
COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 1

Finite State Automata

Our next series of definitions and results characterize the family of Regular Languages.
Specifically, this family is exactly the set of languages that can be recognized or accepted by
Deterministic Finite Automata (DFAs) and Non-deterministic Finite Automata (NFAs). DFAs
and NFAs are examples of a more general class of formal language specifications called
recognizers. A model of a typical Recognizer is illustrated in the figure below. A Recognizer
takes as its only input some string x over its input alphabet, Σ. If x ∈ L(R), the language
recognized by R, then R must eventually halt and output accept. If x ∉ L(R), then R will have
one of two behaviors, (a) it will halt and output reject, or (b) it will never halt.

For example, message decoding devices (e.g. communication protocols) and programming
language compilers are examples of recognizers. In the former case, messages are symbol
strings over some natural language alphabet, while inputs to compilers are strings (programs)
over the alphabet of some programming language.

Example 9. To illustrate the recognizer concept, consider an algorithm for searching a text file
for an occurrence of the string “end”. The algorithm will "accept" the text file if it contains at
least one occurrence of this word and will "reject" or "fail" otherwise. We model the algorithm
with a state transition diagram (STD), where "states" (numbered circles) denote distinct
configurations of the algorithm's "memory"(local variables) that define intermediate stages of
"success" in making a final determination about the correctness or incorrectness of the input file.
Transitions between states occur with the next character read from the input file. In the STD
below,

State 1. Defines the initial starting point of computation, and denotes a state of processing that
implies no occurrence of the target word has been encountered, and last character read was not
the first letter "e" of the target word.
States 2 and 3. Define intermediate states of processing where some proper prefix of the target
word has just been encountered.
State 4. Denotes the accept state. That is, this state can only be reached if a complete
occurrence of the target word has just been encountered. The algorithm could terminate with
success at this point.

2
start

3l 4
e

all other

e

e

n d

all other

all other all symbols

Recognizer
(R)

for L, a subset
of Σ*

x in Σ*
“accept”
(x is in L)

“reject”
(x not in L)

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 2

Our next definition formalizes the concept of finite state recognizer illustrated in the previous
example.

Definition 9. A Deterministic Finite Automata (DFA) is a 5-tuple, M = (Q, Σ , δ , q0 , A) where:
Q = a finite non-empty set of states,
Σ = the input alphabet,
q0 ∈ Q, is the initial state,
A ⊆ Q, is the (possibly empty) set of accepting states, and
δ : Q × Σ → Q, a the transition function (a total function). If q’ = δ(q, a), then “q” denotes the
“current state” of M, “a” denotes the next symbol read from its input, and “q’ ” denotes the “next
state” M enters after reading its input.

DFAs can be expressed in the form of State Transition Diagrams (STDs) using the conventions
illustrated in the diagram below. Single-circles denote non-accepting states, double-circles
accepting states, and directed arcs denote transitions on a given input symbol (arc label).

A DFA accepts (rejects) a given input string x = a1 a2 ... ak if, after reading each symbol of x in
sequence, starting in its initial state q0 , it ends in an accepting(non-accepting) state. This notion
is captured formally in the next definition of the language accepted by a DFA, M.

Definition 10. Let M = (Q, Σ , δ , q0 , A) be a DFA. We extend the domain of the function δ to
strings of any length so that we can formally define the behavior of M, beginning from in any
given state, q, on any input, x, to be the state M will be in after reading x. Specifically, we
define δ∗M: Q × Σ* → Q inductively as follows. The subscript M will be dropped whenever M is
understood from context.

Basis: δ∗M(q, λ) = q, for all q ∈ Q.
Inductive rule: δ∗M(q, x⋅a) = δ (δ∗M(q, x), a), for all q ∈ Q, for all a ∈ Σ, and all x ∈ Σ*.

q astart
q’

q’’

b

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 3

Example 10. Referring once again to the DFA introduced in Example 9. We see that
δ∗M(1, e) = δ∗M(1, abee) = δ∗M(3, enene) = 2.

Definition 11. Let M = (Q, Σ , δ , q0 , A) be a DFA, then the language accepted or recognized
by M, is the set L(M) = { x ∈ Σ* | δ∗M(q0 , x) ∈ A }.

Example 11. Let L = { x ∈{a,b}* | x ≠ λ and x begins and ends with the same symbol }

M = ({1,2,3,4,5},{a,b}, δ, 1, {2,3}) where δ is given by the transition table below.

δM a b
1 2 3
*2 2 4
*3 5 3
4 2 4
5 5 3

Exercise 6. Give an inductive definition of L(M), where M is the DFA given in Example 11.

2
start

3l 4
e

all other

e

e

n d

all other

all other all symbols

b

start

5

4

1

3

2a

a

a

a

a

b
b

b

b

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 4

Problem 1. Consider the following definition of Generalized Inductive Definition for a set S.
Let A1, A2, …, Ak , for some k ≥ 1, be sets defined inductively by:
Basis Rules: For each j, Bj, is a finite set defining the initial membership to Aj. That is, Bj ⊆ Aj,
 for 1 ≤ j ≤ k.
Inductive Rules: A finite set of rules of the form: if P(x) then f(x) ⊆ Aj , where P(x) is any
predicate defined for existing members of A1, A2, …, Ak, and f(x) is a finite set.
Completion Rule: Nothing is a member of A1, A2, …, Ak that does not gain membership by
finite application of the above rules. Finally, S = Aj, for some j, 1 ≤ j ≤ k..

Show that if M is any DFA, then a generalized inductive definition of L(M) can be given in
terms of the sets Sq, q ∈ Q, where Sq = { x | δ*

M(q0,x) = q }. Furthermore, show that such a
definition can be given where all the inductive rules are of one of two forms: (a) if x ∈Ai then
xa ∈Aj, for some i,j, and a ∈Σ, or (b) if x ∈Ai then x ∈Aj.

Having defined the language accepted by a DFA, we can formally define the family of languages
recognized by DFAs.

Definition 12. Let Σ be an alphabet and let L ⊆ Σ*. Then L is said to be a Regular language
over Σ if and only if there exists a DFA, M = (Q, Σ, δ, q0, A), such that L = L(M).

Our first theorem describes an important sub-family of the Regular languages. The construction
technique used to establish this result is as important as the result itself.

Theorem 1. Let F be any finite language over Σ, then F is Regular over Σ.

Proof. Two cases arise. F = Φ or F ≠ Φ. In both cases we must construct a DFA that accepts F.
Then it follows directly by Definition 12 that F is Regular.

Case (a) F = Φ. For this case we define M = ({q0}, Σ, δ, q0, Φ) and δ(q0,a) = q0, for all a ∈Σ. It
should be clear that δ*(q0, x) = q0, for all x ∈Σ* (this can be proven by induction on |x| using the
definition of δ*). Thus L(M) = {x | δ*(q0, x) ∈ A} = Φ, since A is Φ.

Case (b). F = {x1, x2, …, xn }, for some n ≥1. Let m = Max { |x| | x ∈ F }. Then define
M = (Q, Σ, δ, q0, A) as follows. Q = { qx | x ∈Σ* and |x| ≤ m } ∪ {Ω}. q0 = qλ.
A = {qx | x ∈F} and for all a ∈Σ and qx ∈ Q, δ(qx, a) = qxa, provided |xa| ≤ m, else δ(qx, a) = Ω.
Finally, δ(Ω, a) = Ω, for all a ∈Σ. By a simple inductive proof one can easily establish that
δ*(qλ, x) = qx, provided |x| ≤ m, and δ*(qλ, x) = Ω, otherwise. Thus L(M) = {x | δ*(q0, x) ∈ A} =
{x | δ*(q0, x) = qx, for some x ∈ F} = F.

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 5

 Exercise 7. Give a definition for the minimal-state DFA that accepts a finite set. How many
states will such a machine have?

The next definition generalizes the notion of a DFA to one that exhibits unpredictable or “non-
deterministic” behavior. That is, a FSA in which transitions from one state to another can occur
“spontaneously” without reading any input, and/or in which transitions on the same symbol may
leave the FSA in more than one possible next state. Furthermore, we may not always know
exactly what state the FSA will be in when it is “turned on,” so we will model this NFA as
beginning in any one of several possible initial states. Finally, we will say that an NFA accepts
its input string, x, if there exists a transition sequence that reads all of x and leaves M in an
accepting state. This is formalized in our next sequence of definitions.

Definition 13. A Non-deterministic Finite Automata (NFA) is a 5-tuple, M = (Q, Σ,δ, Q0 ,A)
where:
Q = a finite non-empty set of states,
Σ = the input alphabet,
Q0 ⊆ Q, is a non-empty set of initial states,
A ⊆ Q, is the (possibly empty) set of accepting states, and
δ : Q × (Σ∪{Λ}) → Q, is the transition relation (a partial relation).

Read transitions are defined as transitions where, δ(q, a) ⊆ Q, is a non-empty set, for a ∈Σ.
Note that if δ(q, a) = Φ, then M cannot make any transition in state q that reads an “a” (it may,
however, be able to leave its current state by a spontaneous transition described below.)

