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Abstract

Recurrent neural networks (RNNs) are widely used for sequence modeling, generation, and
prediction. Despite success in applications such as machine translation and voice recogni-
tion, these stateful models have several critical shortcomings. Specifically, RNNs struggle to
recognize very long sequences, which limits their applicability in many important temporal
processing and time series forecasting problems. For example, RNNs struggle in recognizing
complex context free languages (CFLs), unable to reach 100% accuracy on the training set.
One way to address these shortcomings is to couple an RNN with an external, differentiable
memory structure, such as a stack. However, differentiable memories in prior work have
neither been extensively studied on complex CFLs nor tested on very long sequences that
have been seen on training. In fact, earlier work has shown that continuous differentiable
memory structures struggle in recognizing complex CFLs over very long sequences. In this
paper, we improve the memory-augmented RNN with new architectural and state updating
mechanisms that learn to properly balance the use of latent states with external memory.
Our improved RNN models exhibit improved generalization and are able to classify long
strings generated by complex hierarchical context free grammars (CFGs). We evaluate our
models on CFGs, including the Dyck languages, as well as on the Penn Treebank language
modelling dataset, achieving stable, robust performance on these benchmarks. Further-
more, we show that our proposed memory-augmented networks are able retain information
over long sequences leading to improved generalization for strings up to length 160.

Keywords: Recurrent neural network, Memory augmented network, Dyck languages, Con-
text free language, Pushdown automata
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1. Introduction

Recurrent neural networks (RNNs) are stateful models that extract temporal dependencies
from sequential data. They have been widely used in various natural language processing
(NLP) and computer vision tasks, such as machine translation (Kalchbrenner and Blunsom,
2013; Bahdanau et al., 2015; Sutskever et al., 2014), language modeling (Mikolov et al., 2010;
Sundermeyer et al., 2012), multimodal language modelling (Kiros et al., 2014; Ororbia et al.,
2019) and speech recognition (Graves et al., 2013). In theory, first order RNNs with the
desired weights (arranged as 2D weight matrices) and infinite precision have been shown to
be as powerful as a pushdown automaton (PDA) (Korsky and Berwick, 2019; Kremer, 1995;
Frasconi and Gori, 1996) and can be considered to be computationally universal models
(Siegelmann and Sontag, 1994, 1995). However, a higher order model (such as second
order or tensor RNNs) can directly map higher order recurrent weights to state machine
transition rules, thus offering more interpretable representations. This is also known as
structural encoding, and tensor RNNs are viable solution for same. (Omlin and Giles, 1996;
Horne and Hush, 1994; Carrasco et al., 2000) proved that any deterministic finite state
machine can be stably constructed with a 2nd order or tensor RNN.

To this day, languages that are recognizable by first order RNNs and even transformers,
as well as the limits of their computational power, are still being explored. Recently, (Merrill,
2019) theoretically demonstrated the expressiveness of RNNs with finite precision under
asymptotic conditions. Empirically, it has been demonstrated that LSTMs possess the
capability of recognizing simple context free languages (such as anbn) and context-sensitive
languages (such as anbncn) by using a complex counting mechanism (Gers and Schmidhuber,
2001; Weiss et al., 2018a) whereas GRUs struggle to perform dynamic counting (Weiss
et al., 2018a). While some of the languages from the Chomsky hierarchy (Chomsky and
Lightfoot, 2002) can be modelled using counting, counting does not capture all of the
structural properties that underlie natural language, i.e., languages with hierarchical or
nested structure. (Chomsky and Lightfoot, 2002; Chomsky, 1962) categorized these nested
languages as context free languages (CFLs). To recognize CFLs, a counting mechanism
with finite memory is insufficient and a stack is required in order to correctly recognize
these grammars. Based on formal language theory, Dyck languages Dn, where n > 1,
offer nested structure and are categorized as CFLs(Nivat, 1970). (Suzgun et al., 2019a)
showed that first order RNNs, e.g., GRU/LSTM, perform well on Dyck languages (D1)
(and various combinations) when n = 1. However, these models struggle when n > 1.
In contrast, theoretically, a pushdown automaton with a stack can correctly recognize any
CFG that is also known to be the homomorphic image of a regular Dn language (Chomsky
and Schützenberger, 1959; Chomsky, 1962).

Prior work has focused on using first order RNNs, with and without external mem-
ory, to learn Dyck languages up to length 2 (Zaremba et al., 2016; Hao et al., 2018; Deleu
and Dureau, 2016) but none have achieved reasonable performance on long sequences. In
work similar to ours, (Suzgun et al., 2019b) proposed a mechanism for training memory-
augmented RNNs for the Dyck languages. Other work has focused on a different class of
RNNs, often referred to as tensor RNNs, which are able to learn CFLs, even D2 languages,
on long sequences not seen during training (Mali et al., 2019). These models appear to offer
better encoding/representations for recognizing context free languages (Mali et al., 2019;
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Das et al., 1993, 1992). However, due to their computational complexity and difficulty in
implementation/training, higher order RNNs are not widely used in practice. The recent
success of higher order RNNs with memory (Mali et al., 2019) in recognizing CFGs moti-
vates our current work. Here, we focus on maintaining the representational capability of
tensor RNNs while minimizing computational overhead. To do this, we propose a first order
approximation of higher order weights as well as their updates, reducing computational cost.
To better understand this approach, we empirically investigate the computational capabil-
ities of first order RNNs used in practice, with and without external memory, for the task
of recognizing complex CFLs. Then, we extend RNNs to those with higher order weights
and propose several new improved memory-augmented RNN models. We call this family of
models that DiffStk-RNN family and show that these models offer improved performance
in recognizing complex CFLs. The contributions of this paper are:

• We introduce five new stack-augmented, recurrent neural networks and, within a non-
traditional framework of next-step prediction, we develop a schema that facilitates
stronger, iterative error-correction for improved training of CFG recognition models.

