A graph G = (V,E) along with a connected simple drawing G, an integer `, and

a set F of k edges of the complement of G.
Question: Can G be extended to a simple drawing G′ of the graph G′ = (V,E ∪ F) such

that the number of crossings in G′ that involve an edge of F is at most `?

Note that we require the initial drawing G to be connected. While this is a natural assumption that is
well-justified in many situations, it would certainly also make sense to consider the more general setting
in which this is not the case. A short discussion of how the connectivity of G is used in our proof is
provided in Section 4.

SCEI was recently shown to be NP-complete already when |F | = 1 and ` ≥ |E| (meaning that
the aim is merely to obtain a simple drawing) [7]. On the other hand, if one drops the requirement
that the resulting drawing must be simple, the problem immediately reduces to the Rigid Multiple
Edge Insertion problem that was shown to be FPT (parameterized by the number of inserted edges)
by Chimani and Hliněný [15]—indeed, one can simply planarize the initial drawing and then apply the
provided algorithm.

The main contribution of this article is a fixed-parameter algorithm for SCEI parameterized by
k+ `. The result is obtained via a combination of the techniques recently introduced by Eiben et al. [21]
and completely new machinery. A high-level overview of the challenges posed by the problem and our
strategy for overcoming these challenges is provided in the next part of this introduction. However,
before proceeding there, let us mention other natural crossing-sensitive restrictions of simple drawing
extension.

1A drawing of a graph is `-plane if every edge is involved in at most ` crossings.
2Decision versions of problems are provided purely for complexity-theoretic reasons; every algorithm provided in this

article is constructive and can also output a solution as a witness.

2

Instead of restricting the total number of newly created crossings, one may aim to extend G in a way
which bounds the number of crossings involving each of the newly added edges—akin to the restrictions
imposed by `-planarity. We call this problem Simple Locally Crossing-Minimal Edge Insertion
(SLCEI), where the role of ` is that it bounds the maximum number of crossings involving any one
particular edge of F . Alternatively, one may simply require that every edge in the resulting drawing is
involved in at most ` crossings, i.e., that the whole G′ is `-plane. This results in the Simple `-Plane
Edge Insertion (S`-PEI) problem. Both of these problems are known to be NP-hard when either ` = 1
or k = 1, meaning that we can drop neither of our parameters if we wish to achieve tractability.

One key strength of the framework we develop for solving SCEI is its universality. Notably, we obtain
the fixed-parameter tractability of SLCEI as an immediate corollary of the proof of our main theorem,
while the fixed-parameter tractability of S`-PEI follows by a minor adjustment of the final part of our
proof. Moreover, it is trivial to use the framework to solve the considered problems when one drops the
requirement that the final drawing is simple—allowing us to, e.g., generalize the previously established
fixed-parameter tractability of 1-Planar Edge Insertion [21] to `-Planar Edge Insertion (`-PEI).

Finally, we note that a core ingredient in our approach is the use of Courcelle’s theorem [16], and hence
the algorithms underlying our tractability results will have an impractical dependency on k. However,
for the special case of |F | = 1 (i.e., when inserting a single edge), we use so-called representative sets
to provide a single-exponential fixed-parameter algorithm which is tight under the exponential time
hypothesis [28].
Proof Overview. On a high level, our approach for establishing the fixed-parameter tractability
of the considered problems follows the general strategy co-developed by a subset of the authors to solve
1-Planar Edge Drawing Extension (1PEDE), i.e., the problem of inserting k edges into a drawing
while maintaining 1-planarity. This general strategy can be summarized as follows:

1. We preprocess G and a planarization of G to remove parts of G which are too far away to inter-
act with our solution. This drawing is then translated into a graph representation of bounded
treewidth [36].

2. We identify a combinatorial characterization that captures how the solution curves will be embed-
ded into G. Crucially, the characterization has size bounded by our parameters.

3. We perform brute-force branching over all characterizations to pre-determine the behavior of a
solution in G, and for each such characterization we employ Courcelle’s theorem [16] to determine
whether there exists a solution with such a characterization.

The specific implementation of this strategy differs substantially from the previous work [21]—for
instance, the combinatorial characterization of solutions in Step 2 and the use of Courcelle’s theorem in
Step 3 are both different. But the by far greatest challenge in implementing this strategy occurs in Step
1. Notably, removing the parts of G required to obtain a bounded-treewidth graph representation creates
holes in the drawing, and these could disconnect edges intersecting these holes. The graph representation
can then lose track of “which edge parts belong to each other”, which means we can no longer use it to
determine whether the extended drawing is simple. We remark that specifically for S`-PEI and `-PEI,
it would be possible to directly adapt Step 1 to ensure that no edge is disconnected in this manner, thus
circumventing this difficulty.

To handle this problem, we employ an in-depth geometric analysis combined with a careful use of the
sunflower lemma and subroutines which invoke Courcelle’s theorem to construct a representation which
(a) still has bounded treewidth, and (b) contains partial information about which edge parts belong
to the same edge in G. A detailed overview of how this is achieved is presented at the beginning of
Section 3—but for a high-level and simplified intuition, let us imagine that we wish to extend G with
an s-t curve π while maintaining simplicity and achieving only few crossings, and we are worried about
long-distance edges in G which may be intersected by π but also contain parts that are very “far” from s
and t. We essentially show that there is an efficiently computable and small set of special long-distance
edges in G that is sufficient to find one solution, and all other long-distance edges may be disregarded
(even though there may exist some other solutions using these).
Related Work. There have been two distinct lines of work that recently considered simple drawings
in the context of drawing extension problems, albeit with different goals. First, Hajnal et al. [26] and

3

Kynčl et al. [30] studied saturated simple drawings, i.e., simple drawings in which no edge can be inserted
without violating simplicity. Second, a number of authors have studied the computational complexity of
deciding whether a given simple drawing can be extended with a given set of edges while maintaining
simplicity [6, 7].

2 Preliminaries
We use standard terminology for undirected and simple graphs [18]. The length of a walk and path is
the number of edges it visits. For r ∈ N, we write [r] as shorthand for the set {1, . . . , r}.

A simple drawing of a graph G (also known as good drawing or as simple topological graph in the
literature) is a drawing G of G in the plane such that every pair of edges shares at most one point that is
either a proper crossing or a common endpoint. In particular, no tangencies between edges are allowed,
edges must not contain any vertices in their relative interior, and no three edges intersect in the same
point. Given a simple drawing G of a graph G and a set of edges F of the complement of G we say that
the edges in F can be inserted into G if there exists a simple drawing G+ of G+ = (V (G), E(G) ∪ F)
that contains G as a subdrawing. A drawing G of a graph in which each edge is crossed at most k times
is called k-plane.The planarization of a simple drawing G of G is the plane graph G× obtained from G by
subdividing the edges of G at the crossing points of G. We call each part of the subdivision of e ∈ E(G)
in G× an edge segment (of e).
Sunflower Lemma. One tool we use to obtain our results is the classical sunflower lemma of Erdős
and Rado. A sunflower in a set family F is a subset F ′ ⊆ F such that all pairs of elements in F ′ have
the same intersection.

Lemma 1 ([23, 24]). Let F be a family of subsets of a universe U , each of cardinality exactly b, and let
a ∈ N. If |F| ≥ b!(a− 1)b, then F contains a sunflower F ′ of cardinality at least a. Moreover, F ′ can be
computed in time polynomial in |F|.

Parameterized Complexity. In parameterized complexity [24, 19, 17], the complexity of a problem
is studied not only with respect to the input size, but also with respect to some problem parameter(s).
The core idea behind parameterized complexity is that the combinatorial explosion resulting from the
NP-hardness of a problem can sometimes be confined to certain structural parameters that are small in
practical settings. We now proceed to the formal definitions.

A parameterized problem Q is a subset of Ω∗ × N, where Ω is a fixed alphabet. Each instance of
Q is a pair (I, κ), where κ ∈ N is called the parameter. A parameterized problem Q is fixed-parameter
tractable (FPT) [24, 19, 17], if there is an algorithm, called an FPT-algorithm, that decides whether an
input (I, κ) is a member of Q in time f(κ) · |I|O(1), where f is a computable function and |I| is the input
instance size. The class FPT denotes the class of all fixed-parameter tractable parameterized problems.
A parameterized problem Q is FPT-reducible to a parameterized problem Q′ if there is an algorithm,
called an FPT-reduction, that transforms each instance (I, κ) of Q into an instance (I ′, κ′) of Q′ in time
f(κ) · |I|O(1), such that κ′ ≤ g(κ) and (I, κ) ∈ Q if and only if (I ′, κ′) ∈ Q′, where f and g are computable
functions.
Monadic Second Order Logic. We consider Monadic Second Order (MSO) logic on (edge-)labeled
directed graphs in terms of their incidence structure, whose universe contains vertices and edges; the
incidence between vertices and edges is represented by a binary relation. We assume an infinite supply
of individual variables x, x1, x2, . . . and of set variables X,X1, X2, The atomic formulas are V x (“x
is a vertex”), Ey (“y is an edge”), Ixy (“vertex x is incident with edge y”), x = y (equality), Pax (“vertex
or edge x has label a”), and Xx (“vertex or edge x is an element of set X”). MSO formulas are built up
from atomic formulas using the usual Boolean connectives (¬,∧,∨,→,↔), quantification over individual
variables (∀x, ∃x), and quantification over set variables (∀X, ∃X).

Free and bound variables of a formula are defined in the usual way. To indicate that the set of
free individual variables of formula Φ is {x1, . . . , x`} and the set of free set variables of formula Φ
is {X1, . . . , Xq} we write Φ(x1, . . . , x`, X1, . . . , Xq). If G is a graph, v1, . . . , v` ∈ V (G) ∪ E(G) and
S1, . . . , Sq ⊆ V (G) ∪ E(G) we write G |= Φ(v1, . . . , v`, S1, . . . , Sq) to denote that Φ holds in G if the
variables xi are interpreted by the vertices or edges vi, for i ∈ [`], and the variables Xi are interpreted
by the sets Si, for i ∈ [q].

4

The following result (the well-known Courcelle’s theorem [16]) shows that ifG has bounded treewidth [36]
then we can find an assignment ϕ to the set of free variables F with G |= Φ(ϕ(F)) (if one exists) in
linear time.

Theorem 2 (Courcelle’s theorem [16, 4]). Let Φ(x1, . . . , x`, X1, . . . , Xq) be a fixed MSO formula with
free individual variables x1, . . . , x` and free set variables X1, . . . , X`, and let w a constant. Then there
is a linear-time algorithm that, given a labeled directed graph G of treewidth at most w, either outputs
v1, . . . , v` ∈ V (G) ∪ E(G) and S1, . . . , Sq ⊆ V (G) ∪ E(G) such that G |= Φ(v1, . . . , v`, S1, . . . , Sq) or
correctly identifies that no such vertices v1, . . . , v` and sets S1, . . . , Sq exist.

We remark that since an understanding of the definition of treewidth is not required for our presenta-
tion, we merely refer to the literature for a discussion of the notion [36, 17, 19]. We denote the treewidth
of a graph G as tw(G).
Problem Definition and Terminology. We formulate the following generalization of SLCEI in
which we allow the numbers of crossings allowed for each newly added edge to differ. Note that this
formulation also fixes a parameterization.

Simple Crossing-Restricted Edge Insertion (Z) Parameter: k + maxi∈[k] `i

Input: A graph G = (V,E) along with a connected simple drawing G, a set F =
{e1, . . . , ek} of k edges of the complement of G, and `1, . . . , `k ∈ N.