Spontaneous transitions are transitions M can make without reading from its input. Spontaneous
transitions are expressed by, δ(q, Λ) ⊆ Q being a non-empty set. Note we never allow
q ∈ δ(q, Λ), for any q in Q. Therefore δ(q, Λ) can only contain states p ≠ q. By choosing one of
these other states, M can continue to operate without reading from its input.

Example 12. An NFA.

The question we consider next is “What language does an NFA accept?” In Example 12, the
behavior of M on input abbb can leave M in any one of the following states {2,3,4,5}. Thus,
there can be more than one computation of M on the same input, some computations may accept,
and some may not. To know definitely whether an NFA accepts its input or not, one must
consider all possible sequences of transitions on the same input. M accepts its input if and only

start

5

3

1

4

2 a

b

b

a

a

b

Λ

Λ

Λ

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 6

if at least one of these computations reads all of the input and allows the NFA to enter an
accepting state. Before formalizing the concepts of the language accepted by an NFA, we
formally introduce the notion of "configuration" and "computation" of M.

Definition 14. Let M = (Q, Σ , δ , Q0 , A) be an NFA. We define a configuration of M to be a
pair (q, x), where q denotes M’s current state and x ∈ Σ* denotes the input remaining to be read.
A configuration is said to be an initial configuration if q ∈ Q0 , and a terminating configuration if
x = λ. We define a configuration to be an accepting configuration if it is a terminating
configuration for which q is an accepting state. Finally, we define a configuration to by halting,
if no next configuration is possible.

The behavior of M is defined in terms of the move relation, denoted by M⇒, defined on
configurations as follows:

 (q, x) M⇒ (q’,x) iff q’ ∈ δ(q,Λ) and
 (q, ax) M⇒ (q’,x) iff q’ ∈ δ(q,a).

Observe that M⇒ is not reflexive. That is, (C, C) ∉M⇒, for all configurations, C. We will use
the notation, M⇒* to denote the reflexive-transitive closure of M⇒, and M⇒+ to denote the
transitive closure of M⇒. The subscript "M" will be dropped when M is clear from context.

A computation of M is a sequence of configurations C0, C1 , ... , Cn , n ≥ 0, where C0 is an initial
configuration, Cn is a terminating configuration and Ci M⇒ Ci+1. A sub-computation of M is
any sequence of configurations satisfying Ci M⇒+ Cj.

We can now formally define the language accepted by an NFA.

Definition 15. Let M = (Q, Σ , δ, Q0 , A) be an NFA. Then the language accepted by M is given
by, L(M) = { x ∈Σ* | There exists a computation: (s, x) M⇒* (f, λ), where s ∈ Q0 and f ∈ A}.

The diagram above illustrates a “typical” NFA accepting computation. Observe that M may
perform several Λ-transitions before and after a read transition. In this computation, M begins in
one of its initial states, q0, and terminates in state q19. M accepts if any one of the states, q16-q19,
is an accept state.

 q1

 q0

 q2

 q3

 q5

 q4

 q6

 q7

 q9

 q8

 q10

 q11

 q13

 q12

 q14

 q15

 q17

 q16

 q18

 q19

a1 a2 a3 a4

(q0, a1a2a3a4) =>+ (q19, λ)

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 7

What we now want to show is that NFAs and DFAs accept exactly the same family of languages,
that is, the regular languages. To this end, we define a transition function on NFAs that tells us
the set of all possible states an NFA can reach by a subcomputation that reads x ∈Σ* beginning
from the given state. We will use this function to define the behavior of a DFA that accepts the
same language as a given NFA. The implication of this result is that NFAs recognize exactly the
same family of languages that DFAs recognize.

Definition 16. Let M = (Q, Σ , δ , Q0 , A) be an NFA. Define

 Λ*: Q → 2Q , the Λ*(q) = { q’ | (q, λ) M⇒* (q’,λ) }.
 Λ*: 2Q → 2Q , by Λ*(S) = ∪q∈S (Λ*(q)), for every S ⊆ Q.
 δ*

M: Q × Σ* → 2Q , is defined inductively as follows
 Basis: δ*

M(q, λ) = Λ*(q), for all q ∈ Q.

 Inductive rule: ⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
Λ=

∈

),(

**

*

),(),(
xqp

M

M

apxaq
δ

δδ

The figure below depicts the meaning of the definition of δ∗M.

Corollary 16-1: For all q ∈ Q and x ∈Σ*, q’ ∈ δ*

M(q,x) if and only if (q,x) ⇒* (q’,λ).

Proof. By induction on |x|.
Basis: x = λ.
q’ ∈ δ*

M (q, λ) iff q’∈ Λ*(q) : by basis of Definition 16 for δ*
M

q’ ∈ Λ*(q) iff (q,λ) ⇒* (q’,λ) : by Definition 16 for Λ*.
Thus the corollary holds for |x| = 0.

IH: Assume for x ∈Σn, with n ≥ 0, that q’ ∈ δ*

M(q,x) iff (q,x) ⇒* (q’,λ).
Consider q’ ∈ δ*

M(q, x⋅a) for some a ∈Σ and x ∈Σn. Then by Definition 16 for δ*
M ,

q’ ∈ δ*
M(q,x⋅a) iff q’ ∈ Λ*(Sa), where Sa = ∪p∈D (δ(p,a)), and D = δ*

M(q,x). But q’ ∈ Λ*(Sa) iff
there is p ∈ δ*

M(q,x) and p’ ∈ δ(p,a) such that q’ ∈ Λ*(p’). But this holds iff
[1] (q,x) M⇒* (p,λ): by IH,

q

p1

p2
.
.
pn

δ∗M(q,x)

δ(p1,a)

δ(p2,a)

δ(pn,a)

Λ*

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 8

[2] (p,a) M⇒ (p’, λ): by definition of M⇒ and the assumption that p’ ∈ δ(p,a),
[3] (p’,λ) M⇒* (q’, λ): by definition of Λ*.
[4] But (q,x) M⇒* (p,λ) iff (q,xa) M⇒* (p,a): by an exercise left to the reader.

Therefore, by definition of M⇒*, [4][2] and [3] hold iff (q,x⋅a) M⇒* (q’, λ). QED

Corollary 16-2: Let M = (Q, Σ , δ , Q0 , A) be an NFA. Then x ∈ L(M) iff δ*

M(q, x) ∩ A ≠Φ,
for some q ∈ Q0.

Proof. If x ∈ L(M), then for some q ∈ Q0 and f ∈ A, (q,x) ⇒* (f,λ); this follows from
Definition 15. But then by Corollary 16-1, f ∈ δ*

M(q,x). Thus δ*
M(q,x) ∩ A ≠Φ.

Exercise 8. Complete the proof of Corollary 16-2 by showing that if δ*

M(q,x) ∩ A ≠Φ, for some
q ∈ Q0, then x ∈ L(M).

The next lemma establishes a simple property of the Λ* operator that will be useful in
establishing the equivalence between DFAs and NFAs.

Lemma 2. Let Si ⊆ Q, 1 ≤ i ≤ n, be sets of states of some NFA, M = (Q, Σ , δ , Q0 , A).
Then

Proof. Let q' be an element of the left side of this equality. Then by definition of Λ*,
q' ∈ Λ*(q), for some q in ∪1≤i≤n Si. But this implies that there is a k, 1 ≤ k ≤ n, such that
q' ∈ Λ*(q), for some q in Sk. But this is a restatement of the definition for q' ∈ Λ*(Sk) ⊆
∪1≤i≤n Λ*(Si) = the right side. The steps of this argument can be reversed and it follows that the
two expressions are equal.

Theorem 2. Every NFA, M = (Q, Σ , δ , Q0 , A), is equivalent to the DFA
Mp = (Qp, Σ , δp, α, Ap), called the powerset machine, where
Qp = 2Q (the power set of Q)
α = Λ*(Q0) ∈ Qp
Ap = { S ∈ Qp | S ∩ A ≠Φ }
δp(S, a) = ∪q∈S (δ*

M(q,a)), for all S ∈ Qp and a ∈ Σ.

Proof. Let δ∗p be the extension of δp . We shall show by induction on |x| that f ∈ δ∗p(α, x) iff
there exists q ∈ Q0 such that (q, x) M⇒* (f, λ). From this it follows by definitions 11 and 15 that
x ∈ L(Mp) if and only if x ∈ L(M).

Basis: x = λ (|x| = 0). If f ∈ δ∗p(α,λ) = α = Λ*(Q0), then there is q ∈ Q0 for which f ∈ Λ*(q).
This follows from the definition of Λ*. Thus by definition of Λ*(q), (q, λ) M⇒* (f, λ).
Conversely, if (q, λ) M⇒* (f, λ), for some q ∈ Q0, then by Definition 16, f ∈ Λ*(q) ⊆ Λ*(Q0) = α

n

i
i

n

i
i SS

1

*

1

*)()(
==

Λ=Λ

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 9

= δ∗p(α,λ).