• We show that approximating higher order RNNs with stack memory offer the best
results when classifying long CFL strings while reducing computation time.

• We investigate, for the first time, the performance of first order RNNs on complex,
long string CFLS and show the importance of using negative string examples when
training for CFG recognition.

• We show that our models, with only finite precision, can emulate the dynamics of a
PDA to effectively learn long string CFLs, mainly D>1 languages, and furthermore
perform well on language modeling using the Penn Treebank benchmark dataset.

• We propose an efficient scheme for training stack-augmented RNNs that helps preserve
memory over longer string lengths. In addition, we demonstrate the importance of
noise and the need for improved handling of NO-OP operations on the RNN’s stack
when preserving memory over long time spans.

2. Related Work

Historically, grammatical inference (Gold, 1967) has been at the core of formal language
theory and could be considered to be one of the most fundamental pathways towards un-
derstanding the important properties of natural languages. A summary of most of the
theoretical work done in formal languages can be found in (De la Higuera, 2010). Applica-
tions of formal language work have led to the development of methods for predicting and
understanding sequences in diverse areas ranging from financial time series to genetics and
bioinformatics (Searls, 1993; Sakakibara et al., 1994) to software data exchange (Giles et al.,
2001; Wieczorek and Unold, 2016; Exler et al., 2018). In recent times, state-less models
such as transformers have demonstrated positive results in recognizing formal languages
Bhattamishra et al. (2020); Weiss et al. (2021), however theoretical capability in recogniz-
ing complex grammars of such models are often debatable Hahn (2020). In contrast many
stateful neural models take the form of a first order recurrent neural network (RNN) and
are taught to learn context free and context-sensitive counter languages (Gers and Schmid-
huber, 2001; Bodén and Wiles, 2000; Tabor, 2000; Wiles and Elman, 1995; Sennhauser and
Berwick, 2018; Nam et al., 2019; Wang and Niepert, 2019; Cleeremans et al., 1989; Kolen,
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1994; Cleeremans et al., 1989; Weiss et al., 2018b). However, from a theoretical perspective,
RNNs augmented with an external memory have historically been considered efficient in
recognizing context free languages (CFLs), such as tensor RNNs (Das et al., 1993; Pollack,
1990; Sun et al., 1997; Mali et al., 2019), or, more recently, first order RNNs augmented
with various differentiable memory structures (Joulin and Mikolov, 2015; Grefenstette et al.,
2015; Graves et al., 2014; Kurach et al., 2015; Zeng et al., 1994; Hao et al., 2018; Yogatama
et al., 2018; Graves et al., 2016; Le et al., 2019; Arabshahi et al., 2019). Despite the positive
recognition results, prior work has not focused on examining generalization over very long
strings but has highlighted difficulty in training memory-augmented models. In contrast,
(Zeng et al., 1994; Mali et al., 2019; Suzgun et al., 2019b) and (Gers and Schmidhuber,
2001) demonstrated promising results in generalizing beyond the training dataset with sim-
ple CFLs. Simple CFLs are bounded context-free languages that can be easily recognized
using Finite automata or counter automata by increasing the model capacity without requir-
ing any external memory. In contrast, complex CFLs require external memory to capture
hierarchical representation in languages and cannot be easily recognized by finite machines.

Recent work on differentiable stacks (the stack-RNN) (Joulin and Mikolov, 2015), which
is closely related to this work, tests on real natural language modeling tasks and on learn-
ing simple algorithmic patterns. These models were able to solve problems which required
counting as well as memorization. Other work related to differentiable memory (Grefen-
stette et al., 2015) was motivated by the neural pushdown automaton, i.e., the NNPDA
(Das et al., 1992, 1993; Mozer and Das, 1993; Sun et al., 1997), which extended RNNs
to use an unbounded external differentiable memory including stacks, queues, and doubly-
linked lists. Nonetheless, none of these prior efforts have focused on evaluating models on
complex and long CFLs. While other memory-augmented models have been proposed to
solve CFLS, such as neural random access memory (NRAM) (Kurach et al., 2015) and the
neural Turing machine (NTM) (Graves et al., 2014), these models face instability issues
and are quite difficult to train and scale to real world problems. To truly evaluate the
generalization ability of RNNs and other memory-augmented models on CFLs, it is critical
that we test them on more complex and longer CFLs such as the Dyck languages (Suzgun
et al., 2019a).

3. Recurrent Neural Networks Augmented with an External Stack

In this section, we describe a set of stack-augmented RNNs, motivated by neural systems
designed to emulate state machines with pushdown dynamics (Das et al., 1993; Mali et al.,
2019; Joulin and Mikolov, 2015; Grefenstette et al., 2015; Hao et al., 2018; Suzgun et al.,
2019b). Unlike previously proposed models, ours are simple and easy to train.

We approach the problem of CFL recognition in a way different to how it has been
approached historically. Classically, an RNN designed for recognizing CFLs first encodes
the entire string sequence in its internal state and then subsequently classifies it as correct or
incorrect, i.e., the input to the recognition (binary) classifier was the RNN’s final computed
hidden vector summary of the sequence. In contrast, we design a next-step prediction
scheme that entails: 1) predicting the recognition label y of the string at each time step
while measuring efficacy with a mean squared error (MSE) loss, and 2) averaging step-wise
predictions once the end symbol/token is encountered. Whenever the predicted value is
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< 0.5, the string is considered invalid otherwise it is flagged as valid. Our intuition behind
using next step prediction was to create a better training scheme for CFL recognition,
allowing the RNN to recover from previous mistakes when iteratively recognizing a sequence.
Our experiments suggest this helps in learning complex and longer sequences for CFLs.