Question: Can G be extended to a simple drawing G′ of the graph G′ = (V,E ∪ F) such
that the drawing of each edge ei ∈ F has at most `i crossings in G′?

For an instance of Z we refer to elements in F as added edges and denote the endpoints of ei as si and
ti (where s1, t1 . . . , sk, tk are not necessarily distinct). For brevity we denote ` = maxi∈[k] `i. Although
Z is stated as a decision problem, we will want to speak about hypothetical solutions of Z, which will
naturally correspond to the drawings of added edges in G′ (if one exists) as the rest of G′ is predetermined
by G. This means that a solution is a set of drawings of added edges in G′ where G′ witnesses the fact
that the given instance is a yes-instance. If no such G′ exists, then we say that the Z-instance has no
solution.

The reason we focus our presentation on Z is that the fixed-parameter tractability of Z immediately
implies the fixed-parameter tractability of both SLCEI parameterized by the number of added edges and
crossings per added edge, and SCEI parameterized by the number of added edges and crossings of all
added edges (the former problem is just a subcase of Z, while the latter admits a trivial FPT-reduction to
Z which simply requires that we branch to decide on an upper-bound for how many crossings each edge
in F contributes). Hence obtaining a fixed-parameter algorithm for Z provides a unified reason for the
fixed-parameter tractability of both SCEI and SLCEI. Furthermore, we will later show that the result
for Z can be straightforwardly adapted to solve the other problems mentioned in the introduction.

3 Stitches
Let

(
G,G, F, (`i)i∈[|F |]

)
be an instance of Z. We begin by identifying parts of G that may be considered

‘unimportant’ because they can never be intersected by the drawing of any of the edges siti ∈ F with
at most `i crossings. This is the case for every cell of G which is separated by at least `i cell boundaries
from every cell containing si or every cell containing ti. More formally, consider the dual G∗ of the
planarization G× of G, and for each vertex v ∈ V (G) let Uv ⊆ G∗ be the set of vertices that correspond
to cells c of G such that v lies on the boundary of c. We say a cell c of G is siti-far if it corresponds to
a vertex vc ∈ V (G∗) at distance more than `i from Usi or Uti , and c is far if it is siti-far for all i ∈ [k].
Observe that in any solution of Z for

(
G,G, F, (`i)i∈[|F |]

)
no drawing of an edge in F can intersect far cells

of G. We refer to maximal unions of far cells in G which form subsets of R2 whose interior is connected
as holes.

Similarly as in [21] we want to derive a planar graph of diameter bounded in k and ` which serves
as combinatorialization of G on which we can invoke Courcelle’s theorem; the diameter bound is what
allows us to argue that the graph has bounded treewidth, a prerequisite for using Courcelle’s theorem.
To achieve bounded diameter it is necessary to omit certain parts of the original drawing from the
combinatorialization. The interiors of holes are a natural choice for information that is not immediately

5

. . .

si ti

H

(a) Assuming `i = 3, then the potential drawings of
siti, depicted as dashed curves, can cross an arbitrary
number of H-torn edges.

si ti

tj

sj

c

(b) Assuming `i = `j = 3, then the drawing of sjtj
has to go through c and the drawing of siti has to
revisit cell c.

Figure 1: Removable and unremovable detours.

relevant for the insertion of drawings for F , in the sense that no intersections with these drawings can
occur in far cells. While it is true that ‘omitting’ the interior of holes from the combinatorialization of G
would allow us to correctly restrict the number of crossings of each added edge, unfortunately it means
that we lose information that identifies different parts of the same edge which are themselves not inside
holes but are disconnected by a hole; in particular, after omitting the holes we are no longer able to
prevent double-crossings.

To transfer this information between different parts of one edge—parts which could be crossed by a
hypothetical solution could cross but which are disconnected by holes—we introduce stitches into the
respective holes. More formally, for a hole H in G we call an edge e in E(G) H-torn if e is split into at
least two curves by the removal of the interior of H from G. We call maximal subcurves of an H-torn
edge after removing H (edge) parts of e and refer to the endpoints of these subcurves as endpoints of
the corresponding edge part. Note, that an endpoint of an edge part of an H-torn edge e is either a
vertex incident to e or a crossing point between e and another edge in G. Furthermore, each part of
an H-torn edge has an endpoint on the boundary of H. The aforementioned stitches will correspond
to paths between the endpoints of edge parts of H-torn edges. To construct these paths we introduce
so-called threads which are edges that we insert into a hole H to connect parts of H-torn edges and
derive the stitches from them by considering their planarization. In the end, stitches will ensure that
we can relate two such different edge parts of the same H-torn edge in an MSO-encoding, which in turn
allows us to prevent multiple crossings of the same edge in a solution.

Of course, just connecting all the edge parts of all H-torn edges in this manner would not lead to a
bounded treewidth graph. Hence, we will attempt to only introduce threads for parts of H-torn edges
which may be crossed by hypothetical solutions, with the aim of ensuring that the diameter (and hence
the treewidth) of the combinatorization remains bounded by a function of our parameters.

To achieve this, the main goal of this section will be to bound the number of stitches for each edge
siti ∈ F and hole H by some function of k + `i. We do this by considering which and how many edge
parts of H-torn edges any simple siti-curve in a hypothetical solution can cross. Here we face an apparent
difficulty: it is possible that there is an unbounded number of edge parts which are crossed by drawings
of an added edge siti in hypothetical solutions and each edge part belongs to a different H-torn edge
(see Fig. 1a). However, such situations can be safely avoided by restricting our attention to ‘reasonable’
solutions, as we will see in Subsection 3.1. In particular, to specify ‘reasonable’ solutions we turn our
attention to the behavior of drawings of added edges in a hypothetical solution when they revisit a cell
of G. Then, showing a bound on the number of stitches we introduce for an added edge siti and hole
H is equivalent to showing that we can identify all but a bounded number of edges in E(G) which are
H-torn and cannot be crossed by a drawing of siti in a ‘reasonable’ hypothetical solution. This is what
we focus on in Subsection 3.2.

After adding stitches, we are finally able to define an appropriate combinatorialization of G in Section 4

6

γ

c

si

ti

(a) Drawing γ of siti in a hypothetical solution with two
c-detours: one is a curve (highlighted in purple) and the
other is a point (highlighted in green).

c

(b) For the single point detour (green), the avoided
part of the boundary of c and the plane coincide
and are dashed green. For the curve detour (pur-
ple), the avoided part of the boundary of c is dashed
purple and the avoided region is shaded purple.

Figure 2: Detours and the parts defined by them.

which we can use for the final application of Courcelle’s theorem in Section 5.

3.1 Detours and Reasonable Solutions
Fix an added edge siti, a hole H, and a cell c of the original drawing of G. A drawing of siti in a
hypothetical solution might revisit the cell c. At first glance this may seem counter-intuitive since then
the drawing of siti could be shortcut within c without increasing the number of crossings of siti. However,
on second thought it becomes evident that the drawing of siti might have to revisit c to avoid crossing
the drawing of a different added edge sjtj . Fig. 1b exemplifies such a situation. Understanding how and
why a solution might need to revisit a cell is a major component of our argument used to bound the
number of stitches per hole. In fact, as we will see in this section, avoiding such crossings is the only
reason why a cell might have to be revisited.

Let γ be a drawing of siti in a hypothetical solution which revisits c. A c-detour (of γ) is a maximal
subcurve of γ whose interior is disjoint from int(c) and has neither si nor ti as an endpoint. Note that a
c-detour might also consist of a singular point. This case occurs when γ crosses an edge segment on the
boundary of c which does not lie on the boundary of another cell. See Fig. 2a for an illustration.

Definition 3. Let δ be a c-detour, and let the embedding E consist only of δ and the restriction of G to
the boundary of c. Then δ partitions the boundary of c into two connected parts: the part incident to the
unbounded (i.e. outer) cell in E, and the δ-avoided part which is not incident to the outer cell in E.

Additionally, we call the subset of R2 which is enclosed by δ and the δ-avoided part of the boundary
of c together with the δ-avoided part of the boundary of c itself the δ-avoided region. See Fig. 2b for an
illustration. A c-detour δ is unremovable if there exists an added edge sjtj with j 6= i such that exactly
one of sj and tj lies in the δ-avoided region of G. In that case we say that the endpoint (sj or tj) in the
δ-avoided region is avoided by δ, or that δ is around the endpoint. We call a c-detour removable if it is
not unremovable.

Note that we can generalize the definitions of ζ-avoided parts of cell boundaries and regions for an
arbitrary simple curve ζ that starts and ends on the boundary of the same cell of G and whose interior
does not intersect that cell.

The above definition of necessity of detours is justified by the following result. Intuitively it states
that whenever a solution uses a c-detour for the drawing of an added edge this has to be because it is
necessary in the sense that it avoids connecting immediately though c because of another added edge.
Otherwise it can be short-cut through c (possibly after short-cutting some other removable c-detours).

Lemma 4. If there is a solution, then there exists a solution in which no drawing of any added edge
contains a removable c′-detour for any cell c′ of G.

7

Proof. Consider a solution which minimizes the sum of the number of detours over all drawings of added
edges and cells c′. Assume c′ is a specific cell at which there is a removable c′-detour δ as part of the
drawing of added edge sjtj . Since c′ is a cell in G, there is a curve in the interior of c′ that connects the
first crossing point d1 of the drawing of sjtj into c′ and the last crossing point d2 of the drawing of sjtj
out of c′ and does not intersect any edge in E(G). If no drawing of another added edge in the considered
solution separates d1 from d2 within c′, this simple curve could be used instead of δ contradicting the
minimality assumption on the considered solution. Hence, let sj′tj′ 6= sjtj be another added edge
whose drawing in the considered solution separates d1 from d2 within c′. Since we are assuming δ to
be removable the drawing of sj′tj′ also has to cross δ, or it also contains a c′-detour, on which we can
iterate the argument. After at most k · ` iterations, in each of which we always find some detour which
does not intersect the one we started the respective iteration with, we arrive at the case that the first
entry and last exit point d1 and d2 of the considered c′-detour δ are only separated in c′ by drawings
of added edges that also cross δ. This simple bound3 on the number of iterations can easily be argued
because each edge can have at most ` crossings, and hence also at most this many different detours are
part of the drawing of an added edge in the considered solution.

Now it is easy to see that there is a d1-d2-curve within c′ that crosses no drawing of an edge in E(G)
and at most the same drawings of added edges in the considered solution as δ does at most once. This
means we can replace δ by such a curve in our initial solution to obtain a solution with a smaller total
number of removable detours, contradicting the minimality assumption.

Justified by this previous lemma, we want to from now understand a ‘reasonable’ solution to be a
solution in which no drawing of any added edge contains a removable c′-detour for any cell c′ of G, and
can safely restrict ourselves to computing such reasonable solutions.

3.2 Defining and Finding Stitches
Throughout this section we fix an added edge siti ∈ F and a hole H. Our goal is to compute a bounded
number of edge parts in E(G) which could be crossed by a drawing of siti in some reasonable hypothetical
solution. As we obviously do not know any hypothetical solution we cannot directly define an efficiently
checkable notion of crossability by demanding that an H-torn edge is crossed by the drawing of siti in
some reasonable hypothetical solution. Consequently, we only demand that a crossable edge part of an
H-torn edge can be crossed by some so-called solution curve for siti that behaves superficially like a
drawing of siti in a reasonable hypothetical solution. Specifically, we will not restrict solution curves to
not contain multiple crossings with the same edge in G.