Induction Case: Assume for all x ∈Σn, for some n ≥ 0, that f ∈ δ∗p(α, x) iff there is q ∈ Q0 such
that (q, x) M⇒* (f, λ). Consider a string of the form x⋅a ∈ Σn+1 and suppose f ∈ δ∗p(α, x⋅a).
Then by definition of δ∗p and δp (above) we have f ∈ δp(S, a) = ∪q∈S (δ*

M(q,a)), where
S = δ*

p(α, x). This holds iff there is s ∈ δ*
p(α, x) = S for which f ∈ δ*

M(s,a). Now by our
induction hypothesis, s ∈ δ*

p(α, x) iff there is q ∈ Q0 such that (q, x) M⇒* (s, λ). By a previous
exercise, (q, x) M⇒* (s, λ) if and only if (q, x⋅a) M⇒* (s, a). By Corollary 16-1, f ∈ ΔM(s,a) iff
(s,a) M⇒* (f, λ). Putting this all together we have f ∈ δp(α, x⋅a) iff there is q ∈ Q0 such that
(q, x⋅a) M⇒* (s, a) M⇒* (f, λ). This concludes the proof of our claim that f ∈ δ*

p(α, x) iff there
is q ∈ Q0 such that (q, x) M⇒* (f, λ).

To complete the proof of theorem we observe that x ∈ L(Mp) iff δ*

p(α, x) ∩ A ≠Φ. So, let
f ∈ δ*

p(α, x) ∩ A, then by the property we just proved, there is q ∈ Q0 such that (q, x) M⇒*
(f, λ). But this holds iff x ∈ L(M). QED

Before applying Theorem 1 to an example, we need a more convenient expression for computing
δp. We state and prove this alternative definition with our next lemma.

Lemma 3. For all S ⊆ Q, and a ∈ Σ,

Proof.

QED. 2. Lemmaby ,),(

)S(of definitionby ,)),((

2 Lemma and of definitionby ,)),((

 of definitionby ,))),((

1. Theoremin of definitionby ,),(),(

)S(p

*

)S(p

**

*

Sq)(p

*

*

Sq),(

*

p
*

*

*

*

*

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
Λ=

ΛΛ=

Λ
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
Λ=

Λ=

=

Λ∈

Λ∈

∈ Λ∈

∈ ∈

∈

ap

ap

ap

ap

aqaS

M

M

q
M

M
qp
M

Sq
Mp

M

δ

δ

δ

δδ

δδδ

λδ

)a)(p,δ(a)(S,δ
(S)Λp

M
*

p
*

∈

Λ=

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 10

Example 13. Let’s convert the NFA of Example 12 (diagram is reproduced below) to its
equivalent DFA. To make it easier to apply the construction of Mp as described in the above
theorem, we first construct the transition table for the NFA, M.

δM a b Λ Λ*
→1 {2} {3} Φ {1}
*2 {3} {2} {1} {1,2}
3 Φ Φ {4} {3,4}
*4 Φ {5} Φ {4}
5 {5} Φ {4} {4,5}

Transition Table for NFA, M

The initial state α of the DFA Mp is Λ*(Q0) = Λ*({1}) = {1}.

δp a b
→{1} {1,2} {3,4}
*{1,2} {1,2,3,4} {1,2,3,4}
*{3,4} Φ {4,5}
*{4,5} {4,5} {4,5}

*{1,2,3,4} {1,2,3,4} {1,2,3,4,5}
*{1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5}

Φ Φ Φ
Transition Table for DFA, Mp

Observe that only 7 out of a possible 25 = 32 states of Mp are actually reachable from its initial
state, α.

Exercise 9. Compute δp for some of the unreachable states of Mp by filling in the table below.
Hint: use the result of Lemma 3. Which of these states are accept states of Mp?

δp a b

{1,5}
{2,4}
{1,4}

{3,4,5}
{1,2,3}
{1,3,5}

{3}

start

5

3

1

4

2 a

b

b

a

a

b

Λ

Λ

Λ

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 11

The Minimal State DFA

We have characterized Regular languages in terms of NFAs (DFAs). In this section we begin to
address for formal systems an issue that is always of concern for real programs, namely, “how
can we make programs more efficient?” Specifically, we consider the problem of reducing the
number of states in a DFA, M = (Q, Σ, δ, q0, A). In more colloquial terms, “can I design a DFA
with fewer states that will do the same thing?” We know intuitively that not all equivalent DFAs
have the same number of states. This is demonstrated by trivial examples. Consider M and M'
illustrated in the figure below. It is clear that L(M) = L(M') = Σ*. In Figure A M has two
reachable states, both of which are accept states. Clearly, this machine accepts all strings and is
equivalent to the one-state DFA, M’; observe that M’ can be obtained from M by simply
redirecting the transition, δ(1,b), from state 2 back to state 1, and eliminating 2 which, after this
change, would no longer be reachable. In Figure B, we see that state 2 is unreachable in M.
Thus the smaller, more efficient, M’, can be constructed by removing state 2.

 Figure A. Figure B.

These simple examples introduce two key ideas that will be exploited in the state minimization
algorithm we present later: (a) the elimination of unreachable states, and (b) removing
redundant or indistinguishable states. The first concept is obvious. The second notion is vaguer
and needs a formal introduction.

For any DFA, M, and any state q ∈ Q, we can define two sets of strings determined by q. The
first set we shall denote as Rq = { x | δ*(q0,x) = q }. This is just the strings that leave M in state
q. The second set determined by q is Sq and is given by Sq = {y | δ*(q, y) ∈ A }. These are the
strings that would allow M to accept, once M has reached state q. Sets Rq and Sq are illustrated
graphically in Figure C.

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 12

Figure C. A typical x ∈ Rq and a typical y ∈Sq.

Given these sets, the following is true about L(M).

Now suppose that Sq = Sq' for two distinct state q and q'. To see that this is possible, refer to our
machine M in Figure A. Clearly S1 = S2 = Σ*. However, assuming q and q' are both reachable
states of M, then it is never true that Rq = Rq', in fact Rq ∩ Rq' = Φ. For suppose that x ∈ Rq ∩
Rq'. Because δ∗M is a function we have δ∗M(q0,x) = q = q', contradicting our assumption that q and
q' are distinct. The consequence of the fact that Sq = Sq' is that the equation for L(M) can now be

written as:

This says that, with respect to what M will eventually accepts, there is no difference in the
behavior of M once it reaches q or q'. We say that q and q' are indistinguishable. Restating, we
can merge q and q' into one state by "rewiring" M in the following way. If p ≠ q' is any state in Q
and δ(p, a) = q', then redefine the transition to go to q instead; that is, redefine δ(p,a) = q. Then,
remove q' from M and any other states that might become unreachable as a result. If one of q
and q' is q0, then remove the state that is not q0. After this rewiring, Rq(new) = Rq(old) ∪Rq'(old).
Sq(new) = Sq(old) and L(Mnew) = L(Mold).

Definition BX-1. So, more formally, we say that q and q’ are indistinguishable states if and
only if (Sq = Sq'), where Sq and Sq’ are defined as specified above.

Now that we know how to reduce the size of a DFA, the next problem we face is how to identify
pairs of indistinguishable states. It turns out that indistinguishable is an equivalence relations on
the set of reachable states of a DFA. We develop this fact formally in the following discussion.

Qq

qqSRML
∈

=)(

() qqq
qqQp

pp SRRSRML '
}',{

)(∪∪⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−∈

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 13

Definition BX-2. Let M = (Q, Σ, δ, q0, A) be a DFA, and let q1 , q2 ∈ Q. Then the relation ≡ is
defined on Q as follows: q1 ≡ q2 if and only if ∀z ∈Σ* [δ*

M(q1, z) ∈ A ⇔ δ*
M(q2, z) ∈A]; this is

equivalent to saying that q1 , q2 are indistinguishable.

Corollary-BX2. ≡ is an equivalence relation on Q. Furthermore, q1 ≡ q2 if and only if ∀x ∈Σ*,
δ*

M(q1, x) ≡ δ*
M(q2, x).

Proof. It is trivial to show that ≡ is an equivalence relation on Q. This we leave to the reader.
We must now show that any pair of states, reachable from q1 and q2, must also be
indistinguishable.

By Definition BX-2, q1 ≡ q2 if and only if ∀z ∈Σ* [δ*

M(q1,z) ∈A ⇔ δ*
M(q2,z) ∈A].

This holds if and only if ∀x,y ∈Σ*[δ*
M(q1,xy) ∈A ⇔ δ*

M(q2,xy) ∈A] if and only if ∀x ∈Σ*
[∀y ∈Σ*[δ*

M(δ*
M(q1,x),y) ∈A ⇔ δ*

M(δ*
M(q2,x),y) ∈A]] if and only if

∀x ∈Σ*[δ*
M(q1,x) ≡ δ*

M(q2,x)]. QED

The next Theorem BX-1 gives us an iterative algorithm for computing the relation ≡ on the state
set of a given DFA, M. It also establishes that the minimal state DFA accepting L(M) can be
derived from ≡ by treating equivalence classes [q]≡ as states of this machine.