Ideally, since we want all of our networks to operate like PDAs, we formulate our model
in the spirit of classical pushdown networks. As such, we first start by defining an M -state
PDA as a 7-tuple (Q,Σ,Γ, δ, q0,⊥, F ) where:

• Σ = {a1, · · · , al, · · · , aL} is the input alphabet
• Q = {s1, · · · , sm, · · · , sM} is the finite set of states
• Γ is known as stack alphabet (a finite set of tokens)
• q0 is the start state
• ⊥ is the initial stack symbol
• F ⊆ Q is the set of accepting states
• δ ⊆ Q× (Σ∪)| × Γ→ Q× Γ∗) is the state transition.

3.1. The DiffStk-RNN Pushdown Network

Our pushdown network will be referred to as a “Differentiable Stack-RNN”, in brief we
call it the DiffStk-RNN (to distinguish it from the original model “StackRNN”(Joulin and
Mikolov, 2015) and the recent (Suzgun et al., 2019b) model). DiffStk-RNN learns to control
an external stack data structure and consists of an input layer, a hidden layer with recurrent
connections, and an output layer. The RNN processes, at each time step t in a sequence
of length T , a symbol/token xt ∈ {0, 1}d×1 (the one-hot encoding of the symbol) where d
is the total number of unique symbols in the dataset/corpus, i.e., the size of the alphabet.
In essence, its goal is to jointly predict xt and the global validity flag yt ∈ {0, 1} (a binary
value) given a history of symbols observed thus far x<t (using the cross-entropy loss that is
characteristic of RNN language models). Assuming the CFL-recognizing RNN’s prediction
(at step t) of the recognition label is ŷt ∈ [0, 1] (a scalar) and its prediction of the next token
is x̂t (a probability simplex), then the complete loss for a CFL sample sequence string is:

L(Θ) =
T∑
t=1

βx

[∑
i

−(xt ⊗ log(x̂t))[i]

]
+ βy

[
1

2
(ŷt − y)2

]
(1)

where i indicates retrieval of the ith scalar value in a vector. βx controls the importance
of the symbol-prediction term of the loss while βy controls the importance of the validity
prediction term (we set both βx = βy = 1 in this paper). As the RNN processes symbols
one by one, it computes its hidden state as follows (biases omitted for clarity):

zt = f1(U · xt +R · zt−1) (2)

where · indicates matrix/vector multiplication. Note that f1(◦) is hyperbolic tangent (tanh)
activation function, specifically, the scaled variant of it (LeCun et al., 2012), i.e., f1(x) =
1.7519× tanh(2/3× x), applied coordinate-wise. Note that U is a m× d token embedding
matrix and R is a m×m recurrent weight matrix. The number of different tokens is d while
m is the number of hidden units in the state zt. Based on its current state at step t, the
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RNN outputs probability distributions x̂t and ŷt for the next step in the following manner:

x̂t = softmax(V · zt) =
exp(V · zt)∑
i exp(V zt)[i]

, and, ŷ = σ(Q · zt) (3)

where σ(x) = 1/(1 + exp(−x)) is the logistic sigmoid, V ∈ Rd×m is the token prediction
matrix, and Q ∈ R1×m is the validity prediction vector.

As discussed earlier in the paper, pure stateful 1st order RNNs (such as the one pre-
sented in Equation 2), struggle to recognize complex CFLs. If we were to raise the order
of the network and equip it with an external memory, however, then it would be theoret-
ically possible to recognize any CFL in general (Giles et al., 1992; Mali et al., 2019; Zeng
et al., 1994). To raise the order of the network without incurring too great a computational
cost, we introduce an approximation of higher order tensor behavior through multiplicative
operations – we provide the details of this approximation in the appendix. To address the
memory issue, we augment the RNN with a stack, which serves as an external persistent
memory structure which has only its topmost element readily accessible to the RNN con-
troller. In this case, such an RNN has basic three operations it may perform on the stack:
1) PUSH: adds elements, 2) POP: removes elements, and 3) NO-OP (NoOP): does nothing.
In essence, we want the stack to carry information to the hidden layer of an RNN (acting
as the controller). While the original StackRNN does this according to Equation 2, our
DiffStk-RNN makes use of an additional term added to the hidden state update equation,
plus other improvements such as better handling of NoOP and negative sampling to make
it stable. Specifically, we compute the next hidden state of our model according to the
following equation:

ẑt−1 = zt−1 + P · St−1[0], zt = f1(U · xt +R · ẑt−1) (4)

where P is m × 3 recurrent matrix and St−1[0] is the top-most element of stack S. This
shows how the stack-augmented term is integrated into the hidden state calculation. To
specify the stack itself, we start by denoting at as a 3-dimensional variable representing
each action taken on the stack, which is dependent on hidden state zt

at = softmax(A · zt) (5)

where A is a 3×m state-to-action matrix. We store the top element of the stack at position
0, with value St[0], via the following:

St[0] = at[PUSH]σ(D · zt) + at[POP ]St−1[1] + at[NoOP ]St−1[0] (6)

where the symbols PUSH, POP, and NoOP correspond to the unique integer indices 0, 1,
and 2 that access the specific action value in their respective slot. D is a 1×m matrix. If
at[PUSH] = 1 we add element to the top of the stack and if at[POP ] = 1 we remove the
element at top of the stack and move the stack upwards. Similarly for elements stored at
depth i > 0 in the stack, the rule is as follows:

St[i] = at[PUSH]St−1[i− 1] + at[POP ]St−1[i+ 1]. (7)
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Figure 1 shows the architecture of our base DiffStk network. Note that for more complex
hidden state functions used to compute zt (such as an LSTM state function), integration
with a stack is similar – details of these models in the family are provided in the appendix.