Definition 5. A solution curve for siti is a simple curve γ that

• starts in si and ends in ti;

• produces at most `i crossings with G; and

• whenever γ intersects a cell c′ in more than one maximal connected subcurve there is an added
edge sjtj with j 6= i such that exactly one of sj and tj lies in the ζ-avoided part of G, where ζ is a
maximal connected subcurve of γ outside of c′ between two intersections of γ with c′.

A part of an H-torn edge e ∈ E(G) is crossable for siti if it is crossed by a solution curve for siti.

Lemma 6. For every hole H and every added edge siti ∈ F there are less than

`i(2`i + 1)! ·
(
4k(`i + 2)(`i + 1)`i+1

)2`i+1

parts of H-torn edges that are crossable for siti.

Proof. We will show that there is a set K of less than (2`i + 1)!
(
4k(`i + 2)(`i + 1)`i+1

)2`i+1 solution
curves for siti that together witness the crossability for siti of each part of an H-torn edge that is

3A better bound can also be argued, but since we do not use this result algorithmically we do not give this argument
here, as it would not improve our results.

8

si

H

c1 = c6

c4

c5

c2 = c3

c7
ti

Figure 3: The cells c1, . . . , c7 are in the sunflower center. The red dashed siti curve cannot be part of
the minimal set of curves K. The extremal subcurves are highlighted in green.

crossable for siti, i.e. such that each edge part that is crossable for siti is crossed by at least one of the
curves in K. Then the claim immediately follows since each solution curve crosses at most `i edges.

Assume for contradiction that the minimum set K that witnesses crossability of parts of H-torn
crossable edges for siti consists of at least (2`i + 1)!

(
4k(`i + 2)(`i + 1)`i+1

)2`i+1 solution curves for siti.
Consider the restricted drawing GH which is given by G restricted to the boundary of H, all H-torn
edges in E(G), as well as si and ti.

Each siti curve in K can be associated to the set of cells of GH which it intersects and the set of edge
segments in the planarization of GH which it crosses. In this way, each siti curve in K is associated to a
set of size at most 2`i + 1, since it can have at most `i crossings with GH . By the minimality of K, no
two curves in K can be associated to the same set of edge segments, which also means that each curve
in K is associated to a different set of cells and edge segments.

Now we can apply the sunflower lemma to the set system given by the sets of cells associated to the
siti curves in K to obtain a sunflower of size at least 4k(`i + 2)(`i + 1)`i+1. This sunflower corresponds
to a set of at least 4k(`i + 2)(`i + 1)`i+1 solution curves K☼ ⊆ K which all intersect pairwise different
cells of GH and edge segments of the planarization of GH , apart from the cells and edge segments in the
center of the sunflower, which they all intersect.

Since the curves in K intersect at most `i edges, the number of cells in the center of the sunflower is
upper bounded by `i + 1. By the pigeonhole principle there is a set of at least 4k(`i + 2) curves in K☼

which all intersect the cells in the center of the sunflower in the same order (taking into account that
the curves might intersect the same cell multiple times). Let K☼

σ ⊆ K☼ be such a set of curves and let
σ = c1, . . . , cl with l ≤ `i + 1 be the order (with repetitions) in which these curves traverse the cells in
the center of the sunflower. To unify notation, when the center of the sunflower does not contain any
cell we define c1 = c2 = c.

As each cj with j ∈ [l] is a cell in a restriction of G containing all H-torn edges, no part of an H-torn
edge intersects the interior of cj . In particular parts of H-torn edges are not crossed by any curve in K☼

σ

within int(cj). In that sense, we are only interested in the subcurves of the curves in K☼
σ within int(cj)

outside of
⋃

1≤j≤l int(cj). The connected parts of the embeddings in R2 \
⋃

1≤j≤l int(cj) of the curves

in K☼
σ are pairwise non-intersecting, as intersections are only possible inside cells in the center of the

sunflower. See Fig. 3 for an illustration.
Consider the subcurves of curves in K☼

σ from si to the first point they share with the boundary of
c1, if c1 6= c. If si is inside or on the boundary of c1 the interior of these subcurves does not intersect
any H-torn edge. Otherwise, if si does not intersect c1, those subcurves of curves in K☼

σ are pairwise

9

non-intersecting. As in the case in which the center of the sunflower was empty, we can identify at most
two extremal subcurves of two curves ζ1 or η1 that together with int(c1) separate H from the rest of the
subcurves without si. Since any H-torn crossable edge has to reach H and does not subdivide c1, these
two extremal subcurves must cross any crossable edge intersected by any other subcurve. Analogously,
we can identify at most two extremal subcurves of curves in K☼

σ between ti and the boundary of cl that
belong to two curves ζl+1 or ηl+1.

For the remaining subcurves of curves in K☼
σ within int(cj) outside of R2\

⋃
1≤j≤l int(cj) we introduce

the following formulation. For each curve γ in K☼
σ , the subcurve of γ between the boundaries of cj and

cj+1 with 1 ≤ j ≤ l − 1 refers to the maximal connected part of γ whose interior is disjoint from⋃
1≤j≤l int(cj) (this might be a single point) between cj and cj+1 in the traversal order specified by σ.
For the case in which cj 6= cj+1, as in the previous cases, we can identify at most two extremal

subcurves of two curves ζj+1 or ηj+1 between cj and cj+1 that together with int(cj) and int(cj+1)
separate H from all other such subcurves. Again, since any crossable edge part has to connect to H
and neither subdivides cj nor cj+1, the two extremal subcurves must intersect any crossable edge part
intersected by any other such subcurve.

We have to take a little more care in the case in which cj = cj+1 (in particular this includes the
case that c1 = c2 = c). In this case, the subcurves of curves in K☼

σ between cj and cj+1 are a maximal
connected subcurves outside of cj between two intersections with cj (note that these maximal connected
subcurves can be singular points). Then by the definition of solution curves for each considered subcurve
γ′ of a solution curve γ ∈ K☼

σ , there is an added edge sj′tj′ with j′ 6= i such that exactly one of sj′
and tj′ lies in the γ′-avoided part of G. Subcurves of curves in K☼

σ between cj and cj+1 which avoid
a specific endpoint of one of the added edges sj′tj′ with j′ 6= i are pairwise non-intersecting and they
are nested in the sense that, given two detours, their avoided regions must be sub- or super sets of each
other. For each of the 2k− 1 such endpoints p, we can identify at most two extremal subcurves δpj+1 and
∂pj+1 around p, which are subcurves of solution curves ζpj+1 and ηpj+1 respectively. More precisely, δpj+1

does not contain H in the δpj+1-avoided part of the plane and is inclusion-maximal with this property
(it contains in the δpj+1-avoided region all other considered subcurves around p that do not contain H in
their avoided regions). Similarly, ∂pj+1 contains H in the ∂pj+1-avoided region and is inclusion-minimal
with this property. Any point on a non-extremal subcurve around p is separated from H by δpj+1, ∂

p
j+1,

and int(cj). Thus, as above, the extremal subcurves around p together must cross any crossable edge
part intersected by any other considered subcurve around p.

Let ζj , ηj , ζ
p
j , and η

p
j be defined as above (if they exist and ignored otherwise). for j ∈ [l+ 1] and p ∈

{sj , tj | j 6= i}. Then it holds that any γ ∈ K☼
σ \({ζj , ηj , ζ

p
j , η

p
j | j ∈ [l+1], p endpoint of edge in F \ siti})

only crosses crossable edge parts which are also crossed by at least one of {ζj , ηj , ζpj , η
p
j | j ∈ [l + 1], p ∈

{sj , tj | j 6= i}}). Since |K☼
σ \ ({ζj , ηj , ζpj , η

p
j | j ∈ [l + 1], p ∈ {sj , tj | j 6= i}})| ≥ 4k(`i + 2) − (l +

1) max{2, 4(k − 1)} ≥ (`i + 2)(4k − max{2, 4(k − 1)}) > 0 we get a contradiction to the minimality
assumption on K.

While the fact that the number of crossable edge parts we want to introduce stitches for is bounded
by a function in our parameters is reassuring, we need to be able to actually introduce these stitches
before being able to give our final MSO encoding of hypothetical solutions. For this we invoke Courcelle’s
theorem in Lemma 7 independently of its final application. This then allows us to insert the corresponding
stitches.

Lemma 7. There is a fixed-parameter algorithm parameterized by k + ` which identifies, for an added
edge siti and a hole H, all parts of H-torn edges which are crossable for siti.

Proof. Using binary search we can find the correct number of parts of H-torn edges which are crossable
in log(f(k, `i)g(k, `i, n)) time, where f(k, `i) is the bound we obtain from Lemma 6, assuming g(k, `i, n)
is the time required to find a fixed number of crossable edge parts or decide that fewer crossable edge
parts exist. We will find a fixed number q of crossable edges, by encoding the property of being the
endpoint of a crossable edge part on the boundary of H within a graph of bounded treewidth. We can
then find a satisfying assignment for up to 2q free variables which have that property using Courcelle’s
theorem, completing the proof of the lemma.

Consider the combined primal-dual graph Gpd of G× without the interior of holes that arises from G×
by

10

1. removing the edge segments in the interior of each hole, rendering each hole a single face;

2. subdividing each edge e of G× by a new vertex labeled as edge vertex ; and

3. inserting a vertex labeled as face vertex for every face of the graph obtained till now, and connecting
that vertex to all vertices on the boundary of that face.

Obviously Gpd is planar. Moreover, one can argue that the diameter of Gpd is upper-bounded by 4`i + 4;
this is because every vertex in Gpd is at distance at most one from a face vertex, and every face vertex
is at distance at most 2`i + 1 from si because the interiors of holes were deleted. Together this implies
that tw(Gpd) ≤ 3(4`i + 4) [36].

It remains to show MSO encodability of the property of being the endpoint of a crossable edge part on
the boundary of H in the graph Gpd in which we additionally introduce an auxiliary labeling to describe
paths in Gpd that follow edge parts. Since a labeling (the so called tracking labeling) for following edge
parts will also be used in the final application of Corcelle’s theorem in Section 4 we refer to that section
for details.

One can easily encode the property of being a vertex v on the boundary of H, simply as being a
neighbor of the face vertex that corresponds to H; and using the additional labeling the property of
being connected to some other vertex via an edge part. Such an other vertex x should be an edge vertex
which witnesses crossability of the edge part in question, i.e. we want there to be a walk in Gpd that
corresponds to a solution curve for siti and contains x. This means it suffices to encode walks which
correspond to solution curves for siti.

Because of the restriction on the number of crossings with G of a solution curve, a solution curve
always corresponds to a walk of length at most O(`i) in Gpd, which means we can just use free variables
for all its vertices and edges. It is trivial to ensure that a walk starts in si and ends in ti.

We can also ensure that the inner vertices of the walk follow a pattern of using a face vertex, followed
by an edge vertex, and so on, the last inner vertex of the walk being a face vertex. To make sure the
walk corresponds to a simple curve, we have to make sure that the walk does not force a crossing of a
curve that conforms to this walk. This can be done by including the condition that there are no edge
vertices e1, e2, e3, e4 which

1. are visited in the order e1, e2, e3, e4 by the walk and are all in the neighborhood of the same face
vertex f (this means than they correspond to edge segments on the boundary of the same face);
and

2. occur on a cycle in Gpd that consists only of neighbors of f in the order e1, e3, e2, e4.