Theorem BX-1. Let M = (Q, Σ, δ, q0, A) be a DFA where all states in Q are reachable. For all
k ≥ 0 define the relation ≡k on Q as follows: q1 ≡k q2 if and only if ∀z ∈Σ*k [δ*

M(q1,z) ∈A ⇔
δ*

M(q2,z) ∈A]. (We say that q1 and q2 are indistinguishable by strings of length k or less.) Then

(a) ≡0 = {Q-A, A} and for each k ≥ 0, q1 ≡k+1 q2 if and only q1 ≡k q2 and if for every
 a ∈Σ, δ(q1,a) ≡k δ(q2,a); and

(b) for some k ≤ n-2, where n is the number of states in M, ≡ = ≡k ; and finally,

(c) L(M) = L(ML), where ML = (Q', Σ, δ', [q0]≡ , A') , where
Q' = { [q]≡ | q ∈Q},
A' = { [q]≡ | q ∈A}, and
for all a ∈ Σ, δ'([q]≡, a) = [δ(q,a)]≡.

Proof(a). Applying the definition for k = 0, we see that q1 ≡0 q2 if and only if [q1 = δ*

M(q1,λ) ∈A
⇔ q2 = δ*

M(q2,λ) ∈A]. Thus ≡0 = {Q-A, A}. Now consider q1 ≡k+1 q2.

By definition of ≡k+1 , ∀z ∈Σ*(k+1) [δ*

M(q1, z) ∈A ⇔ δ*
M(q2, z) ∈A], then ∀z ∈Σ*k [δ*

M(q1,z)
∈A ⇔ δ*

M(q2,z) ∈A]. Thus q1 ≡k q2. But because Σ*(k+1) = ΣΣ*k, q1 ≡k+1 q2 holds if and only if
∀a ∈Σ [∀z ∈Σ*k [δ*

M(q1, az) ∈A ⇔ δ*
M(q2, az) ∈A]]. And this holds if and only if ∀a ∈Σ [∀z

∈Σ*k [δ*
M(δ(q1,a),z) ∈A ⇔ δ*

M(δ(q2,a),z) ∈A]. And finally this holds if and only if ∀a ∈Σ
[δ(q1,a) ≡k δ(q2,a)].

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 14

Proof (b). We first show that if ≡k = ≡k+1, then ≡k = ≡. It should be clear that q1 ≡ q2 if and only
if for all k ≥ 0, q1 ≡k q2. What we will show is that if ≡k = ≡k+1, then ≡k = ≡k+n, for all n ≥ 1. This
is easily established by induction on n. The basis (n = 1) is given by assumption. Now suppose
q1 ≡k+n+1 q2. Then by part (a) applied to ≡k+n+1 we have, q1 ≡k+n+1 q2 if and only if q1 ≡k+n q2 and
for all a ∈Σ [δ(q1,a) ≡k+n δ(q2,a)]. But by our induction hypothesis, ≡k = ≡k+n, and we have q1
≡k+n+1 q2 if and only if q1 ≡k q2 and for all a ∈Σ [δ(q1,a) ≡k δ(q2,a)]. But this is the same as
saying q1 ≡k+1 q2. And then, since ≡k = ≡k+1, it follows that q1 ≡k+n+1 q2 if and only if q1 ≡k q2.
Thus ≡k = ≡k+n+1 and the induction is complete.

To finish (b) suppose M has n states and assume both Q-A and A are non-empty. Then by part
(a), ≡0 = { Q-A, A}. Suppose that ≡0 ≠ ≡1, then ≡1 must have at least one more equivalence class
than ≡0 (at least 3). Furthermore, because q1 ≡k+1 q2 implies q1 ≡k q2, then at least one class of
≡1 was formed by splitting one of the classes of ≡0. Thus if we consider the progression of
equivalence relations, ≡0, ≡1, …, ≡k, where |≡0| = 2 and |≡j+1| ≥ |≡j|+1, then since the |≡k| cannot
exceed the number of states of M, it follows that k ≤ n-2 and ≡k = ≡k+1. Thus for any j > n-2, it
must follow that ≡j = ≡k = ≡.

Proof(c). The first point to observe is that ML is a well-defined DFA, not NFA. The only
possible challenge to this statement might arise from the definition of δ’. One must just realize
that this is over states that represent equivalence classes and any representative of an equivalence
class can be used to define the transition from that state to the states associated with subsequent
equivalence classes.

STATE MINIMIZATION ALGORITHM
Let M = (Q, Σ, δ, q0, A) be a DFA. The minimal state DFA equivalent to M can be computed in
the following way.
Step 1: Eliminate the unreachable states of M to obtain M’ = (Q’, Σ, δ, q0, A’). The only
difference between M and M’ will be that Q’ ⊆ Q and A’ ⊆ A.

Step 2: If A’ = Φ, then L(M) = L(M’) = Φ, and both are equivalent to the 1-state DFA,
M’’ = ({q0}, Σ, δ’’, q0, Φ), where δ’’(q0,a) = q0, for all a ∈Σ. On the other hand, if A’ = Q’, then
L(M) = L(M’) = Σ*, and both are equivalent to M’’ = ({q0}, Σ, δ’’, q0, {q0}), where δ’’(q0,a) =
q0, for all a ∈Σ.

Step 3: If A’ ≠Φ and Q’-A’ ≠Φ, then do the following.
For k = 0, 1, … , compute ≡k until ≡k = ≡k+1. The minimal state DFA equivalent to M’ is the
machine, ML = (Q', Σ, δ', [q0]≡ , A') , where Q' = { [q]≡ | q ∈Q}, A' = { [q]≡ | q ∈A}, and for all a
∈ Σ, δ'([q]≡, a) = [δ(q,a)]≡. Use ≡k as ≡.

Example 30. Constructing the minimal-state DFA for a given regular language L.

Consider the DFA, M, shown below for L(M) = { aaa, aba, baa, bba }.

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 15

≡0 = { A:[1, 2, 3, 4, 6, 7, 8, 9, 10], B:[5, 11] }

 A B
δ 1 2 3 4 6 7 8 9 10 5 11
a A A B B A A B B A A A
b A A A A A A A A A A A

≡1 = { A:[1, 2, 6, 7, 10], C:[3, 4, 8, 9], B:[5, 11] }

 A C B
δ 1 2 6 7 10 3 4 8 9 5 11
a A C A C A B B B B A A
b A C A C A A A A A A A

≡2 = { A:[1, 6, 10], D:[2, 7], C:[3, 4, 8, 9], B:[5, 11] }

 A D C B
δ 1 6 10 2 7 3 4 8 9 5 11
a D A A C C B B B B A A
b D A A C C A A A A A A

≡3 = { A:[1], E:[6, 10], D:[2, 7], C:[3, 4, 8, 9], B:[5, 11] }

 A E D C B
δ 1 6 10 2 7 3 4 8 9 5 11
a D E E C C B B B B E E
b D E E C C E E E E E E

The reader can verify that ≡3 = ≡4. Thus ≡3 defines the states of the minimal DFA accepting L.
In fact, the transition table constructed for ≡3 above is the transition function of the minimal
DFA. The accepting state(s) of the minimal DFA are the classes consisting of accepting states of
the original DFA, M. In our example, this is class B. The initial state of the minimal DFA is the

2

1

a,b

7
8

4

3

5

6

10

9 11

a,b

a,b
a

a

a

a

b

b
aa

b

b

b

bb

a
a,b

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 16

class containing the original initial state. In the example, this is A. The state transition diagram
for the minimal DFA is shown below.

Hughes preferred approach

Another technique to attack this minimization is to write down a lower diagonal matrix of n-1
columns and n-1 rows, where n is the number of states in the original automaton. The columns
are labeled 1..n-1; the rows are labeled 2..n. We refer to an entry or slot in the matrix as (i,j) if it
is the ith column, j-th row. Our goal is to place in X in any slot qi, qj where the states are
distinguishable.

Basis:
for i=1 to n-1 { for j=2 to n {set slot i,j to contain an X if one of qi, qj is final and the other is
non-final} }

for i=1 to n-1 { for j=2 to n { for each a∈Σ write down the state pair (δ(qi,a), δ(qj,a)) in slot i,j
except when δ(qi,a) = δ(qj,a) or (δ(qk,a), δ(qm,a)) = (i,j) or (δ(qk,a), δ(qm,a)) = (j,i); if any pair is
associated with a slot having an X, reset the i,j slot to also have only an X } }

Induction:
for i=1 to n-1 { for j=2 to n {set slot i,j to contain an X if it contains any pair (k,m) where slot
k,m contains an X } }

The above converges when an induction step makes no changes to the matrix. This takes at most
n-1 inductive steps (Why?).

A naïve analysis concludes that each of the n-1 iterations requires order n2 steps. As I’ve laid it
out, that is true and so the algorithm is n3, but there is a way to implement and analyze this that
shows it can be done as an order n2 algorithm and that is optimal (How and Why?).