Adding Noise to the Hidden Weights: Noise plays a crucial role in regularizing
RNNs. Besides regularization, it has also been shown to improve the model’s forecasting
horizon yielding better generalization (Jim et al., 1996; Goodfellow et al., 2016; Noh et al.,
2017; Mali et al., 2020; Mali et al., 2019). Motivated by this result, we modify the state
update equation as follows:

ẑt−1 = zt−1 + P · st−1[0] + ε, ∀i, ε[i] ∼ N (µ, σ2) (8)

where µ (mean) and σ2 (variance) are user-set meta-parameters to control the strength of the
additive Gaussian regularization noise. Based on our experiments, we found that injecting
a small amount of noise into the state improves the model’s generalization although it can
sometimes slow down convergence. 1

Carry Forward State Update: Whenever there exists a symbol that leads to more
than one No-OP operation on the stack, we propose carrying forward the previous hidden
state. Empirically, we found that this helps whenever the RNN encounters too many No-
OPs in the input strings. This can be considered as approximation of a “reject” state, which
have been shown to stabilize the learning process of higher order RNNs (Das et al., 1993;
Sun et al., 1998). We keep a counter which indicates how many NoOPs the network has
seen so far, which is used to trigger the update equation. With this counter-based trigger
integrated, the full hidden state update equation can then be written as follows:

zt = utf1(U · xt +R · ẑt−1) + (1− ut)ẑt−1, ut =

{
ut = 0 and ct > 1, No-OP
ut = 1, PUSH/POP

(9)

where ut is a scalar: 0 indicates that the RNN is to copy the previous state while 1 indicates
that the state is to be updated/overwritten and ct is the counter which keeps track of No-
oP operations 2. In appendix, we show that models using noise in conjunction with carry
forward states work better than models that do not. We report accuracy over 10 trials on
a D2 grammar. Observe that our approach consistently demonstrates improved memory
retention over longer pattern sequence lengths.

Negative Sampling: Based on preliminary experimentation, we found it important
to provide negative samples to a CFG-recognition network during both the training and
testing phases (whether using our next-step prediction scheme or the classical scheme of
predicting the label at the end). While the rough ratio of positive to negative samples can
be controlled when first sampling a target CFG to create a training dataset, most of the
negative samples produced by this process are simply too different from the positive cases,
or rather, are simply too easy to distinguish from positive cases. In order to truly improve
the generalization ability of our RNN models, we mix with the sampled negative cases

1. Other regularization schemes were tried, such as drop-out, batch normalization, and layer normalization.
However, these did not help generalization performance and thus we focus on state-injected additive noise.

2. We maintain counter variable ct just to keep track of NoOPs which helps facilitate decision-making in
the RNN and is based on St
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St-1 St
St+1

output output

xt xt+1

zt-1 zt zt+1

Input
Input

Stack Stack Stack

at Dt at+1
Dt+1

Figure 1: Architecture of the DiffStk-RNN network shown in the act of processing data,
updating, and correcting the stack over 2 time steps. zt is the hidden state of RNN, St is
the stack, at is the action neuron, and dotted lines represents past and future updates.

some number of “difficult” (negative) samples, which are similar/close to positive strings
but would still be rejected by the target CFG. For instance for grammar anbn, aaaaabbbab,
aaaaaaabbbbabb could be considered as difficult negative examples, since only one character
changes the notion. In contrast strings such as baaa, aaabaa are much simpler one can be
recognized easily with some prior structures knowledge.

In order to facilitate the generation of high-difficulty negative samples, we utilize an or-
acle which recognizes any given language. We then randomly swap around 1 or 3 characters
(randomly selected uniformly) in the input strings and use the oracle to check whether or
not the generated grammar is negative (generating the correct rejection label). We then
generate and mix in these synthetic negative samples to the dataset while still preserving a
balance between the number of positive and negative examples in the original training set.
Specifically, we generate a new number of difficult negative samples (Ns) and swap out the
same number from the original pool of negative strings. Specifically, prior to training, we
stochastically set Ns to be between 15-30% of the total number of original negative samples,
generate these new examples based on the scheme above, and swap out the same number
of randomly chosen original negative strings with the new, more difficult ones.

Based on our experiments, we find that training with our form of negative sampling
improves the performance of an RNN model on longer strings. We provide detailed ablation
study in Appendix B and show how adding these components helps in model generalization.
In Appendix A, we provide further details on how to extend modern day RNNs with our
version of the differentiable stack and conduct ablation study to show the importance of
each component we introduce.
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4. Datasets

As noted earlier, D >1 denotes all complex context free languages (CFLs) that require a
stack-like structure in order to ensure complete and accurate recognition. Furthermore,
note that a simple counting mechanism (which is what most first-order RNNs implement)
is insufficient to recognize these languages. In light of this, we created various test sets in
order to understand the true limits of first order RNNs when recognizing complex CFLs
and to test our proposed models so as to observe potential gains in generalization.