The last condition we need to encode is the fact that a curve γ corresponding to our walk ργ should
satisfy that whenever γ intersects a cell c′ in more than one maximal connected subcurve there is an
added edge sjtj with j 6= i such that exactly one of sj and tj lies in each ζ-avoided part of G, where ζ
is a maximal connected subcurve of γ outside of c′ between two intersections of γ with c′. For all cells
c′ the fact that γ intersects c′ in more than one maximal connected subcurve will be equivalent to the
face vertex vc′ corresponding to c′ occurring multiple times on the walk, and each ζ will correspond to
the curve given by a maximal subwalk ρζ between two consecutive occurrences of vc′ on the walk. Using
this characterization, all ρζ can be quantified over in an MSO formula.

For each ρζ we can encode the equivalent of the ζ-avoided part of the boundary of c′ in Gpd by defining
it as the set of vertices Aζ which are neighbors of vc′ , such that there is no path that connects these
vertices to the face vertex corresponding to the outer cell of G without the interior of holes, without
intersecting ργ or the closed neighborhood of vc′ . Then the equivalent of the ρζ-avoided region in the
patchwork graph is the subgraph of Gpd which is separated from the face vertex of the outer cell of G
without the interior of holes by Aζ and ρζ . All of this is MSO encodable, which means that we can
also require that there is an added edge sjtj with j 6= i such that exactly one of sj and tj lies in the
equivalent of the ζ-avoided part in Gpd.

Definition 8. For a hole H in G and an added edge siti ∈ F , a thread is a pair of two endpoints of
two distinct edge parts of the same H-torn edge in e ∈ E(G) satisfying the following properties: (i) both
edge parts are crossable for siti, (ii) there is no other crossable edge part between these edge parts along
a traversal of e, and (iii) there is no other endpoint of one of the two edge parts along a traversal of

11

e. We denote the set of all threads for H and siti as TH,siti , and define the set of all threads for H as
TH =

⋃
i∈[k] TH,siti .

Observation 1. Let H be a hole in G with not connected boundary and TH the set of threads we computed
for H. For an edge sitI and thread uv ∈ TH,si,ti between vertices u and v on the boundary of H we find
that u and v are always in a connected part of the boundary of H.

An embedding of TH is a set of curves, contained completely in H, which connect each pair of two
endpoints of edge parts in TH .

Lemma 9. There is a fixed-parameter algorithm parameterized by k + ` that computes, for a hole H in
G, a simple embedding of TH .

Proof. We can iterate over i ∈ [k] and compute TH,siti by invoking Lemma 7 to find all parts of H-torn
edges which are crossable for siti in FPT time, and then traversing the H-torn edges to determine which
of them are connected by threads. This immediately allows to compute TH .

We also have to find an embedding of TH into each H. Since no thread in TH ever has its endpoints
on two different maximally connected pieces of the boundary by Observation 1 we can consider such
maximally connected piece of the boundary of H independently. For each of them embedding the
threads in TH incident to vertices on that piece of boundary is equivalent to embedding chords into a
distorted cycle in a simple way which can be done in time polynomial in |TH |. We also remark, that
one can assume that there is a cell c of the embedding of TH inside H such that for each maximally
connected piece of boundary of H either a thread incident to it or to a subset of it is present on the
boundary of c.

For the simple embedding of TH into H computed in Lemma 9, define the set of stitches SH of H as
the planarization of the threads in this embedding.

4 The Patchwork Graph
After identifying a bounded number of stitches in each hole, we are finally able to define the patchwork
graph and prove desirable properties which we will use in our final application of Courcelle’s theorem.
An illustration of the patchwork graph is provided in Fig. 4. The following definition also doubles as a
description of how to construct the patchwork graph from a given drawing. We remark that, unlike G,
the patchwork graph might be disconnected.

Definition 10. The patchwork graph P and its embedding P are given by the labeled graph derived from
G in the following steps:

1. Planarize G and label the vertices which are newly introduced by this as crossing vertices. Label
vertices which correspond to vertices of G as real vertices. Additionally label each si and ti with
label i ∈ [k].

2. Subdivide each edge e in the planarization G× of G by k vertices4 ve1, . . . , vek which are labeled as
segment vertices—each segment vertex of e will represent a possible crossing point of the drawing
of one of the k edges in F and e.

3. Inside each face f of G×, introduce a new vertex vf and label it as cell vertex.

4. Inside each face f of G×, trace the boundary of f creating a curve at ε-distance and create a vertex
labeled as shadow vertex on this curve every time an endpoint of an edge in F or a segment vertex
is encountered. Insert two edges for each shadow vertex; one connecting the shadow vertex to the
corresponding endpoint of an edge in F or segment vertex; and one connecting the shadow vertex to
vf . Note that multiple shadow vertices can be introduced for the same vertex in G (e.g. the orange
vertex in Fig. 4). Shadow vertices allow to distinguish different ways, more formally positions in
the rotation around an endpoint, of accessing that endpoint via the inserted drawing of an edge in
F; this is where the connectivity of G is used (see Fig. 5). In this way each shadow vertex of an
endpoint corresponds to an access direction.

4If k = 1 we subdivide by 2 vertices for reasons that will become clear when we introduce tracking labels.

12

Figure 4: Illustration of a patchwork graph P . The remainder of P is hinted in beige. Black disks
are original vertices. Colored disks are endpoints of edges in F . Crossing vertices are crosses. Green
and white disks represent the edge segment/shadow vertices. Cell vertices are white squares. Holes are
shaded in gray and stitches drawn with thick, dashed curves.

5. Delete every vertex that is in the interior of a hole H.

6. For each hole H insert all stitches SH for H into the interior of H and label the inserted vertices
as crossing vertices.5

7. For technical reasons which will become apparent later (when we introduce tracking labels), we
replace each edge in SH by a path consisting of two vertices and three edges and label the inserted
vertices as segment vertices.6

We introduce additional crossability labels for segment vertices in the following way. For every
segment vertex v corresponding to an edge segment σ of edge e ∈ E(G) we label v as crossable for some
edge siti ∈ F if either e is not H-torn for any hole H, or for each hole H in G for which e is H-torn, σ

5This means they receive the same label as vertices introduced by planarizing G.
6This means they receive the same label as vertices introduced by subdividing edge segments of the planaritation of G.

Figure 5: Illustration for different access directions. Each hypothetical drawing (indicated as thick
dashes, normal, dotted, and dash-dotted lines) of the added edge between the orange vertices crosses the
same edge segment of G× but separates the black vertices differently. In connected initial drawings, ways
of separating vertices of the same cell by the drawing of an added edge are completely determined by
potential crossing points of that drawing and its positions in the rotations around each of its endpoints.
This is not the case for disconnected initial drawings.

13

lies on a part (when considering parts arising from the removal of the interior of H) of e that is crossable
for siti.

Lemma 11. If there exists a solution for the considered Z instance, then there is a solution such that all
segment vertices which correspond to edge segments of an edge that is crossed by the drawing of siti ∈ F
in the solution are labeled as crossable for siti.

Proof. By Lemma 4 we only need to consider solutions without removable detours.
Assume for contradiction that there is a solution without removable detours and the drawing of siti

crosses an edge segment σ which is not labeled as crossable for siti. Then σ lies on an edge part e of an
H-torn edge which is not crossable for siti for some hole H in G. Since we consider a solution without
removable detours the drawing of siti in the solution corresponds to a solution curve for siti that crosses
the edge part e, contradicting the fact that e is not crossable.

Note that Lemmas 7 and 9 and Definition 10 allow us to compute the patchwork graph in FPT
time. The two most important properties of the patchwork graph are encapsulated in the following two
lemmas. The proof of the first essentially relies on obtaining a bound on the diameter of each connected
component of the patchwork graph—a task which is intuitively clear, but requires us to overcome some
technical challenges due to the addition of stitches.

Lemma 12. The patchwork graph P has treewidth bounded by 3(2+4(k−1))(4`+8(kf(k, `)−1)), where
f(k, `) is the bound on the number of crossable edge parts for a single added edge and hole obtained in
Lemma 6.

Proof. We show that P is a subgraph of a planar graph with diameter bounded in (2 + 4(k − 1))(7` +
4kf(k, `)). Then the claim follows from [36]. Planarity of P itself follows directly from the planarity of
G× and the way we constructed P from G× as described in Definition 10. We define a supergraph P+ of
P as follows. Add a vertex into each cell created in a hole H when inserting the stitches SH and connect
if to the vertices on the boundary of that cell. Clearly, P+ is planar and, moreover, P+ is connected.

We first show that the diameter of P+ is at most (2 + 4(k − 1))(4` + d∗ + 4) where d∗ is an upper
bound for the distance between the vertices on the boundary of any hole H to vertices in H, and then
proceed to show that d∗ ≤ 8(kf(k, `)− 1).

For the first step we proceed inductively. Let Pk′ be constructed analogously to the patchwork graph
P , but considering only the set Fk′ = F \ {siti | i > k′} as the set of added edges for the definition of
holes, and without adding threads and stitches, i.e., we skip steps six and seven in Definition 10. For
example, P1 is just the patchwork graph constructed from G assuming there is only one added edge s1t1
and each hole in P1 is empty. Observe that each hole of Pk′ is a subset of a hole in Pk′−1.

Instead of directly bounding the diameter of P+ we prove the following, slightly stronger, claim.

Claim 1. Any connected graph P+
k′ that arises from Pk′ by inserting an arbitrary graph of bounded

diameter d into each hole of Pk′ has diameter at most (2 + 4(k′ − 1))(4 maxi∈[k′] `i + d + 4) for every
k′ ≤ k where d is the maximum diameter of any plane graph inserted into a hole of Pk′ to construct P+

k′ .
Moreover there is a u-v-path of at most this length for arbitrary u and v in P+

k′ that can be subdivided
into at most three subpaths,

• the first of which is entirely inside the hole of Pk′ inside which u is (if u is inside a hole),

• the second of which does not enter any hole of Pk′ ,

• and the third of which is entirely inside the hole of Pk′ inside which v is (if v is inside a hole).

Proof. We show the claim by induction on k′ ≤ k. For k′ = 1, by construction any cell vertex is at
distance at most 4`1 + 2 from s1 in P+

1 . Furthermore, any vertex of P+
1 is by construction at distance

at most d+ 2 from a cell vertex; for vertices outside holes, the distance is easily seen to be at most two
to the cell vertex of the cell of G containing that vertex; for vertices inside holes, the distance is at most
d + 2 to the closest cell vertex of a cell that shares some part of its boundary with the respective hole.
This completes the base case, as any pair of vertices is connected via a path with the desired properties
of length at most 2(4`1 + d+ 4) using s1 and a cell vertices closest to each of the vertices in the pair.

Now assume that any connected graph P+
k′−1 that arises from Pk′−1 by inserting an arbitrary graph of

bounded diameter d′ into each hole of Pk′−1 has diameter at most (2+4(k′−2))(4 maxi∈[k′−1] `i+d
′+4),

14

and that for every u, v ∈ V (P+
k′−1) there is a u-v-path of this length in P+

k′−1 that can be subdivided
into at most three subpaths,

• the first of which is entirely inside the hole of Pk′−1 inside which u is (if u is inside a hole),

• the second of which does not enter any hole of Pk′−1,

• and the third of which is entirely inside the hole of Pk′−1 inside which v is (if v is inside a hole).