DA

B

a,bE

C a,ba,b
a

a,b

b

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 17

Example 30 redone
Basis

2 (2,4)
(7,3)

3 X X
4 X X
5 X X X X
6 (2,6)

(7,6)
(4.6)
(3,6)

X X X

7 (2,8)
(7,9)

(4,8)
(3,9)

X X X (6,8)
(6,9)

8 X X (5,11)
(6,10)

(5,11)
(6,10)

X X X

9 X X (5,11)
(6,10)

(5,11)
(6,10)

X X X

10 (2,10)
(7,10)

(4,10)
(3,10)

X X X (8,10)
(9,10)

X

X

11 X X X X X X X X X
 1 2 3 4 5 6 7 8 9 10

First inductive step

2 X
3 X X
4 X X
5 X X X X
6 (2,6)

(7,6)

X X X X

7 X (4,8)
(3,9)

X X X X

8 X X (5,11)
(6,10)

(5,11)
(6,10)

X X X

9 X X (5,11)
(6,10)

(5,11)
(6,10)

X X X

10 (2,10)
(7,10)

(4,10)
(3,10)

X X X X X

X

11 X X X X X X X X X
 1 2 3 4 5 6 7 8 9 10

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 18

Third inductive step
2 X
3 X X
4 X X
5 X X X X
6 X

X X X X

7 X (4,8)
(3,9)

X X X X

8 X X (5,11)
(6,10)

(5,11)
(6,10)

X X X

9 X X (5,11)
(6,10)

(5,11)
(6,10)

X X X

10 X X X X X X X

X

11 X X X X X X X X X
 1 2 3 4 5 6 7 8 9 10

The fourth pass provides no changes, so we converge. The equivalence classes are:
{1}, {2,7}, {3,4,8,9}, {5,11}, (6,10}

Theorem 2 established that NFAs are no more “powerful” than DFAs in terms of the family of
languages they can recognize. However, NFAs are more compact and succinct than DFAs
because of the potential exponential relationship between the number of states required for a
DFA to recognize the same language as an NFA. We will return to this issue later, when we
prove that every regular language has a unique minimal state DFA, up to renaming of the states.

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 19

Regular Expressions

Definition 20. The set, E(Σ), of regular expressions over Σ is a subset of (Σ')* defined
inductively below, where Σ' = Σ ∪ {φ, λ, (,),+,*,⋅}, called the meta alphabet of E(Σ), is assumed
to satisfy: Σ ∩ {φ, λ, (,),+,*,⋅} = Φ.

Basis: φ, λ ∈ E(Σ) and Σ ⊆ E(Σ).
Inductive rule: If e1, e2 ∈ E(Σ), then each of the following strings is in E(Σ):
[1] (e1)*
[2] (e1⋅e2)
[3] (e1+ e2)
Completion: Nothing else is in E(Σ) that cannot be obtained by a finite application of the above
rules.

Examples. If Σ = {a,b}, then Σ' = {a,b, φ, λ, (,),+,*,⋅}. The following strings are members of
E(Σ). From the basis: φ, λ, a, b, are members of E(Σ). From the induction rules: (φ)*, (λ)*,
(a)*, (b)*, (φ)*, (b+(φ)*), ((a)*⋅b), etc., are members of E(Σ).

The following are not members of E(Σ): (a), ((*ab)

At this point E(Σ) is nothing more than a set of strings, a language over Σ'. In our next definition
we assign meaning to these strings. That is, for the sake of understanding, think of regular
expressions as “programs” written in the language E(Σ). Definition 21 will tell us what we get
when these programs are “compiled” and “executed,” or “interpreted.” The result of executing a
regular expression “produces” or “outputs” a language over Σ. Definition 21 introduces the
"Language of" operator, L[], that maps each e ∈ E(Σ) to L[e] ⊆ Σ*, that is, L[e]: E(Σ) → 2Σ

*,
where 2Σ

, denotes the power set of Σ, the set of all languages over Σ.

Definition 21. Let Σ be an alphabet and let E(Σ) be the language of regular expressions over Σ.
Then each e ∈ E(Σ) describes(defines or specifies) a language, L[e], over Σ (that is, L[e] ⊆ Σ*)
defined inductively below.

Basis: L[φ] = Φ, L[λ] = {λ}, and L[a] = {a}, for each a ∈Σ.
Inductive rules:
[1] if e = (x)*, for some x ∈ E(Σ), then L[e] = L[x]*
[2] if e = (x⋅y), for some x and y ∈ E(Σ), then L[e] = L[x]⋅L[y], and
[3] if e = (x+y), for some x and y ∈ E(Σ), then L[e] = L[x] ∪ L[y].

Examples.
L[(φ)*] = L[φ]* = Φ* = {λ} = L[λ]; by [1] and Basis.

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 20

L[((φ+((a.b))*) ⋅φ)] = L[(φ+((a.b))*)]⋅L[φ] by [2]
= L[(φ+((a.b))*)]⋅Φ = Φ by Basis and Proposition 1(1).

Observe that L[e] = L[f] is possible even though e ≠ f. Also observe that it is important that the
inductive rules be applied properly. To this point consider the expression e = (a+(b⋅a)). If one
attempts to apply rule [2] to this expression, then x must equal "a+(b" and y must equal "a)". But
since these strings are not valid regular expressions, rule [2] does not apply. The only correct
decomposition of e is obtained using rule [3].

Theorem 7. For every e ∈ E(Σ), L[e] is a regular language over Σ.

Proof. Define #(e) to be the number of occurrences of the operator symbols {*,+, ⋅ } in e. We
will prove by induction on #(e) that L[e] is regular.

Basis: #(e) = 0.
Then by Definition 20, e must belong to Σ ∪ {λ, φ}. From the Basis of Definition 21 we obtain,
L[e] = L[a] = {a}, for a ∈Σ, L[e] = L[φ] = Φ, or L[e] = L[λ] = {λ}, respectively. But by
Theorem 1, every finite set is Regular. Thus the basis case is true.

Induction Step: IH: Assume L[e] is regular if 0 ≤ #(e) ≤ k, for some k. Consider e’ where
#(e’) = k+1. Then e’ has at least one occurrence of the operator symbols {*, +, ⋅ } and so e’ must
be of one of the following forms:
(a) (x)*, where #(x) = k
(b) (x⋅y), where #(x) ≤ k and #(y) ≤ k
(c) (x+y), where #(x) ≤ k and #(y) ≤ k

If (a) holds, then by Definition 21[1], L[e’] = L[x]*. If (b) holds, then by Definition 21[2],
L[e’] = L[x] ⋅ L[y]. If (c) holds, then by Definition 21[3]], L[e’] = L[x] ∪ L[y]. In each case, by
our induction hypothesis, L[x] and L[y] are regular and thus, in each case, by Theorem 4 it
follows that L[e’] is regular. This concludes the proof.

Theorem 7 has established that L[e] is regular for every regular expression e. We now state and
prove that the converse is also true, demonstrating that regular expressions define another way to
characterize or define regular languages over some given alphabet.

Theorem 8a. Let R ⊆ Σ* be a regular language. Then there is a regular expression, eR ∈ E(Σ)
for which L[eR] = R.

Proof (sketch).

Since R is regular, R = L(M) for some DFA, M = (Q, Σ, δ, q0, A). The method we shall
introduce for converting a DFA to an equivalent regular expression is based on the idea that a
regular expression is a description of the set of possible "paths" from the initial state of the DFA
to some given destination state. Let n = |Q|, the number of states of M. Then for each state k,
1 ≤ k ≤ n, define

Lk = { x ∈ Σ* | δ∗M(q0, x) = k}

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 21

Lk is simply the set of input strings that leave M in state k. From this it easy to see that L(M) is
just the union of the sets Lk, where k ∈ A, the set of accept states of M. We state this formally

by

Now, the goal of our approach is to construct a regular expression ek such that L[ek] = Lk, for
each state k of M. To do this we define a system of n equations in n unknowns, where n is the
number of states of M and the unknowns are the regular expressions ek , 1 ≤ k ≤ n. The equation
for ek is generally a recursive equation that describes how to obtain "new" strings in Lk in terms
of existing strings in L1, L2, …, Ln concatenated with symbols a ∈Σ that satisfy the relationship:
k = δ(j, a). This is illustrated by the example DFA given below in the form of a state transition
table.

Example 26. Transition Table for DFA, M

δ a b
→1 1 2
2* 3 4
3 4 1
4* 2 3

Consider L3 as an example. Clearly ba ∈ L3 because δ*

M(1,ba) = 3. Also observe from the TT
that δ(2,a) = 3 and δ(4,b) = 3. So, this implies that L3 = L2{a} ∪ L4{b}. In other words, any
string that will leave M in state 3 must be formed by concatenating “a” on the right end of some
string that leaves M in state 2, or by concatenating “b” on the right end of some string that leaves
M in state 4. We can define a similar relationship for each of the four states of M. Specifically,

 L1 = L1{a} ∪ L3{b} ∪ {λ}.
 L2 = L1{b} ∪ L4{a}.
 L3 = L2{a} ∪ L4{b}.
 L4 = L2{b} ∪ L3{a}.

The equation for L1 has an extra term because it is the start state - state 1 can be reached by the
null string because that is the state in which M begins. Observe that L(M) = L2 ∪ L4. This
relationship holds because states 2 and 4 are the accept states of M.

This set of equations above can be translated into an Inductive Definition for L(M) as follows.

Basis: λ∈L1. L2 = L3 = L4 = Φ.
Inductive Rules:
[1] if x belongs to L1, then xa ∈ L1 and xb ∈ L2 ;
[2] if x belongs to L2, then xa ∈ L3 and xb ∈ L4 ;

Ak

kLML
∈

=)(

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 22

[3] if x belongs to L3, then xa ∈ L4 and xb ∈ L1 ;
[4] if x belongs to L4, then xa ∈ L2 and xb ∈ L3 ;
Completion Rule: Nothing belongs to L(M) that cannot be added to L2 or L4 by finite
application of the Basis and Inductive Rules.