4.1. Context-Free Languages

We experimented with various complex grammars such as the Dyck languages. The Dyck
languages can be defined in the following manner. Let Σ = [, ] be the alphabet consisting
of symbol [ and ] and let Σ∗ denote its Kleene closure. A Dyck language is defined as:

{n ∈ Σ∗| all prefixes of n contain no more symbol ’]’ than symbol ’[’ &

cnt(’[’, n) = cnt(’]’, n)}

where cnt([symbol], n) is the frequency of [symbol] in n. We can also define Dyck languages
via CFGs with a single non-terminal S. From this perspective, the production rule is defined
in the following manner. S −→ ε|”[”S”]”S, where S is either empty set or an element of the
Dyck languages. A probabilistic, context-free grammar for D2 can then be written as:

S →


(S ) with probability p

2

[S ] with probability p
2

S S with probability p1

ε with probability 1− (p+ p1)

(10)

where ε, p, and p1 are scalar values set externally.
We tested various Dyck languages such asD2, D3, andD6. For theD2 andD3 grammars,

we created a dataset containing 6230 training samples (of length T less than or equal to 55),
1000 for validation (20 < T ≤ 70, and 3000 samples for testing (55 < T ≤ 102). However,
for D6, which is a much more complex grammar, we created a dataset containing far more
training samples - 15000 for training with 2000 set aside for validation and 4000 for test.
The proportions of string lengths in all splits for D6 was kept identical. Following prior
work, we also tested our models on the palindrome language (Zeng et al., 1994; Giles et al.,
1992; Gers and Schmidhuber, 2001; Mali et al., 2019).

4.2. Language Modeling

In addition to CFGs, we evaluate all of our stack-augmented models on the Penn TreeBank
word level language modeling task (Mikolov et al., 2010). All models trained on this dataset
consisted of 100 hidden units and were trained over 50 epochs using the Adam optimizer
(also with patience scheduling for the learning rate) 3. Dataset splits and settings was
chosen based on prior related work (Joulin and Mikolov, 2015). Our models were able to

3. We ensured that memory-augmented RNN parameters were comparable with the LSTM
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match the performance of the LSTM and SRCN (Joulin and Mikolov, 2015). It is important
to note that this experiment is not designed to obtain state of the art results but rather to
show how various architectures work with a similar number of parameters.

5. Experiments

To evaluate our models and empirically investigate the computational capabilities of first
order RNNs, we tested all models on the Dyck languages, which need automata with mem-
ory in order to ensure successful recognition of strings of arbitrary length. We created
2000 samples per set (train/dev/test) for any given Dyck grammar. We perform binary
classification and test whether any string is correctly or incorrectly classified. To achieve
this, we collect predictions using a trained RNN (performing overall inference character
for any particular grammar), and when we reach the end of the string, we average over
each prediction made per character in the sequence. When the model correctly predicts the
input symbol/character, we assign +1 or 0 and collect this until the end of the symbol is
encountered. If the mean prediction is greater than 0.5, the string is valid, else it is invalid
4.

In addition, we also tested these models on a real-world problem, i.e., the Penn Treebank
language modeling benchmark. To our knowledge, this is the first work to extensively
compare a large variety of first order RNNs on complex longer CFLs task as well as on
a real world benchmark. We followed two training processes, one was sequential (Gers
and Schmidhuber, 2001; Mikolov et al., 2010), which is widely used in natural language
processing related tasks, while the other was based on incremental learning (Giles et al.,
1992; Mali et al., 2019) or curriculum learning (Bengio et al., 2009), which is an alternative
training scheme for tensor RNNs. We compare these two variants and show that sequential
prediction has a slight advantage over incremental learning.

5.1. Training

All RNN models trained (baselines included the GRU, LSTM, the ∆-RNN (Ororbia II et al.,
2017), the baby neural turing machine (Suzgun et al., 2019b), and previously-proposed
stack RNN models, e.g., Stack RNN (Joulin and Mikolov, 2015) and Stack-RNN+Softmax
(Suzgun et al., 2019b)) were designed to have a single layer with 8 hidden units. RNN
weights were adjusted using gradients computed via back-propagation through time (BPTT)
(with a look-back that extended 50 steps) similar to that of (Mikolov et al., 2010). Gradients
were hard-clipped to have a maximum magnitude of 15 to ensure that they did not explode.
Adam (Kingma and Ba, 2014) was used to update the weights using an initial learning
rate 2e − 3. A patience schedule was used to adjust the learning rate; if a gain was not
observed in validation within the last three times it was checked, the learning rate was
halved. Training hyper-parameters match the setting proposed by (Joulin and Mikolov,
2015) and by running multiple simulations to find optimal parameters. Optimal settings
are extracted by observing loss over validation for k simulations, where k ranges between
10 and 35. We ran experimental simulations 10 times, i.e., each run used a unique seed.

4. Since this is a supervised learning task, we have access to ground truth at each instance; this gives
ground truth access at each step during the post-processing stage.
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Train Test LongStrings
RNN Models Mean Best Mean Best n=120 n=160

RNN 9.12 14.02 0.2 0.4 0.0 0.0
LSTM 54.00 62.80 1.40 4.00 0.2 0.0
GRU 48.00 50.00 1.00 1.02 0.2 0.0
∆-RNN 52.00 60.02 1.50 4.00 0.0 0.0
Stack RNN 71 100 70 100 85 50
Stack-RNN+Softmax 98.99 100 99.18 100 85.00 75.10
Baby-NTM+Softmax 73.59 99.99 67.52 99.01 65.50 55.50
DiffStk-RNN(Ours) 100 100 99.99 100 86.5 79.50
DiffStk-LSTM(Ours) 94.20 100 90 100 83.20 71.00
DiffStk-MRNN(Ours) 100 100 100 100 92 90
DiffStk-MLSTM(Ours) 96 100 95.69 100 89.50 85.00
DiffStk-MIRNN(Ours) 98 100 98.20 100 81.50 68.50

Table 1: Percentage of correctly classified strings of RNNs trained on the D2 language (over
10 trials). We report the mean and best accuracy for each. The test set contained a mix
of short & long samples of length up to T = 102 with both positive and negative samples.
We report mean accuracy of models tested on longer strings (n = 120 & n = 160)

We report the mean and best performance accuracy for each model. All networks were
optimized over the course of 30 epochs and we report the best training and testing score
for each model. Percentage of correctly classified strings refer to accuracy of the model in
successfully recognizing input strings as valid or invalid.