Consider the overlay of Pk′−1 and P+
k′ in the plane and identify vertices and edges that are in both

graphs. Now, all vertices in V (P+
k′) \ V (Pk′−1) lie inside holes of Pk′−1. For any pair of vertices of P+

k′

inside holes of Pk′−1 which are not holes in Pk′ , we can argue in a similar way as in the base case that
they are connected by a path of length at most 2(4`k′ + d + 4) in P+

k′ . In particular, any vertex of P+
k′

that lies inside such a hole of Pk′−1 has distance at most 2(4`k′ + d+ 4) to the boundary of that hole. It
remains to consider vertices of P+

k′ which are in Pk′−1 or inside holes of Pk′−1 which coincide with holes
of Pk′ .

Here we invoke the induction hypothesis on P+
k′−1 where the graph inserted into a hole H of Pk′−1 is

• the same as the ones inserted into the respective hole of Pk′ in P+
k′ , if H is also a hole for Pk′ ; and

• a star, which connects to all vertices of Pk′−1 on the boundary of H otherwise.

From this we get that P+
k′−1 has diameter at most (2 + 4(k′ − 2))(4 maxi∈[k′−1] `i + max{2, d}+ 4), and

that for every u, v ∈ V (P+
k′−1) there is a u-v-path of this length in P+

k′−1 that can be subdivided into at
most three subpaths,

• the first of which is entirely inside the hole of Pk′−1 inside which u is (if u is inside a hole),

• the second of which does not enter any hole of Pk′−1,

• and the third of which is entirely inside the hole of Pk′−1 inside which v is (if v is inside a hole).

Hence vertices in P+
k′ which are also in Pk′−1 or inside holes of Pk′−1 which coincide with holes of Pk′

have distance at most (2 + 4(k′ − 2))(4 maxi∈[k′−1] `i + max{2, d}+ 4) in P+
k′ because by there are paths

witnessing this that do not use the stars inserted into holes of Pk′−1 in P+
k′−1 that do not coincide with

holes in Pk′ and hence correspond to paths in P+
k′ .

All together the described paths can be combined to form paths in P+
k′ with the desired structural

properties and of length at most (2 + 4(k′ − 1))(4`+ d+ 4) between any pair of vertices in P+
k′ .

Next we show that d∗ ≤ 8(kf(k, `) − 1). Recall that vertices of P+ inside H are either vertices on
the boundary of H, crossing vertices introduced when inserting the stitches SH , or newly inserted cell
vertices inside H that were created when constructing P+ from P .

Claim 2. d∗ is at most 8(maxH hole in G |TH | − 1) ≤ 8(kf(k, `)− 1).

Proof. Consider an arbitrary hole H in G and assume at first that the boundary is only one connected
piece. Then, the distance between a crossing vertex v in H and a cell vertex in a cell incident to some
piece of the boundary of H and a thread containing v is at most 3(|TH |−2). This is, since such a thread
is crossed by at most |TH |−2 threads which v does not lie on and between every two crossings of threads
we introduced two vertices. Furthermore, the distance between two arbitrary cell vertices incident to the
same boundary piece of H is at most 2|TH |. This is, because two such cell vertices are separated by at
most all threads in TH . Consequently, one needs to traverse at most one segment or crossing vertex per
thread and one cell vertex per cell incident to the boundary of H. Using such paths together with the
at most one edge to connect segment and cell vertices to a closest crossing vertex we can connect any
pair of vertices of P inside H by paths of length at most 8|TH | − 10.

Finally, if the boundary of H consists of multiple pieces, recall that the threads incident to different
pieces of the boundary of H do not intersect (Observation 1). Consequently, the derived stitches do not
share a crossing or segment vertex. Moreover, by the construction in Lemma 9 there is one cell incident
to a crossing or segment vertex of some stitch for each piece of the boundary. This means, in P+ there
exists a cell vertex c that is adjacent to all of them. Reaching this vertex c from a cell vertex in some

15

cell incident to some boundary piece of H needs at most a path of length 2|TH | + 1. The argument is
as above, we at most cross every thread and in the end have to go to c itself. Hence, c can be reached
from any cell vertex of a cell incident to the boundary of H in at most 2|TH | + 1 steps. This gives the
final bound of 6(|TH | − 2) + 2(|TH |+ 1) + 2 = 8(|TH | − 1) to connect any pair of vertices inside H.

Now, the lemma follows by applying Claim 1 with k′ = k and the bound on d∗ obtained in Claim 2.

The second lemma will later allow us to check whether two edge segments in P belong to the same
edge in G via an MSO formulation.

Lemma 13. Segment vertices which correspond to edge segments of the same edge in e ∈ E(G) and are
labeled as crossable for siti are connected via paths in P consisting only of segment and crossing vertices
which correspond to segments and crossings of e and segments and crossings for threads that connect
parts of e.

Proof. Segment vertices which correspond to segments of an edge e which is not H-torn for any hole
H are obviously connected via a path in P that consists only of segment vertices and crossing vertices
following e.

For an edge e ∈ E(G) which is H-torn for some hole H in G we argue as follows: Consider two
segments of e for which the corresponding segment vertices v1 and v2 are both marked as crossable.
Since these segments both belong to e, they are connected along a traversal of e in G. We fix this
traversal of e. The traversal of e gives rise to a sequence of walks in P consisting of segment and crossing
vertices arising from e which are interrupted by holes. We proceed by induction on the number w of
such maximal walks the traversal of e gives rise to.

For the base case, assume that the traversal of e gives rise to w = 2 maximal walks, one of which
contains v1 and the other of which contains v2. These walks can only be interrupted by a single hole
H. Because v1 and v2 are labeled as crossable for siti, both these walks correspond to curves which are
subsets of edge parts of the H-torn edge e and both are crossable for siti. Moreover, since the traversal
of e gives rise to only these two maximal walks, there is no other edge part of e between these edge parts
along the traversal of e. This means a thread is inserted between these parts of e which then leads to a
connection via stitches.

Now assume that the claim holds in case the number of maximal walks the traversal of e gives rise
to is w, and consider the case that the number of maximal walks the traversal of e gives rise to is w+ 1.
Consider the walk W1 that contains v1 and the walk W ′1 that succeeds this walk along the traversal of
e. If W ′1 contains a segment vertex v′ that is marked as crossable for siti, we can apply the base case to
v1 and v′, and the induction hypothesis to v′ and v2 to find a desired path in P .

Otherwise, there is no such segment vertex on W ′1 that is marked crossable for siti. Hence, there is
some hole H ′ in G such that e is H ′-torn and W ′1 corresponds to a curve which is a subset of an edge
part of e with respect to H ′ which is not crossable for siti. Recall that v1 ∈ W1 is labeled as crossable
for siti. Consequently, W1 corresponds to a curve which for each hole H in G, such that e is H-torn, is
a subset of an edge part of e with respect to H which is crossable for siti. This leads to the observation
that H ′ is the hole in G that interrupts W1 from W ′1, as else W1 and W ′1 correspond to subsets of the
same edge part with respect to H ′. Now consider v2. First, we observe that it is also contained in an
edge part of the H ′-torn edge e. Second, as v2 is labeled ‘crossable’ for siti this edge part is also crossable
for siti and H ′. Hence, the earliest edge part of the H ′-torn edge e that is crossable for siti that follows
W1 in the traversal of e from v1 to v2 is well-defined. Moreover, this part contains one of the considered
walks after W1 which is connected to W1 via stitches and contains a segment vertex v that is labeled as
crossable for siti. We complete the proof by invoking the induction hypothesis for v and v2.

Intuitively, we would like Lemma 13 to lead to an MSO subformula that can check whether two
segment vertices in P belong to the same edge—an important component of our algorithm for Z. The
lemma provides us with a characterization that seems suitable for this task since it is easy to define a
path in MSO, but there is an issue if we use P as it is currently defined: a crossing vertex is adjacent to
4 segment vertices, and P (viewed as a graph without an embedding) currently does not specify which
of these segment vertices belong to the same edge.

We resolve this by introducing tracking labels in the following way: For each crossing vertex v in P
created by a crossing between edges e and e′ in G, we assign the label 1 to the two unique neighbors

16

of v in P that are segment vertices corresponding to segments of the edge e or segments of threads
connecting parts of e, and assign the label 2 to the remaining two neighbors of v in P (which must
be segment vertices corresponding to segments of e′ or segments of threads connecting parts of e). We
break the symmetry between e and e′ arbitrarily7. Then from the definition of the tracking labels and
Lemma 13, we get:

Corollary 14. Segment vertices which correspond to edge segments of the same edge in e ∈ E(G) and
are labeled as crossable for siti are connected via paths in P consisting only of segment and crossing
vertices with the following property: the two neighbors of each crossing vertex on the path are segment
vertices with the same tracking label.

5 Using the Patchwork Graph
Now that we have constructed the patchwork graph P and established that it has the properties we
need, we can proceed to the final stage of our proof. Here, our aim will be to identify a combinatorial
characterization which projects the behavior of a solution from G to P , establish a procedure that
allows us to identify (and construct) solutions based on a characterization in P , and finally show how
to find such characterizations. To streamline our presentation, at this stage we perform a brute-force
branching procedure which will determine, for each siti ∈ F , the number `′i of crossings between the
curve connecting si to ti and edges of G in the sought-after solution. Clearly, `′i ∈ [`i] and this branching
procedure only incurs a multiplicative runtime cost of at most `k.

Consider a hypothetical solution S, and let f be a curve in S connecting vertex a to b. The trace rf
of f is a walk in P starting at a such that:

1. From a, rf proceeds to the shadow vertex that corresponds to the access direction through which
f connects to a, and then to the cell vertex of the first cell c1 in G intersecting f .

2. For each intersection along f with an edge segment q between cells ci and ci+1, rf proceeds to the
shadow vertex of a segment vertex v in ci on q, then to v, then to its shadow vertex in ci+1, and
then to the cell vertex of ci+1, where v has the property that the number of segment vertices of
q on either side of v are at least as large as the number of drawings of added edges in F which
intersect q on the respective side of its intersection with f . Such a segment vertex v exists, since
there are k = |F | segment vertices on q.

3. Finally, rf continues to the shadow vertex that corresponds to the direction through which f enters
b, and finally ends in b.

Observe that rf visits precisely 4`′i + 5 vertices. Moreover, for two curves f, f ′ in S, their traces
rf , rf ′ may only intersect in cell vertices, the real vertices that form the endpoints of the curves, and the
associated shadow vertices.

Now, let the solution trace (rS ,ηS) of S be a pair where rS = {rf |f ∈ S} and ηS describes cyclic
orders which will intuitively capture how edges cross into and out of each cell vertex in the solution. Let
RS = {v | ∃f ∈ S : v ∈ rf} be the set of all vertices occurring in the traces of S. ηS then is a mapping
from each cell vertex c ∈ RS to a cyclic order ≺c over the shadow vertices in RS that are incident to c.
Specifically, ≺c is defined as the cyclic order given by the cycle on the neighborhood of c in P restricted
to RS .

Solution traces describe the way in which a solution can be related to a set of walks and cyclic orders
in P . Of course we can abstract away from the explicit reference to a solution and define the more
general notion of preimages whose combinatorial structure is the same as that of a solution trace but
which does not arise and in particular does not even need to correspond to a solution. (Preimages and
solution traces relate in a similar way as solution curves and solutions in Section 3.2.)

Formally, a preimage (α′, β′) is a tuple with the following properties. α′ is a set of k walks in H
which are labeled α′1, . . . , α′k, where each α′i has length 4(`i + 1) and visits vertices with the same orders
of labels as traces. Similarly, β′ is a mapping from each cell vertex c visited by the walks in α′ to the
cyclic order over its neighbors that occur in α′, along the cycle on NP (c) in P .