Returning to our goal of constructing a regular expression for L(M) we translate the set equations
given earlier into equivalent "regular expression" equations (regular equations for short) by
replacing Lk be ek, {a} by a, for each a ∈Σ, {λ} by λ, and finally, "∪" by "+". For our example
we obtain

 e1 = e1a + e3b + λ.
[1] e2 = e1b + e4a.
 e3 = e2a + e4b.
 e4 = e2b + e3a.

Furthermore eM = e2 + e4, where L(M) = L[eM]. Our problem reduces to solving this system of
equations for e1, e2, e3, and e4 purely in terms of the symbols {a, b, λ} and the operators
{+,⋅ , ∗}. This can be done with two algebraic tools. First, ordinary algebraic substitution of
equals for equals. For example e2 can be replaced in the right side of equations for e1,e3 and e4
by the expression (e1b + e4a) to obtain:

 e1 = e1a + e3b + λ.
[2] e3 = (e1b + e4a)a + e4b = e1ba + e4aa + e4b = e1ba + e4(aa+b)
 e4 = (e1b + e4a)b + e3a = e1bb + e4ab + e3a

After substitution, the expressions can be simplified by applying the law that concatenation (⋅)
distributes over union(+). Factoring out common expressions is also a useful technique at times
by applying this distributive law in reverse.

By making the above substitution for e2, we have reduced the set of equations to just three
involving only the unknowns e1, e3 and e4. Note that reducing the number of unknowns is only
possible if the expression replacing a given variable does not involve that variable - that is, the
expression is not recursive in the variable being replaced. Applying this principle to the
remaining three equations we see that only the equation [2] for e3 is non-recursive. So, by
replacing e3 we can reduce the set to just two equations and two unknowns as shown below.

 e1 = e1a + (e1ba + e4aa + e4b)b + λ = e1a + e1bab + e4aab + e4bb + λ
 e4 = e1bb + e4ab + (e1ba + e4aa + e4b)a = e1bb + e4ab + e1baa + e4aaa + e4ba

Collecting terms for the same variables we have:

 e1 = e1a + e1bab + e4aab + e4bb + λ = e1(a+bab)+e4(aab+bb)+λ
 e4 = e1bb + e4ab + e1baa + e4aaa + e4ba = e4(ab+aaa+ba)+e1(bb+baa)

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 23

The resulting set of two equations will not simplify by algebraic substitution since both equations
are recursive. To break the recursion and be able to solve for the remaining unknowns, we must
apply the result of the following lemma.

Lemma 4. Let A,B,X be any subsets of Σ* satisfying X = XA ∪ B. Then

(a) if λ∉A, then X = BA*
(b) otherwise, BA* is a subset of any X satisfying this relation.

Proof. See Solutions to Problem Set #1.

In terms of regular expressions, Lemma 4 can be rephrased as Lemma 4'.

Lemma 4'. Let A,B,X be regular expressions over Σ satisfying X = XA + B. Then

(a) if λ∉ L[A], then L[X] = L[B]L[A]* = L[B(A)*]
(b) otherwise, L[B(A)*] is a subset of L[X] for any X satisfying this relation.

Applying Lemma 4' to the equation for e1, where X = e1, A = (a+bab) and B = e4(aab+bb)+λ we
obtain:

[3] e1 = (e4(aab+bb)+λ) (a+bab)* = e4(aab+bb)(a+bab)* + (a+bab)*

Now we can substitute this expression for e1 into the equation for e4 to obtain:

e4 = e4(ab+aaa+ba)+(e4(aab+bb)(a+bab)* + (a+bab)*) (bb+baa)
 = e4(ab+aaa+ba)+ e4(aab+bb)(a+bab)*(bb+baa) + (a+bab)*(bb+baa)
 = e4((ab+aaa+ba)+ (aab+bb)(a+bab)*(bb+baa)) + (a+bab)*(bb+baa)

Finally, applying Lemma 4' to this equation we obtain:

[4] e4 = (a+bab)*(bb+baa)((ab+aaa+ba)+ (aab+bb)(a+bab)*(bb+baa))*

This is the final expression for e4. To obtain the final expression for e1 we must substitute the
right side of equation [4] back into the right side of equation [3] . To obtain e3, we substitute the
final expressions for e1 and e4 into the right side of equation [2]. Then finally, to obtain the final
expression for e2, we substitute the final expressions for e1 and e4 into the right side of equation
[1]. The final expression for eM can be obtained in a similar fashion from the final expressions
for e2 and e4.

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 24

The form of regular expressions given in Definition 20 is somewhat cumbersome because every
operator occurrence must be pair with a matched set of parenthesis. By defining the following
rules of operator precedence and associativity, and by making the concatenation operator
implicit, we can greatly simplify the form of regular expressions.

Operator Precedence and Associativity Laws for Regular Expressions

[1] "+" < "⋅" < "∗" ("+" has the lowest binding strength, "∗" has the highest)
[2] all operators are left associative

Definition 22. A regular expression, r, is said to be reduce if and only if r = φ or r has no
occurrence of φ, and, subject to the above rules of operator precedence and associativity, r has no
unnecessary parentheses.

Theorem 8b. (Kleene’s Theorem) Let M = (Q, Σ , δ , q1 , A) be a DFA. Then there is a
reduced regular expression eM such that Lρ[eM] = L(M).

Proof. Without loss of generality we can assume the following about M. Q = {q1, q2, …, qn},
where n ≥ 1, q1 is the initial state, and for some k’, 1≤ k’<n, #A = k’. In other words, A ≠Φ and
A ≠ Q. For in the former case, L(M) = Φ, and eM = φ. In the latter case, L(M) = Σ* , for some
Σ = {a1, a2, …, am}, then for m ≥ 2, eM = ((…((a1+a2)+ a3)… +am))*, and for m = 1, eM = (a1)*.

For 1 ≤ i, j ≤ n and 0 ≤ k ≤ n define the set { x ∈Σ* | (qi, x) M⇒+ (qs, x') M⇒+ (qj,λ)

implies s ≤ k.}. In words, the set of all strings that cause M to transition from state qi to qj
under the constraint that if M enters an intermediate state, qs, then the index s cannot exceed the
parameter k. The graph below illustrates a typical sequence of transitions for some x ∈ .

We make three claims that will be proved by induction on the parameter k.

Ri j
k
, =

Ri j
k
, =

Ri j
k
,

states

inputa1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 ...

q1

q2

q3

q4

qi

qj

qn

bound = k

intermediate
states

begin and end
states

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 25

(1) is regular

(2) = ∪ ()* , for k > 0.

(3) = L[], for some regular expression, .

Basis: = { a ∈Σ | δ(qi, a) = qj }, if i ≠ j, and = {λ}∪{ a ∈Σ | δ(qi, a) = qi }. Since both
these sets are finite, it follows that both are regular. It is straightforward to show that,

1.m' somefor }a ..., ,a,a { or }{ R where),...a)a((...or , e where,][

2.m' somefor }a ..., ,a,a { or }{a' R where),...a)a(a (...or ,a' e where,][

m'2'1'
0

ii,m'1'
0

ii,
0
,

0
,

m'2'1'
0

ji,m'2'1'
0

ji,
0
,

0
,

≥==++===

≥==++===

λλλiiii

jiji

ReL

ReL

Inductive case: To see that (2) holds when k > 0, consider x ∈ . Clearly, ⊆ follows

by definition of . So, consider x ∈ for which M enters state qk one or more times. This
situation is depicted in the graph shown below.

It is easy to see that x1 ∈ , x2, x3, and x4 ∈ , and x5 ∈ . Clearly, then, if qk is entered

as an intermediate state only once, then x ∈ and if entered more than once

x ∈ ()+ . Thus x ∈ ()* if qk is entered one or more times as an

intermediate state. If it is not entered at all as an intermediate state, the x ∈ . Thus claim (2)
is established.

By our induction assumption that (1) and (3) hold for k-1, it follows that must be regular by
TTheoremT 4 (regular languages are closed under finite concatenation, Kleene-*, and finite
union) and can therefore be expressed by the regular expression:

 = (+ ((⋅()*)⋅)). Thus our claims are established.

Ri j
k
,

Ri j
k
, Ri j

k
,
−1 Ri k

k
,
−1 Rk k

k
,
−1 Rk j

k
,
−1

Ri j
k
, ei j

k
, ei j

k
,

Ri j,
0 Ri i,

0

Ri j
k
, Ri j

k
,
−1 Ri j

k
,

Ri j
k
, Ri j

k
,

states

inputa1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 ...

qi

qj

qk
bound = k

begin and end
states

intermediate
states

x1 x2 x3 x4 x5

Ri k
k
,
−1 Rk k

k
,
−1 Rk j

k
,
−1

Ri k
k
,
−1 Rk j

k
,
−1

Ri k
k
,
−1 Rk k

k
,
−1 Rk j

k
,
−1 Ri k

k
,
−1 Rk k

k
,
−1 Rk j

k
,
−1

Ri j
k
,
−1

Ri j
k
,

ei j
k
, ei j

k
,
−1 ei k

k
,
−1 ek k

k
,
−1 ek j

k
,
−1

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 26

To complete the proof of the TtheoremT, we observe that L(M) = , where IA is the index

set for A. Thus the regular expression, eM = , and the TtheoremT is proved.