5.2. Classification on Longer Strings

If a model is operating in the same way as its equivalent pushdown automata, in theory,
it should be able to recognize a string of any length (Chomsky and Schützenberger, 1959;
Chomsky, 1962). This provides a way for analyzing the limitations of RNNs on longer
strings. We created a separate test set containing 1500 string samples of length (105 < T
and T > 160). This sampling of lengths properly tests the limitations of RNNs, since
interpretability is largely dependent on the fact that the RNN is acting like a PDA. This
is crucial if we wish to extract a minimal PDA from the final trained model weights (Das
et al., 1993; Sun et al., 1998; Weiss et al., 2018b; Omlin and Giles, 1992; Jacobsson, 2005).

6. Result and Discussion

In Table 1, all first order RNNs without memory appear to struggle to correctly recognize
the D2 grammar – even the LSTM reaches only a 4% accuracy. In contrast, the DiffStk-
MRNN performed the best, which we hypothesize is due to its ability to approximate the
higher order weights (which is similar to a tensor RNN). Similar performance was observed
for grammars D3, D6, and the Palindrome in Tables 2, 3, and 4. However, for the grammar
D6 as well as for the palindrome grammar, we observe a constant drop in performance as the
string length increases, which indicates that even stack-augmented RNNs have limitations.
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Train Test LongStrings
RNN Models Mean Best Mean Best n=120 n=160

RNN 9.60 15.02 0.0 0.0 0.0 0.0
LSTM 30.88 35.00 0.02 0.04 0.0 0.0
GRU 10.00 15.00 0.0 0.0 0.0 0.0
∆-RNN 20.00 21.00 0.02 0.04 0.0 4.00
Stack RNN 80 100 69 100 67 60
Stack-RNN+Softmax 80.25 99.99 78.99 99.99 78.30 59.50
Baby-NTM+Softmax 59.50 99.99 43.50 99.21 40.50 51.80
DiffStk-RNN(Ours) 82.60 100 82.00 100 78.20 60
DiffStk-LSTM(Ours) 76.75 100 57.50 99.50 55 44.50
DiffStk-MRNN(Ours) 84.02 100 84.00 100 81 80
DiffStk-MLSTM(Ours) 77 100 59.00 100 59 49.99
DiffStk-MIRNN(Ours) 78.60 99.50 83.00 97.50 73.00 58.50

Table 2: Percentage of correctly classified strings of various RNNs trained on the D3 lan-
guage (averaged over 10 trials). We report the mean and best accuracy for each model. Test
set used in all experiments had a mix of short samples and long ones of length up toT = 102
containing both positive and negative samples. Further we report mean accuracy on models
when tested on longer strings of length n = 120 and n = 160 respectively

Train Test LongStrings
RNN Models Mean Best Mean Best n=120 n=160

RNN 22.60 25.00 0.0 0.0 0.0 0.0
LSTM 38.00 42.80 0.01 0.04 0.0 0.0
GRU 25.00 28.55 0.01 0.01 0.0 0.0
∆-RNN 32.62 38.55 0.02 0.04 0.0 0.0
StackRNN 99.95 100 99.80 100 92 89
Stack-RNN+Softmax 98.99 100 99.08 99.58 94.50 89.50
Baby-NTM+Softmax 99.99 100 99.58 99.81 98.50 95.00
DiffStk-RNN(Ours) 99.99 100 99.89 100 94 91
DiffStk-LSTM(Ours) 99.80 100 98.00 100 90 89.20
DiffStk-MRNN(Ours) 100 100 100 100 100 99
DiffStk-MLSTM(Ours) 99.90 100 99.99 100 98 97.50
DiffStk-MIRNN(Ours) 99.99 98 99.90 100 91 90.50

Table 3: Percentage of correctly classified strings of various RNNs trained on the D6 lan-
guage (averaged over 10 trials). We report the mean and best accuracy for each model. Test
set used in all experiments had a mix of short samples and long ones of length up toT = 102
containing both positive and negative samples. Further we report mean accuracy on models
when tested on longer strings of length n = 120 and n = 160 respectively

Based on our experiments and examination of the internal hidden state representations
of the trained recognition models, we did find that whenever a test set contained more strings
of longer length, the majority of RNNs struggle as does a similar model proposed in (Suzgun
et al., 2019b). This seems to be largely due to the models not being exposed during training
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Train Test LongStrings
RNN Models Mean Best Mean Best n=120 n=160

RNN 0 0 0 0 0.0 0.0
LSTM 2.50 5.45 0 0 0.0 0.0
GRU 0.9 1.2 0.3 0.5 0.0 0.0
∆-RNN 0.5 1.0 0.01 0.01 0.0 0.0
StackRNN 49.50 100 50 100 50 49
Stack-RNN+Softmax 61.35 100 59.50 99.99 55 53.50
Baby-NTM+Softmax 52.50 100 52.80 99.91 46.50 45.00
DiffStk-RNN(Ours) 62.00 100 61.00 100 60.50 60.00
DiffStk-LSTM(Ours) 63.50 100 62.20 100 62 60.50
DiffStk-MRNN(Ours) 64.00 100 63.00 100 62.50 62.00
DiffStk-MLSTM(Ours) 65.55 100 64.50 100 64.00 64.00
DiffStk-MIRNN(Ours) 61.55 99.99 61.50 99.99 60.50 60

Table 4: Percentage of correctly classified strings of various RNNs trained on the Palindrome
language (averaged over 10 trials). We report the mean and best accuracy for each model.
Test set used in all experiments had a mix of short samples and long ones of length up
toT = 102 containing both positive and negative samples. Further we report mean accuracy
on models when tested on longer strings of length n = 120 and n = 160 respectively.