7This symmetry breaking is unproblematic because we subdivide each edge segment at least twice; no crossing vertices
share neighbors.

17

Obviously every solution trace is a preimage. Conversely, one can derive a drawing of all edges of
F into G from a preimage (α′, β′) by the assembly procedure A introduced below. For each α′i ∈ α′, A
will draw a curve ui that starts and ends at the two vertices labeled i (i.e., the endpoints of siti ∈ F) as
described in the following steps.

1. ui exits its starting vertex via the access direction given by the first shadow vertex in α′i.

2. For each cell vertex c such that (e1, v1, c, v2, e2) forms a subsequence of visited vertices in α′i, expand
ui by drawing a curve ι in c connecting the edge segment (or the real vertex) e1 to the edge segment
(or the real vertex) e2 in the following way.

• Consider an arbitrary other curve drawn in c by A up to now, say ζ, that was obtained from
some subsequence (eζ1, v

ζ
1 , c, v

ζ
2 , e

ζ
2). ι will intersect ζ if and only if the shadow vertices of ι

interleave with the shadow vertices of ζ in β(c) (i.e., for instance, if v1 ≺c vζ1 ≺c v2 ≺c v
ζ
2 ≺c

v1).

• Such a drawing can be achieved by, e.g., having the curve ι follow the inside boundary of c
in a clockwise manner while avoiding all curves it is not supposed to cross (as these will be
either completely enveloped by or completely enveloping ι).

• We remark that v1 and v2 may either be shadows of segment vertices or the actual endpoints
si or ti.

3. ui ends by entering the final real vertex in α′i from the direction specified by the last shadow vertex
in α′i.

The intuition here is that A interprets a preimage of a template trace as a specification of precisely
which parts of G should be crossed by the drawings of each added edge (this information is provided in
α′), while controlling when and how individual curves in the newly constructed solutions should cross
each other (this information is provided in β′). Note that the output of A for an arbitrary preimage will
in general not be a solution for our edge insertion problem, but—crucially—one can check whether it is
in polynomial time.

Observe that, although preimages imply curves in G for all added edges in F , and we can check for
each of them if they are a solution, we cannot iterate over them in FPT time as the number of preimages
in P is generally not FPT. We will however be able to distill the structure of preimages, independently of
their exact specification in P . For this we define template traces. A template trace is a tuple τ = (T, α, β)
where:

• T is a graph whose vertices are equipped with a labeling that matches the vertex-labeling used in
P (i.e., some may be labeled as segment vertices, some as cell vertices, etc., and in addition some
of them may be labeled as the endpoints of added edges in F);

• α = {α1, . . . , αk} is a set of walks in T , where each walk αi has length 4(`′i + 1) and the types of
vertices visited by αi match the types of vertices visited by a trace (i.e., αi starts with a real vertex
labeled i, then proceeds with a shadow vertex, a cell vertex, followed by a sequence of `′i-many
subsequences of shadow-, segment-, shadow-, cell vertices, and ends with a shadow vertex followed
by a different real vertex labeled i); and

• β is a mapping from each cell vertex in T to a cyclic order over its adjacent shadow vertices.

• For simplicity, we require that each vertex and edge in T occurs in at least one walk in α.

Proposition 15. There are at most (k`)O(k`) distinct template traces. Moreover, the set of all template
traces can be enumerated in time (k`)O(k`).

Proof. First, observe that T contains at most k · (4`+ 5)-many vertices. The number of walks of length
at most 4(` + 1) over the vertex set of T can hence be upper-bounded by (k`)`. As for β, observe
that each shadow vertex in T is only adjacent to a single cell vertex, and hence occurs in at most one
cyclic order in the image of β. Hence, once we fix one possible choice for α, the number of all possible
β’s is upper-bounded by the number of ways of partitioning all (at most k`) shadow vertices in T into
at most k` parts and then considering all possible permutations of the obtained parts. To show that

18

this is also upper-bounded by (k`)O(k`), observe that the desired number of partitionings with internal
permutations is upper-bounded by the number of permutations over the set of all shadow vertices and an
equal-cardinality set of auxiliary “separating vertices”, whose sole role is to model possible partitionings of
shadow vertices. The number of such permutations is, naturally, in (k`)O(`). This also yields a procedure
that can construct the set of all possible template traces.

We say that a template trace (T, α, β) matches a preimage (α′, β′) if there is a label-preserving
bijective mapping γ (called the preimaging) from the vertices on walks in α′ to V (T) such that (1) for
each α′i ∈ α′, γ(α′i) = αi and (2) γ(β′) maps each c to β(γ(c)). For a template trace τ that matches a
preimage (α′, β′), we say that (α′, β′) is a preimage of τ . Intuitively, a preimage of a template trace is
its firmly embedded counterpart in P . As every solution trace is a preimage, these definitions carry over
to solution traces.

The following lemma shows that a template trace trace τ matching the solution trace of a hypothetical
solution contains a sufficient amount of information to almost reconstruct a solution using A on a
preimage of τ .

Lemma 16. Let S be a solution which matches a template trace τ = (T, α, β), and let (α′, β′) be a
preimage of τ . Let S′ be the output of A applied to (α′, β′). Then S′ is either a solution, or there exists
an edge e of G that intersects some curve in S′ more than once.

Proof. The construction guarantees that for each added edge in F , say siti, there will be a simple curve
ui in S′ connecting si to ti. Moreover, ui will cross precisely as many curves in G as S, since S matches
τ and (α′, β′) is a preimage of τ . To complete the proof, we argue that the crossings between distinct
curves in S are replicated by S′.

Consider a crossing x between the drawings of two added edges, say si-ti curve p and sj-tj curve q
in S, and assume this crossing occurs in a cell c of G. Let us split each such curve into curve segments,
which are maximal connected subcurves of these curves that do not intersect any other curves in G (in
particular, each such curve segment must lie completely in a cell of G, but a cell of G may contain multiple
curve segments of a single curve). x is contained in exactly one curve segment of p and one curve segment
of q, and both these segments start and end on the boundary of c. Because the curve segments intersect
exactly once in x, their endpoints have to interleave on the boundary of c. These start- and endpoints
correspond via the preimaging between the solution trace of S and τ to shadow vertices p1 and p2 and q1
and q2 respectively in V (T) which also interleave in the cyclic ordering given by β(c) where c corresponds
to c via the preimaging between the solution trace and τ . This means, via the preimaging γ between τ
and (α′, β′), that γ(p1), γ(c) and γ(p2) are consecutive on α′i, γ(q1), γ(c) and γ(q2) are consecutive on
α′j , and the pairs (γ(p1), γ(p2)) and (γ(q1), γ(q2)) interleave in ≺γ(c). At this point, A ensures that the
drawings of siti and sjtj in S′ intersect exactly once in the cell corresponding to γ(c)—mirroring the
behavior of S.

On the other hand, let us now make an analogous argument to analyze what happens if two curves p
(the drawing of siti) and q (the drawing of sjtj) in S do not cross each other in a cell c which they both
intersect (drawings of added edges which do not intersect the same cell of G in S are easily argued not
to intersect the same cell of G in S′). Consider two arbitrary curve segments of p and q in c. Using the
preimagings between the solution trace of S and τ and τ and (α′, β′) we can find shadow vertices in P
that correspond to the endpoints of the curve segments and do not interleave in the cyclic ordering for
the cell vertex corresponding to c in the preimage (α′, β′). As this is true for arbitrary edge segments of
p and q in c, applying A to (α′, β′) then ensures that the drawings of siti and sjtj do not intersect in
the cell that corresponds to the cell vertex that is associated to c via the preimagings.

Altogether, we conclude that the curves obtained by A will contain the same number of crossings as
the curves in S, and will pairwise cross each other if and only if they pairwise crossed each other in S
(and, in any case, at most once). Hence either S′ is a solution, or it contains a curve that crosses an
existing edge in G more than once.

Next, we show that the problem of finding a preimage of a template trace (or determining that there
is none) can be encoded in Monadic Second Order (MSO) logic.

Lemma 17. Let τ = (T, α, β) be a template trace. There exists an MSO formula φτ (V (T)) of size
independent of G and G which is satisfiable in P if and only if there exists a preimage for τ in P .

19

Moreover, if the formula is true, then the interpretation of V (T) defines a preimaging between a preimage
of τ and τ .

Proof. We prove the lemma by giving the construction of φτ (V (T)). First of all, the formula requires
that, for each walk αi ∈ α, the variables in αi ⊆ V (T) form a walk in P that visits the variables in the
order prescribed by αi, whereas the interpretation of each variable has the correct label (including the
specific labels marking the endpoints of walks and crossability of segment vertices). Observe that an
interpretation satisfying this initial condition will result in a set of walks in P satisfying the requirements
imposed on the first tuple of a preimage of τ .

To complete the proof, we now need to ensure that the cyclic orders defined by β (within the template
trace τ , over vertices in T) match those we obtain for the interpretation of V (T) when following the
procedure used to define cyclic orders for preimages. In particular, the following must hold: for each
cell vertex c′ ∈ V (P) that is the interpretation of some cell vertex c in V (T), the cycle on the shadow
vertices in the neighborhood of c′ contains the vertices that are interpretations of shadow vertices in
V (T) in the same cyclic order as the one given in β(c). To express this condition in MSO, we proceed
as follows. For each pair of variables for shadow vertices, say v and v′ in V (T) that are adjacent to c
and directly consecutive in β(c), we express the existence of an v-v′ path in P consisting exclusively of
shadow vertices none of which are among the variables for vertices in V (T) \ {v, v′}. It is easy to verify
that the formula constructed in this way directly encodes all the requirements imposed on preimages
of τ .

Finally, we have all the ingredients needed to prove our main result.

Theorem 18. Z is fixed-parameter tractable.

Proof. We provide a fixed-parameter algorithm for Z. The algorithm begins by constructing the patch-
work graph P as per Definition 10, including the crossability and other labels described in Section 4.
Then, we branch over the exact number of crossings of each added edge with G and, for each branch
we construct and branch over the set of all possible template traces as per Proposition 15. For each
template trace τ , we use Lemma 17 to construct an MSO formula φτ (·) that checks for a preimage of τ .
We enhance φτ (·) with formulas which ensure that any preimage (α′, β′) obtained from its interpretation
will satisfy the following conditions: (1) each walk αi ∈ α′ contains no segment vertex which is not
labeled as crossable for siti; and (2) no two segment vertices occurring in the same walk in α′ correspond
to segments of the same edge in G. Encoding (1) is trivial. For (2) we can add formulas φiτ (·) for
i ∈ [k] that exclude the existence of paths between segment vertices on α′i consisting only of segment and
crossing vertices such that on these paths every time a crossing vertex succeeds a segment vertex v it is
followed by a segment vertex v′ such that v and v′ have the same tracking label. We call the resulting
formula ψτ (·).

For each τ , we now use Courcelle’s theorem to compute an interpretation ω of ψτ (·) or determine
that there is none in P . For each interpretation computed in this way, we apply A and check if we get
a solution to the original Z instance (before branching on the exact number of crossings for each added
edge with G). If we obtain a solution, we accept.

If none of the formulas constructed in this way lead to a solution, then we reject. This is correct, as
can be argued as follows. If the input instance I of Z has a solution, by Lemma 11 there is a solution
S in which the drawing of siti only crosses edge segments of which the corresponding segment vertices
are labeled as crossable for siti. The solution trace of S must match some template trace τ ′. Moreover,
the solution trace (rS , ηS) is a witness for the existence of a preimage of τ ′ which will also satisfy φiτ ′(·)
(since we know that S did not have any double-crossings). Hence the second case of Lemma 16 cannot
occur, and we would have found an interpretation of ψτ ′(·) that leads to a solution.