Example 27. Consider the DFA shown belowF1F.

The table below shows the values of for values of k = 0,1,2 and all values of i and j.

 k = 0 k=1 k=2
 λ λ (aa)*

 a a a(aa)*

 b b a*b

 a a a(aa)*

 λ λ+aa (aa)*

 b (λ+a)b a*b

 φ φ (a+b)(aa)*a

 a+b a+b (a+b)(aa)*

 λ λ λ+(a+b)a*b

Now L(M) = ∪ (M has accepting states 2 and 3), where

 = ∪ ()* = Lρ[(a(aa)* + a*b(λ+(a+b)a*b)*(a+b)(aa)*)]
 = Lρ[(a + a*b((a+b)a*b)*(a+b))(aa)*]

 = ∪ ()* = (λ + ()+) = ()*
 = Lρ[a*b((a+b)a*b)*]

eM = ((a + a*b((a+b)a*b)*(a+b))(aa)* + a*b((a+b)a*b)*)

1 This example was adapted from Formal Languages and Automata Theory, by Hopcroft and Ullman.

R f
n

f I A
1,

∈

(()),e f
n

f I A
1

∈
∑

1

3

a

b
b a,b

2

Ri j
k
,

Rk1 1,
Rk1 2,
Rk1 3,
Rk2 1,
Rk2 2,
Rk2 3,
Rk3 1,
Rk3 2,
Rk3 3,

R1 2
3
, R1 3

3
,

R1 2
3
, R1 2

2
, R1 3

2
, R3 3

2
, R3 2

2
,

R1 3
3
, R1 3

2
, R1 3

2
, R3 3

2
, R3 3

2
, R1 3

2
, R3 3

2
, R1 3

2
, R3 3

2
,

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 27

Important Applications of Regular Expressions
Regular languages and consequently, Regular expressions, have many applications in string
processing, decoding or parsing. Perhaps the most obvious and familiar application is in the
specification of programming languages. Specifically, the structure or syntax of programming
languages is defined at the lexical level (atomic level) in terms of tokens. A “token” is an
abstraction of a lexical feature, such as, identifier, reserved word, real literal, operator, etc. In
short, a token may be thought of as the set of all strings, permitted by the programming language
to represent a valid lexical element of a given kind. In the design of modern programming
languages, tokens are always Regular languages !

Compiler designers have used this fact to advantage in developing tools to facilitate writing and
testing compilers. The diagram below illustrates two important steps in the process of compiler
development: design and implementation of the lexical analyzer, design and implementation of
the syntax analyzer.

Figure 5. Compiler Development Using Lex and Yacc

The standard UNIX tools, Lex and Yacc, are examples of program generators. Program
generators are programs that take as input a description of a computational process, and output
the actual code of a program that realizes that process. Lex takes as input the specification of all
tokens defined by a given programming language, and outputs a C program that will translate
source text into a stream of those tokens. For example, if the source text is “ X = A + B ; “, then
the Lexical Analyzer produced by Lex might translate this string into IDENT(X) OP(=)
IDENT(A) OP(+) IDENT(B) DELIMETER(;). Token specifications are input to Lex in the form
of Regular Expressions. Similarly, Yacc is a program generator for syntax analyzers or parsers.
Yacc takes as input a specification of the programming language in the form of a Type-2 (BNF)
Grammar, where the terminal alphabet is the set of tokens identified by a Lex generated
program.

The use of such tools greatly reduces the amount of effort necessary to build the front-end
components of a compiler (Lexical Analyzer and Parser). The gcc compiler system is designed
to exploit this philosophy to the fullest. Gcc provides Lexical Analyzers and Parsers for a
variety of languages (C, C++, Ada, …), all of which translate their source language into C.
Without tools like Lex and Yacc, rapid development of new languages would be much more
difficult.

Lexical
Analyzer

Syntax
Analyzer Source

File source
lines tokens

semantic
information

Symbol
Table

Operator

Tree

LEX

YACC
Token
Specs

BNF
Grammar

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 28

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 29

Pumping Lemma for Regular Languages

We have completed our study of closure properties of Regular Languages and various formal
systems for defining or describing them. The question we wish to consider next is, how can
non-Regular languages be identified? The first such tool is the pumping lemma for Regular
languages. It defines a key property possessed by all Regular languages, specifically all infinite
Regular languages (for it is only the infinite languages that can be non-Regular). As a logical
assertion, it states that, “L is regular ⇒ L has property P”. Negating this implication we have,
“L does not have property P ⇒ L is not regular.” It is the contra-positive form that is useful in
proving languages to be non-Regular. That is, typical proofs using the Pumping Lemma assert
that a given language, L, is Regular, and then proceed to obtain a contradiction by showing L
does not have property, P. We’ll explain what property “P” is after the statement of our next
TtheoremT.

TTheoremT 9 (Pumping Lemma for Regular Languages(PLR)). Let L be a Regular
language over Σ. There exits a positive integer α , depending only on L, such that for every x ∈
L with
 |x| ≥ α , then there exists a decomposition of x in the form uvw, where |uv| ≤ α and |v| ≥ 1, such
that for every value of k ≥ 0, uvkw ∈ L.

The “property P” of Regular languages described in the PLR is: there is a fixed number α
associated with each regular language, L, such that all strings, x, belonging to L and having
length at least α , define an infinite subset of L, denoted Lx, defined by

Lx = { uvkw | k ≥ 0, where x = uvw for some strings u,v,w satisfying |uv| ≤ α and |v| ≥ 1 }

The figure below illustrates this concept.

NOTE: You may be wondering about finite languages. Since the PLR applies to all Regular
languages, how does the result hold for finite Regular languages? The answer is that the value of

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 30

α for finite languages, L, is always greater than the length of the longest string in L; all members
of a finite language are therefore considered to be “short” strings.

Before proving the PLR we apply it to an example. We had stated earlier that certain languages
were known to be non-Regular without giving any proof. One of these is L = {anbn| n ≥ 0 }.
Using the PLR we now supply the proof.

Corollary PLR-1: L = { anbn | n ≥ 0 } is non-Regular.

Proof. The proof will proceed by contradiction. Suppose L is Regular, then the conclusion of
the PLR must hold for L. In particular, consider x = aαbα ∈ L (a long member of L), where α is
the parameter defined for L by the PLR. To obtain a contradiction we must show that for each
decomposition of the selected long string x in the form uvw, there exists a k ≥ 0, such that
uvkw ∉ L.

It is really easier to think of applying the contra-positive of the PLR,
“If ~P(L), then L ∉ R(Σ).” The contra-positive TtheoremT takes the following form;
that is, show:
(a) If for all α > 0,
(b) there exists x ∈L for which |x| ≥ α , and
(c) for every decomposition of x in the form uvw, where |uv| ≤α and v ≠λ ,
(d) there exists a k ≥ 0, such that uvkw ∉L,
(e) Then L is not Regular!

Applying this proof template to our example we have:

(a) Let α > 0 be given, and consider
(b) x ∈L where x = aαbα (|x| = 2α)
(c) Let x = uvw be any decomposition of x, where |uv| ≤ α and |v| > 0. Then v = ap for some
 p, 1 ≤ p ≤ α . Furthermore, uvkw = aα

+(k-1)p bα for all k ≥ 0.
(d) For any value of p > 0 and any k ≠ 1, uvkw ∉L. Thus for every decomposition of
 x = uvw there exists a k ≥ 0 for which uvkw ∉L and we conclude,
(e) L is not Regular!

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 31

Proof of PLR.

If L is Regular, then L = L(M) for some DFA, M = (Q, Σ, δ, q0, A). As a candidate for the
parameter "α" associated with L we choose the number of states of M, that is, consider α = |Q|.
If x ∈L and |x| ≥ α , then let x = a1a2…am, where m ≥ α . Consider the computation of M given
by

 (q0, a1a2…am) ⇒M (q1, a2…am) ⇒M … (qα, aα+1…am) (⇒M)* (qm, λ)

Because M has only α states, one of the states in the sequence q0, q1, …, qα must be repeated.
Let qi be the first such state and qj be its second occurrence in this sequence. Then the above
computation can be written in the following form (see the figure below), where w = w1w2 and
w2 = aα+1…am in the following.

 (q0, uvw) (⇒M)* (qi,vw) (⇒M)+ (qj, w1w2) (⇒M)* (qα, aα+1…am) (⇒M)* (qm, λ)

Observing that the state subscript corresponds to the number of symbols M must read to reach
that state, it follows that |uv| = j ≤ α . Furthermore, because qm is an accepting state, and by our
definition of qi and qj, it follows that 1 ≤ |v| ≤ α and each of the following is an accepting
computation of M.