V alidation Test
RNN Models PPL PPL

RNN 137 129
LSTM 120 115
SRCN 120 115
StackRNN 124 118
Stack-RNN+Softmax 128 123
Baby-NTM+Softmax 142 131
DiffStk-RNN(Ours) 122 118
DiffStk-MRNN(Ours) 119 115
DiffStk-MIRNN(Ours) 121 117

Table 5: Word level perplexity of various models on Penn Treebank.

to strings of long enough lengths which is shown in tables 1, 2, 3 and 4. One way to deal
with this and improve generalization would be to create a more complex validation set and
optimize based on its performance on that sample. Furthermore, one should use negative
sampling when working with complex grammars, since our results demonstrate that RNNs
that train with “difficult” negative samples generalize better on longer strings. Finally, it
is important to ensure that an RNN’s weights do not change much when encountering a
NO-OP (NoOP) operation. This avoids conflicts for whenever the weights of each stack
operation are shifted by a small amount, since even a small degree of noise can alter the
RNN’s entire prediction.
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We also compared our models by word level perplexity on the Penn Treebank data bench-
mark; results are shown in Table 5. It is important to note that this experiment is designed
not to obtain a state of the art language model but rather to show how memory-augmented
models, with similar parameters, can yield better performance and are also stable. We
adopted the experiment protocol from (Joulin and Mikolov, 2015) and report validation
and test word level perplexity (PPL). Our proposed DiffStk-MRNN model achieves best
validation and test PPL and also matches the performance of LSTM on language mod-
elling task. In Appendix B we show how individual components introduced in this work
contributes towards enhanced model performance.

7. Conclusion

We introduce five improved stack-augmented recurrent neural network (RNN) models and
evaluated their ability to recognize complex and long context free grammars (CFGs). We
also develop various techniques to efficiently train differentiable, stack-augmented models.
To our knowledge, this is the first work to analyze the performance of a continuous stack on
long strings for complex grammars. We show that utilizing higher order weights improves
model generalization. In addition, the value of memory structures is demonstrated and
why important when learning non-regular languages. Since memory-augmented RNNs often
suffer from stability issues while training, several efficient schemes are provided to facilitate
more stable training. Interesting research would be to design a custom optimization process
that couples a discrete stack with first order RNNs and achieve stable learning. Another
direction would be to explore data structures other than stacks such as random access
memory and to develop a scalable approach towards stably train these networks, especially
on challenging real-world problems.
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Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient back-
prop. In Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

A. Mali, A. G. Ororbia, and C. L. Giles. The sibling neural estimator: Improving iterative
image decoding with gradient communication. In 2020 Data Compression Conference
(DCC), pages 23–32, 2020.

Ankur Mali, Alexander Ororbia, and C Lee Giles. The neural state pushdown automata.
arXiv preprint arXiv:1909.05233, 2019.

146

http://arxiv.org/abs/1906.06349


Recognizing Long Grammatical Sequences using RNNs Augmented with memory

William Merrill. Sequential neural networks as automata. CoRR, abs/1906.01615, 2019.
URL http://arxiv.org/abs/1906.01615.

Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev Khudanpur.
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Appendix A. Variants of DiffStk RNNs

Here we describe different variants of the RNN and how they can be extended with the
differentiable stacks introduced in this work.

A.1. DiffStk-LSTM Archiecture

The DiffStk-LSTM is similar to the DiffStk-RNN but it contains additional gating compo-
nents to help it better preserve memory over long time spans. There are several variants of
LSTM (Gers and Schmidhuber, 2001) and we describe the variant used in our experiments
(which we found worked best from preliminary experimentation).The hidden state for our
LSTM is computed as follows:

ẑt = U · xt +R · zt−1 (11)

where U is a d×m matrix and R is a m×m matrix. LSTM’s consist of 3 gating units – an
input gate i, an output gate o, and a forget gate f , which all have recurrent and feedforward
connections themselves:

it = σ(Ui · xt +Ri · zt−1) (12)

ot = σ(Uo · xt +Ro · zt−1) (13)

ft = σ(Uf · xt +Rf · zt−1). (14)

Given the above gate definitions, the final internal state and output of the hidden state are
calculated in the following manner:

ct = ft � ct−1 + it � f1(ẑt) (15)

zt = f1(ct)� ot (16)

where � indicates the Hadamard product. The ability of the LSTM to control how infor-
mation is stored in each of its cells has proven to be useful in many applications.

A.2. DiffStk-MRNN

The multiplicative RNN (MRNN) (Krause et al., 2016) is similar to second order tensor
RNNs (Giles et al., 1990; Watrous and Kuhn, 1992; Forcada and Carrasco, 1995; Ziemke,
1996; Kremer et al., 1998; Carrasco and Forcada, 1995). It uses a factorized hidden-to-
hidden transition matrix in place of the normal RNN hidden-to-hidden matrix (R or Wzz).
The MRNN can be formulated to compute an intermediate state mt as:

mt = (Wmx · xt) · (Wmz · zt−1) (17)

ẑt = Wzm ·mt +Wzx · xt (18)

with the final hidden state update calculated as follows:

ẑt = f1(U · xt + R̂ · ẑt−1) (19)

where R̂ is a m× z matrix (z is the dimension of the intermediate state). The MRNN can
be shown to approximate a NSPDA with second order weights (Mali et al., 2019; Das et al.,
1993; Sun et al., 1998).
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A.3. DiffStk-MLSTM

Motivated by the success of tensor RNNs on complex CFLs, we designed a multiplicative
LSTM (MLSTM) as a hybrid model which combines a factorized hidden-to-hidden transition
(which is an approximation of a second order RNN) with our differentiable stack. A MRNN’s
intermediate state (mt) can easily be connected to the LSTM gating units. This gives the
model not only more expressive cells but also allows it to operate similarly to a pushdown
automata. The resulting formulation of the model is as follows:

mt = (Um · xt)� (Rm · zt−1) (20)

ẑt = U · xt +Rz ·mt) (21)

it = σ(Ui · xt +Rim ·mt) (22)

ot = σ(Uo · xt +Rom ·mt) (23)

ft = σ(Uf · xt +Rfom ·mt). (24)

In all of our experiments, we set the dimensions of the state z and m to be similar. Inte-
grating a stack with the MLSTM is similar to the formulation provided in the DiffStk-RNN
section.