Theorem 18 immediately implies the fixed-parameter tractability of SCEI and SLCEI parameterized
by k+` (see Section 2). But the same approach can also be used to obtain the fixed-parameter tractability
of the other problems of interest to us that were defined in the introduction, with only minor adaptations
required.

Theorem 19. S`-PEI, `-PEI and Locally Crossing-Minimal Edge Insertion are fixed-parameter
tractable when parameterized by `+ k.

20

Proof. For S`-PEI, we simply need to adapt the proof of Theorem 18 in a way which ensures that after
we add the solution curves to G, every edge in G still has at most ` crossings. To do this, first we’ll
enrich the labeling in P as follows: for each segment vertex in P which is labeled as crossable for any
added edge in F that correspond to an edge e in G, we add a “crossings” label which contains the total
number of crossings of e in G. Otherwise, we proceed exactly as in the proof of Theorem 18, up to the
construction of the formula ψτ (·). At that point, we enrich ψτ (·) with an auxiliary MSO formula which
does the following. For each segment vertex v in P whose crossings-label is i (for i ∈ {0, . . . , `}), it
identifies a set L of all segment vertices belonging to the edge corresponding to v. Then, for each such
individually identified set L, the formula requires that L intersects its interpretation in at most ` − i
distinct vertices. This auxiliary formula is easy to construct and ensures that each edge in G will contain
at most `-many crossings after the insertion of the solution identified by ψτ (·), as required.

For `-textscPEI and also Locally Crossing-Minimal Edge Insertion, it suffices to follow pre-
cisely the steps used to solve S`-PEI and Z, and then remove the separate subformulas (denoted φiτ ′(·)
in the proof of Theorem 18) that were used to ensure simplicity from the final constructed MSO formu-
las.

6 Adding a Single Edge
In this section we present a single-exponential fixed-parameter algorithm for SCEI parameterized by `
in the case where |F | = 1; we hereinafter denote this problem SC1EI. We remark that this algorithm
is tight under the exponential time hypothesis [28], since Arroyo et al. [7] gave a reduction from 3-SAT
to the simple drawing extension problem with 1 extra edge, and the number of edges in the obtained
graphs is linear in the size of the 3-SAT instance.

As the first step towards our algorithm, we transform SC1EI to the problem of finding a colorful
path of length at most κ in the dual of the planarization of the given drawing. Finding this colorful path
then amounts to a straightforward application of so-called representative sets, see e.g. [17, Chapter 12].

Colorful Short Path
Input: A graph G with a vertex-coloring χ : V (G)→ [|V (G)|], two vertices s, t ∈ V (G),

and a positive integer κ.
Question: Does G have a colorful s-t-path (i.e., a path where no color occurs more than

once) of length at most κ?

Proposition 20. There is a linear-time reduction that converts an instance (G,G, {st}, `) of SC1EI to
an equivalent instance (G,χ, s, t, 2`+ 3) of Colorful Short Path.

Proof. Consider an instance (G,G, {st}, `) of SC1EI. We transform this instance into an instance of
Colorful Short Path as follows.

Let G∗0 be the plane dual of the planarization of G, and let G∗ be obtained from G∗0 by subdividing
every edge. In particular, G∗ is a bipartite graph where every vertex corresponds to either a cell (i.e.,
it is a cell vertex) or an edge segment (in which case we call it a segment vertex) in G, and adjacencies
represent incidences between cells and edge segments in G. Moreover, we add s and t to G∗ as special
marker vertices, and for each cell c incident to s (or to t) in G, we add the edge sc (ct) to G∗. Next, we
assign to each edge in G a unique color i ∈ [|E(G)|]. For the coloring function χ, we use assign a unique
color to each cell vertex of G∗ as well as to s and t. Finally, for each segment vertex e, we color it using
the color of its primal edge in G.

To conclude the proof, notice that (G,G, {st}, `) is a yes-instance of SC1EI if and only if G∗ contains
a colorful s-t path of length 2` + 3. Indeed, every drawing of the edge st with endpoints s and t in G
allows us to construct such a colorful path—simply use the cells visited by that curve and the edge
segments it intersects; colorful-ness follows from the fact that the curve cannot cross an edge in G more
than once. Similarly, every colorful s-t-path allows us to obtain a solution to (G,G, {st}, `) by having
the solution curve intersect the cells and edge segments specified by the s-t path, in the same order in
which they are visited by the path.

Our algorithm for Colorful Short Path uses representative sets in a manner that is similar to
the presentation provided in, e.g., the book by Cygan et al. [17]. Intuitively, for each vertex u in an

21

instance of Colorful Short Path, the algorithm will dynamically compute a family of color sets,
where the colors used by each s-u path will form one set in the family. The caveat is that this family
may become too large to effectively compute and store. Once a family for some vertex u becomes larger
than a specified bound (depending only on κ), representative sets allow us to prune some sets from our
family while maintaining the property we need—in particular, if there was a way to extend the original
family to a solution, then there is a way to extend the pruned family to a solution as well.

Formally, one can define q-representative sets on matroids. Let M = (E, I) be a matroid over
universe U . We say that A ⊆ U fits B ⊆ U if A ∩B = ∅ and A ∪B is independent forM.

Definition 21 (Definition 12.14 in [17]). LetM be a matroid and A be a family of sets of size p inM.
A subfamily A′ ⊆ A is said to q-represent A if for every set B of size q such that there is an A ∈ A that
fits B, there is an A′ ∈ A′ that also fits B. If A′ q-represents A, we write A′ ⊆qrep A

While representative sets can be computed even for more general matroids, we only require uniform
matroids of bounded rank. The following theorem allows us to compute a q-representative family of a
family of p sets in FPT time in p and q. The following theorem was independently proven by Fomin et
al. [25] and Shachnai and Zehavi [38].

Theorem 22 (Theorem 12.31 in [17], see also [25, 38]). Let M be a uniform matroid over universe
U and A be a p-family of independent sets of M. There is an algorithm that given A, a rational
number 0 < x < 1, and an integer q computes a q-representative family A′ ⊆qrep A of size at most
x−p(1− x)−q2o(p+q) in time |A|(1− x)−q2o(p+q) log |U |.

A useful property of representative sets is that they are transitive.

Lemma 23 (Lemma 12.27 in [17]). If Â q-represents Ã and Ã q-represents A, then Â q-represents A.

Furthermore, the union of representative sets is again a representative set.

Lemma 24 (Lemma 12.26 in [17]). If A1 and A2 are both p-families, A′1 q-represents A1 and A′2
q-represents A2, then A′1 ∪ A′2 q-represents A1 ∪ A2.

To build the representative sets we make use of the operation of set convolution to iteratively construct
the representative families. Let A and B be two families, with A∗B we denote the convolution of A and
B, i.e.

A ∗ B = {A ∪B | A ∈ A, B ∈ B, and A ∩B = ∅}.

Lemma 25 (Lemma 12.28 in [17]). Let A1 be a p1-family and A2 be a p2-family. Suppose A′1 (k− p1)-
represents A1 and A′2 (k − p2)-represents A2. Then A′1 ∗ A′2 (k − p1 − p2)-represents A1 ∗ A2.

The proof of the following theorem closely follows the ones given by Cygan et al. [17, Chapter 12] for
longest cycle and path.

Theorem 26. Colorful Short Path can be solved in time O(2O(κ) · |E(G)| log |V (G)|).

Proof. Let (G, s, t, χ, κ) be an instance of Colorful Short Path with an n-vertex graph G. We
consider the uniform matroid of rank at most p + q with universe V (G) ∪ [n]. Let Ppu be the family of
sets defined as follows. For X ⊆ [n], we have X ∈ Ppu if and only if there is a colorful s-u path W in G
of length p such that all colors in X are used along W .

Clearly, if Pκt is non-empty there exists a colorful path of length at most κ that starts at s and ends
at t. We will check this property by computing a family P̂κ,0t ⊆0

rep Pzt and then test if P̂κ,0t is non-empty.
This is sufficient for the following reason. Suppose Pκt is not empty. Consequently it contains a set that
fits with the empty set ∅, but then P̂κ,0t ⊆0

rep Pκt also must contain such a set that fits with ∅ as it is a
0-representative set of Pκt .

To compute the representative sets we cannot just invoke Theorem 22 as it would require us to
enumerate all members of Pκt . Instead, we are going to construct the representative sets for every vertex
in an iterative fashion, with the aim of obtaining P̂κ,0t without directly computing Pκt . Note that we
will compute a representative set only for every second value of p, because we will always be adding a
color and a vertex simultaneously in one step. In the beginning let us set P̂0

s = P0
s = {{χ(s)}} and

22

P̂0
u = P0

u = ∅ for every u ∈ V (G) \ {s}. We proceed in rounds, iterating over the values in {1, . . . , κ}
in increasing order. At the start of each loop we will maintain the invariant that for every u ∈ V (G),
1 ≤ p′ ≤ p, and q ≤ κ− p′ we have computed a family P̂p′,qu of size at most(

p′ + 2q

p′

)p′ (
p′ + 2q

2q

)q
· 2o(p

′+q)

that q-represents Piu.
Now, consider the p-th iteration of our loop. We compute a new family P̂p,qu for each v ∈ V (G) \ {s}

and q ≤ κ− p as follows

P̃p,qv =
⋃

uv∈E(G)

P̂p−1,q+1
u ∗ {{χ(v)}}.

Together, Lemma 24 and 25 imply that P̃p,qv q-represents Ppv . At this point we invoke Theorem 22 to
compute P̂p,qv ⊆qrep P̃p,qv . By Lemma 23 it follows that P̂p,qv in fact q-represents Ppv . Finally, check if P̂p,qt
is non-empty for any q ≤ κ− p if so we have found a colorful path from s to t of length p. Backtracking
our decisions, the discovered set in P̂p,qt can be turned into a colorful path from s to t of length p ≤ κ.

It remains to compute the running time and space of our algorithm and show that we in fact can
retrieve the paths in the same time. We apply Theorem 22 with xp.q = p

p+2q . With i ≤ p and following
the same analysis as Cygan et al. [17, Lemma 12.33] we obtain that the sizes of the computed families
P̂p,qu for every u ∈ V (G), 2 ≤ p ≤ κ, and q ≤ κ− p are bounded by(

p+ 2q

p

)p(
p+ 2q

2q

)q
· 2o(p+q)

and that the running time is given by the maximum of the function

f(p, q) =

(
p+ 2q

p

)p(
p+ 2q

2q

)2q

.

times nO(1) and 2o(p+q). Maximizing f over the domain 1 ≤ p ≤ κ and 0 ≤ q ≤ κ− p gives us that the
maximum is attained for p = (1− 1√

5
) and q = κ− p. Evaluating f for these values leads to a runtime

that is upper bounded by 2.619κ+o(κ) · |E(G)| log |V (G)|.
Computing the path from a set S ∈ P̂zt can be done by keeping the families in order of when they

are computed. For example we could store them in a matrix of size κ × n with each row correlating to
a step and the columns to the vertices in V (G). Backtracking our decisions we can obtain the colorful
path of length at most κ.

Theorem 27 is an immediate consequence of Proposition 20 together with Theorem 26.

Theorem 27. SC1EI can be solved in time O(2O(`) · |G| log |E(G)|).