A.4. DiffStk-MIRNN

The multiplicative integration RNN (MIRNN) (Wu et al., 2016) is yet another approxima-
tion of higher order/tensor RNNs (Giles et al., 1990; Watrous and Kuhn, 1992; Forcada
and Carrasco, 1995; Ziemke, 1996; Kremer et al., 1998; Carrasco and Forcada, 1995). This
model uses a Hadamard product � instead of a sum operation + in the standard RNN up-
date rule. Hence, this formulation allows it to update its hidden state without introducing
any extra parameters. This change can be written in the following manner:

zt = f1(U · xt �R · zt−1). (25)

These models have the capacity to retain memory over longer time spans and their approx-
imate second order connections add extra expressiveness that proves useful when learning
to recognize complex CFLs. Integration of a stack with the MI-RNN cell is also similar to
the previous models discussed.

Appendix B. Ablation Study and Discussion

When testing on various CFGs, our experiments show the importance of external memory
structures for RNNs. We observe that all stack-augmented RNNs at least once were able
to achieve full accuracy on the smaller test set (n=102) and a few models achieved 90%
accuracy on the larger test set(n > 102). In Table 6, we show how carefully adding noise
increases robustness of the model and helps in learning longer sequences. This form of noise
is added to weights rather than to gradients and shows a consistent improvement for models
that use our proposed form of noise. Beside noise, we also show the importance of skipping
states whenever multiple no-ops stack operations are encountered for a given input symbol.
This step is crucial since a small change in gradients can corrupt a model’s prediction and
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WithNoise W/oNoise
RNN Models Mean Best Mean Best

RNN 0.2 0.4 0.0 0.0
LSTM 1.40 4.00 1.00 3.85
StackRNN 70 100 70 99.95
DiffStk-RNN (Ours) 99.99 100 97.58 99.00
DiffStk-MRNN (Ours) 99.00 100 97.20 99.99
DiffStk-MIRNN (Ours) 97.25 99 97.00 99

Table 6: Percentage of correctly classified strings of various RNNs, trained with and without
noise, on D2 language (averaged over 10 trials), with mean and best accuracy measurements
reported for each model. For all experiments the test set used had short samples mixed
with long ones up to length T = 102, containing both positive and negative sample strings.

Wchanges W/ochanges
RNN Models Mean Best Mean Best

RNN 0.2 0.4 0.0 0.0
LSTM 1.40 4.00 1.00 3.85
StackRNN 70 100 70 99.95
DiffStk-RNN (Ours) 99.99 100 97.58 99.00
DiffStk-MRNN (Ours) 100 100 97.20 99.99
DiffStk-MIRNN (Ours) 98.20 100 97.00 99

Table 7: Percentage of correctly classified strings of various RNNs with and without noise
as well as carry forwarding state on D2 language (averaged over 10 trials). Mean and best
accuracy are for each of the models. For all experiment The test set had short samples
mixed with long ones up to length T = 102, with both positive and negative samples.

Sequential Incremental
RNN Models Mean Best Mean Best

RNN 0.2 0.4 0.0 0.0
LSTM 1.40 4.00 1.00 3.85
StackRNN 70 100 70 99.95
DiffStk-RNN (Ours) 99.99 100 97.58 99.00
DiffStk-MRNN (Ours) 100 100 97.20 99.99
DiffStk-MIRNN (Ours) 98.20 100 97.00 99

Table 8: Percentage of correctly classified strings of various RNNs trained under incremental
vs sequential schemes on D2 language (measurements averaged over 10 trials). We report
the mean and best accuracy for each model. For all experiment the test set used had short
samples mixed with long ones up to length T = 102 containing both positive and negative
sample strings.

significantly affect the mean squared error (MSE) loss value. It is well known that a small
time shift in prediction can lead to a poor MSE. Therefore, we introduced a scheme which
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carries forward states and preserves the current state whenever a stack encounters multiple
NoOps for any input string. Table 7 demonstrates the effect of this extension.

In Table 8, we experimented with two popular training variants for our RNN models,
sequential versus curriculum learning. We see in Table 8 that sequential learning provided
a slight advantage over curriculum learning. Future work could focus on understanding the
importance of these approaches under other constraints.

Continuous vs Discrete Stacks: Using a continuous or differentiable stack has been
shown to benefit RNNs when recognizing patterns generated by CFGs (Giles et al., 1992;
Joulin and Mikolov, 2015; Grefenstette et al., 2015). However, it is not entirely clear that
continuous stack models are stable. Given that RNNs trained using BPTT are difficult
to train and scale up, adding a differentiable memory introduces further instability during
the optimization process, often resulting in sub-optimal performance. On the other hand,
in theory, discrete stacks (Zeng et al., 1994; Mali et al., 2019), if trained or programmed
correctly, are visually interpretable and are stable. Future work should focus on designing
hybrid optimization approaches to build models that can utilize both discrete and differen-
tiable units/stacks.
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