7 Conclusion
In this paper we established the fixed-parameter tractability of inserting a given set of edges into a given
drawing while maintaining simplicity and adhering to various restrictions on the number of crossings in
the solution. While the presented results make the reasonable assumption that the initial drawing is
connected, the problem is of course also interesting in the general case. We believe that our framework
and methodology can also be used to handle the extension problem for disconnected drawings, albeit only
after overcoming a few additional technical challenges; moreover, the algorithm presented in Section 6
does not require connectivity at all. Other than connectivty, the most glaring question left open concerns
the complexity of SCEI parameterized by ` alone. Last but not least, while here we focused on the edge
insertion problem, it would also be interesting to extend the scope to also allow for the addition of
vertices into the drawing.

23

References
[1] Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vít Jelínek, Jan Kratochvíl, Maurizio Pa-

trignani, and Ignaz Rutter. Testing planarity of partially embedded graphs. ACM Transactions on
Algorithms, 11(4):32:1–32:42, 2015. doi:10.1145/2629341.

[2] Patrizio Angelini, Michael A. Bekos, Franz J. Brandenburg, Giordano Da Lozzo, Giuseppe Di Bat-
tista, Walter Didimo, Michael Hoffmann, Giuseppe Liotta, Fabrizio Montecchiani, Ignaz Rutter, and
Csaba D. Tóth. Simple k-planar graphs are simple (k + 1)-quasiplanar. Journal of Combinatorial
Theory, Series B, 142:1–35, 2020. doi:10.1016/j.jctb.2019.08.006.

[3] Patrizio Angelini, Ignaz Rutter, and Sandhya T. P. Extending Partial Orthogonal Drawings. In
Proceedings of the 28th International Symposium on Graph Drawing and Network Visualization
(GD’20), LNCS. Springer, 2020. To appear.

[4] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable graphs.
Journal of Algorithms, 12(2):308–340, 1991. doi:10.1016/0196-6774(91)90006-K.

[5] Alan Arroyo, Julien Bensmail, and R. Bruce Richter. Extending drawings of graphs to arrangements
of pseudolines. In Sergio Cabello and Danny Z. Chen, editors, Proceedings of the 36th International
Symposium on Computational Geometry (SoCG’20), volume 164 of LIPIcs, pages 9:1–9:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.SoCG.2020.9.

[6] Alan Arroyo, Martin Derka, and Irene Parada. Extending simple drawings. In Daniel Archambault
and Csaba D. Tóth, editors, Proceedings of the 27th International Symposium on Graph Drawing
and Network Visualization (GD’19), volume 11904 of LNCS, pages 230–243. Springer, 2019. doi:
10.1007/978-3-030-35802-0_18.

[7] Alan Arroyo, Fabian Klute, Irene Parada, Raimund Seidel, Birgit Vogtenhuber, and Tilo Wiedera.
Inserting one edge into a simple drawing is hard. In Isolde Adler and Haiko Müller, ed-
itors, Proceedings of the 46th International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG’20), volume 12301 of LNCS, pages 325–338. Springer, 2020. doi:10.1007/
978-3-030-60440-0_26.

[8] Alan Arroyo, Dan McQuillan, R. Bruce Richter, and Gelasio Salazar. Levi’s lemma, pseudolinear
drawings of Kn, and empty triangles. Journal of Graph Theory, 87(4):443–459, 2018. doi:10.1002/
jgt.22167.

[9] Guido Brückner and Ignaz Rutter. Partial and constrained level planarity. In Philip N. Klein, editor,
Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’17), pages
2000–2011. SIAM, 2017. doi:10.1137/1.9781611974782.130.

[10] Christoph Buchheim, Markus Chimani, Carsten Gutwenger, Michael Jünger, and Petra Mutzel.
Crossings and planarization. In Roberto Tamassia, editor, Handbook on Graph Drawing and Visu-
alization, pages 43–85. Chapman and Hall/CRC, 2013.

[11] Jean Cardinal and Stefan Felsner. Topological drawings of complete bipartite graphs. Journal of
Computational Geometry, 9(1):213–246, 2018. doi:10.20382/jocg.v9i1a7.

[12] Erin W. Chambers, David Eppstein, Michael T. Goodrich, and Maarten Löffler. Drawing graphs
in the plane with a prescribed outer face and polynomial area. Journal of Graph Algorithms and
Applications, 16(2):243–259, 2012. doi:10.7155/jgaa.00257.

[13] Timothy M. Chan, Fabrizio Frati, Carsten Gutwenger, Anna Lubiw, Petra Mutzel, and Marcus
Schaefer. Drawing partially embedded and simultaneously planar graphs. Journal of Graph Algo-
rithms and Applications, 19(2):681–706, 2015. doi:10.7155/jgaa.00375.

[14] Markus Chimani, Carsten Gutwenger, Petra Mutzel, and Christian Wolf. Inserting a vertex into a
planar graph. In Claire Mathieu, editor, Proceedings of the 20th Annual ACM-SIAM Symposium
on Discrete Algorithms, (SODA’09), pages 375–383. SIAM, 2009.

24

https://doi.org/10.1145/2629341
https://doi.org/10.1016/j.jctb.2019.08.006
https://doi.org/10.1016/0196-6774(91)90006-K
https://doi.org/10.4230/LIPIcs.SoCG.2020.9
https://doi.org/10.1007/978-3-030-35802-0_18
https://doi.org/10.1007/978-3-030-35802-0_18
https://doi.org/10.1007/978-3-030-60440-0_26
https://doi.org/10.1007/978-3-030-60440-0_26
https://doi.org/10.1002/jgt.22167
https://doi.org/10.1002/jgt.22167
https://doi.org/10.1137/1.9781611974782.130
https://doi.org/10.20382/jocg.v9i1a7
https://doi.org/10.7155/jgaa.00257
https://doi.org/10.7155/jgaa.00375

[15] Markus Chimani and Petr Hlinený. Inserting multiple edges into a planar graph. In Sándor P. Fekete
and Anna Lubiw, editors, Proceedings of the 32nd International Symposium on Computational Ge-
ometry (SoCG’16), volume 51 of LIPIcs, pages 30:1–30:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPIcs.SoCG.2016.30.

[16] Bruno Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

[17] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk,
Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. doi:10.1007/
978-3-319-21275-3.

[18] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

[19] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts in
Computer Science. Springer, 2013. doi:10.1145/2744447.2744454.

[20] Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg. Extending
nearly complete 1-planar drawings in polynomial time. In Javier Esparza and Daniel Král’, editors,
Proceedings of the 45th International Symposium on Mathematical Foundations of Computer Sci-
ence, (MFCS’20), volume 170 of LIPIcs, pages 31:1–31:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.MFCS.2020.31.

[21] Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg. Extending
partial 1-planar drawings. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, Proceed-
ings of the 47th International Colloquium on Automata, Languages, and Programming (ICALP’20),
volume 168 of LIPIcs, pages 43:1–43:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.ICALP.2020.43.

[22] Paul Erdős and Richard K. Guy. Crossing number problems. The American Mathematical Monthly,
80(1):52–58, 1973. doi:10.1080/00029890.1973.11993230.

[23] Paul Erdös and Richard Rado. Intersection theorems for systems of sets. Journal of the London
Mathematical Society, 1(1):85–90, 1960.

[24] Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in Theoretical
Computer Science. An EATCS Series. Springer, Berlin, 2006. doi:10.1007/3-540-29953-X.

[25] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. Journal of the
ACM, 63(4):29:1–29:60, 2016. doi:10.1145/2886094.

[26] Péter Hajnal, Alexander Igamberdiev, Günter Rote, and André Schulz. Saturated simple and 2-
simple topological graphs with few edges. Journal of Graph Algorithms and Applications, 22(1):117–
138, 2018. doi:10.7155/jgaa.00460.

[27] Heiko Harborth. Empty triangles in drawings of the complete graph. Discrete Mathematics, 191(1-
3):109–111, 1998. doi:10.1016/S0012-365X(98)00098-3.

[28] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly ex-
ponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001. doi:
10.1006/jcss.2001.1774.

[29] Jan Kyncl. Simple realizability of complete abstract topological graphs simplified. Discrete and
Computational Geometry, 64(1):1–27, 2020. doi:10.1007/s00454-020-00204-0.

[30] Jan Kynčl, János Pach, Radoš Radoičić, and Géza Tóth. Saturated simple and k-simple topological
graphs. Computational Geometry: Theory and Application, 48(4):295–310, 2015. doi:10.1016/j.
comgeo.2014.10.008.

25

https://doi.org/10.4230/LIPIcs.SoCG.2016.30
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/2744447.2744454
https://doi.org/10.4230/LIPIcs.MFCS.2020.31
https://doi.org/10.4230/LIPIcs.ICALP.2020.43
https://doi.org/10.1080/00029890.1973.11993230
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1145/2886094
https://doi.org/10.7155/jgaa.00460
https://doi.org/10.1016/S0012-365X(98)00098-3
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1007/s00454-020-00204-0
https://doi.org/10.1016/j.comgeo.2014.10.008
https://doi.org/10.1016/j.comgeo.2014.10.008

[31] Jan Kynčl. Enumeration of simple complete topological graphs. European Journal of Combinatorics,
30(7):1676–1685, 2009. doi:10.1016/j.ejc.2009.03.005.

[32] Giordano Da Lozzo, Giuseppe Di Battista, and Fabrizio Frati. Extending upward planar graph
drawings. Computational Geometry: Theory and Applications, 91:101668, 2020. doi:10.1016/j.
comgeo.2020.101668.

[33] Tamara Mchedlidze, Martin Nöllenburg, and Ignaz Rutter. Extending convex partial drawings of
graphs. Algorithmica, 76(1):47–67, 2016. doi:10.1007/s00453-015-0018-6.

[34] János Pach. Geometric graph theory. In Csaba D. Tóth, Joseph O’Rourke, and Jacob E. Goodman,
editors, Handbook of Discrete and Computational Geometry, Second Edition, pages 257–279. CRC
press, 2017.

[35] Maurizio Patrignani. On extending a partial straight-line drawing. International Journal of Foun-
dations of Computer Science, 17(5):1061–1070, 2006. doi:10.1142/S0129054106004261.

[36] Neil Robertson and Paul D. Seymour. Graph minors. III. planar tree-width. Journal of Combina-
torial Theory, Series B, 36(1):49–64, 1984. doi:10.1016/0095-8956(84)90013-3.

[37] Marcus Schaefer. Crossing numbers of graphs. CRC Press, 2018. doi:10.1201/9781315152394.

[38] Hadas Shachnai and Meirav Zehavi. Faster computation of representative families for uniform
matroids with applications. CoRR, abs/1402.3547, 2014. arXiv:1402.3547.

[39] Thomas Ziegler. Crossing minimization in automatic graph drawing. PhD thesis, Saarland Univer-
sity, Saarbrücken, Germany, 2001.

26

https://doi.org/10.1016/j.ejc.2009.03.005
https://doi.org/10.1016/j.comgeo.2020.101668
https://doi.org/10.1016/j.comgeo.2020.101668
https://doi.org/10.1007/s00453-015-0018-6
https://doi.org/10.1142/S0129054106004261
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1201/9781315152394
http://arxiv.org/abs/1402.3547

	1 Introduction
	2 Preliminaries
	3 Stitches
	3.1 Detours and Reasonable Solutions
	3.2 Defining and Finding Stitches

	4 The Patchwork Graph
	5 Using the Patchwork Graph
	6 Adding a Single Edge
	7 Conclusion