 (q0, uw) (⇒M)* (qi,w) = (qj, w) (⇒M)* (qα, aα+1…am) (⇒M)* (qm, λ)

 For k > 1,
 (q0, uvkw) (⇒M)* (qi,vkw) (⇒M)+(qj, vk-1w) = (qi, vk-1w) (⇒M)* (qj, w)
 (⇒M)* (qα, aα+1…am) (⇒M)* (qm, λ)

Thus for all values of k ≥ 0, it holds that uvkw ∈L. To complete the proof we note that the above
argument is not dependent upon any properties of M other than the number of its states, α . So,
we could have chosen the smallest such M. Consequently, the parameter α associated with L is
the number of states in the smallest DFA accepting L.

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 32

Corollary PLR-2. L = { af(i) | where i ≥ 0 and f(i) = i2. } = { λ, a, aaaa, aaaaaaaa, … } is not
Regular.

Proof. Once again let us use the template of the contra-positive version of the PLR.
(a) If for all α > 0,
(b) there exists x ∈L for which |x| ≥ α , and
(c) for every decomposition of x in the form uvw, where |uv| ≤α and v ≠λ ,
(d) there exists a k ≥ 0, such that uvkw ∉L,
(e) Then L is not Regular!

(a) Let α > 0 be given, and consider
(b) x = af(i) where i is chosen so that 2i + 1 > α ,
(c) Let uvw be any decomposition of x, where 1 ≤ |v| ≤ α . Then clearly v = ap for some p
satifying: 1 ≤ p ≤ α , and uvkw = af(i)+(k-1)p.
(d) For k = 2, we have uv2w = af(i)+p. But f(i) = i2 < f(i) + |v| ≤ i2 + α < f(i+1) = (i+1)2 = i2 + 2i
+ 1 = f(i) + 2i + 1. Thus uv2w ∉L for any value of p satisfying: 1 ≤ p ≤ α .
(e) We may thus conclude that L cannot be Regular.

Exercise 12. Show that each of the following languages is non-Regular using the PLR.

(a) L = { anbm | 0 ≤ n < m }
(b) L = { anbm | m ≠ n, 0 ≤ n, m }
(c) L = { x#ck | x ∈ {a,b}* and k = |x|a or k = |x|b } ⊆ {a,b,c, #}*
(d) L = { x#x | x ∈ {0,1}+ }
(e) L = { x | x ∈ {a,b,c}* |x|a = |x|b }
(f) L = {a,b}* ∪ {c}+{anbn | n ≥ 0 }
(g) L = { x#ck | x ∈ {a,b}* and k = 2|x|a } ⊆ {a,b,c, #}*
(h) L = { x#ck | x ∈ {a,b}* and k = 2|x|a + 5|x|b} ⊆ {a,b,c, #}*
(i) L = { 0n10m10k | n,m,k ≥ 0 and n+m = k }
(j) L = { 0n10m10k | n,m,k ≥ 0 and n+k = m }
(k) L = {anbn | n is odd }

Proof of (b)
We copy the proof template and fill in the “blanks”.

(a) Let α > 0 be given,
(b) consider x = aαbα !

+
α∈ L. Clearly, |x| ≥ α , and

(c) every decomposition of x in the form uvw, where |uv| ≤α and v ≠λ , implies
 v = ap, for some p, 1 ≤ p ≤ α . Furthermore, for every k ≥ 0, uvkw = aα

+(k-1)pbα !
+
α

(d) Choose
p

k !1 α
+= (k must exist because p is a factor of α!). Then (k-1)p = α! and

 uvkw = aα
+
α !bα !

+
α ∉L.

(e) Thus, L is not Regular!

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 33

Another tool for identifying non-Regular languages is the use of closure operations on Regular
languages. This is stated formally in our next TheoremT.

TheoremT 10. Let L be a known non-Regular language, let R1, R2, …, Rn-1 be Regular
languages for n ≥ 1, and finally, let L’ be some language for which L = θ(L’, R1, R2, …, Rn-1),
where
θ: R×R×…×R → R is an n-ary closure operation on Regular languages, then L’ is not Regular.

Proof. If L’ is Regular, then L = θ(L’, R1, R2, …, Rn-1) must be Regular, but this is a
contradiction to the assumption that L is known to be non-Regular. Thus L’ must be non-
Regular.

Example 28.

(a) Let L = { anbn | n ≥ 0 } and let R ⊆ L be finite. Then by Theorem 10, L - R is non-
Regular. This follow trivially from the fact that L = (L - R) ∪ R. R is Regular (it is
finite) and Regular languages are closed under union. Since L is a known non-Regular
language by Corollary PLR-1, it follows that L-R must be non-Regular.

(b) Let L = { anbn | n ≥ 0 } and L’ = { x ∈ {a,b}* | |x|a = |x|b }. Then L’ is non-Regular since
L = L’ ∩ R, where R = {a}*{b}*. It is obvious that R is Regular, and L is known to be
non-Regular. Since Regular languages are closed under intersection, it must follow by
Theorem 10 that L’ is non-Regular.

Exercise 13. Show that each of the following languages is non-Regular using only Theorem 10,
Example 28, and Corollary PLR-1.

(a) L = { 0nbm | 0 ≤ n < m }
(b) L = { an0m | m ≠ n, 0 ≤ n, m }
(c) L = { x#ck | x ∈ {a,b}* and k = |x|a or k = |x|b } ⊆ {a,b,c, #}*
(d) L = { x#x | x ∈ {0,1}+ }
(e) L = { x | x ∈ {a,b,c}* |x|a = |x|b }
(f) L = {a,b}* ∪ {c}+{anbn | n ≥ 0 }
(g) L = { x#ck | x ∈ {a,b}* and k = 2|x|a } ⊆ {a,b,c, #}*
(h) L = { x#ck | x ∈ {a,b}* and k = 2|x|a + 5|x|b} ⊆ {a,b,c, #}*
(i) L = { 0n10m10k | n,m,k ≥ 0 and n+m = k }
(j) L = { 0n10m10k | n,m,k ≥ 0 and n+k = m }
(k) L = {anbn | n is odd }

Proof of (f). L(f) is a language that cannot be proven to be non-Regular using the PLR!

L1 = Lf ∩ {c}+{a}*{b}* = {c}+{anbn | n ≥ 0 }
L2 = h(L1), where h is the homomorphism given by h(a) = a, h(b) = b, h(c) = λ
L2 = {anbn | n ≥ 0}

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 34

Myhill-Nerode: An Algebraic Characterization of Regular Languages

We have characterized Regular languages in terms of NFAs (DFAs) and Regular Expressions. In
Section A we also stated (presently without proof) that Regular languages are also be defined by
Left- and Right-linear grammars. With so many equivalent representations for the family of
Regular languages, one is led to wonder if there are any other ways they might be characterized.
Also, as we have seen from Exercise 12(f), the Pumping Lemma is not an absolute test for
Regular languages, that is, there are some non-Regular languages that cannot be proven so using
the PLR.
This raises the question: is there a property P’ such that, “R is Regular if and only if P’(R)”?

Myhill and Nerode have given us an affirmative answer to this question! Their celebrated result
is stated below as Theorem 10 and is one of the most elegant results of language theory.
Theorem 10 is important for three primary reasons: (1) it gives a purely algebraic
characterization of Regular Languages distinct from grammars and automata, (2) it gives an
absolute test for distinguishing Regular from non-Regular languages, and (3) it provides the basis
for constructing the minimal-state DFA recognizing a given Regular language.

To help build your intuition about the concepts central to the proof of Theorem 10, consider the
problem of reducing the number of states in a DFA, M = (Q, Σ, δ, q0, A). We know intuitively
that not all equivalent DFAs have the same number of states. This is demonstrated by a trivial
example. Consider M and M' illustrated in the figure below. It is clear that L(M) = L(M') = Σ*.

For any DFA, M, and any state q ∈ Q, we can define two sets of strings determined by q. The
first set we shall denote as Rq = { x | δ*(q0,x) = q }. This is just the strings that leave M in state q
- you were introduced to this set in Theorem 7 when we solved a system of regular equations to
obtain the regular expression eq that satisfies L[eq] = Rq. The second set determined by q is Sq
and is given by Sq = {x | δ*(q, x) ∈ A }. These are the strings that would allow M to accept,
once M has reached state q. Given these sets, the following is true about L(M).

Now suppose that Sq = Sq' for two distinct state q and q'. To see that this is possible, refer to our
machine M above. Clearly S1 = S2 = Σ*. However, assuming q and q' are both reachable states
of M, then it is never true that Rq = Rq', in fact Rq ∩ Rq' = Φ. For suppose that x ∈ Rq ∩ Rq'.
Because δ∗M is a function we have δ∗M(q0,x) = q = q', contradicting our assumption that q and q'
are distinct. The consequence of the fact that Sq = Sq' is that the equation for L(M) can now be

written as:

This says that, with respect to what M will eventually accepts, there is no difference in the

1 2 1'

a
b

a, b

a,b

M' M

Qq

qqSRML
∈

=)(

() qqq
qqQp

pp SRRSRML '
}',{

)(∪∪⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−∈

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 35

behavior of M once it reaches q or q'. We say that q and q' are indistinguishable. Restating, we
can merge q and q' into one state by "rewiring" M in the following way. If p ≠ q' is any state in Q
and δ(p, a) = q', then redefine the transition to go to q instead; that is, redefine δ(p,a) = q. Then,
remove q' from M and any other states that might become unreachable as a result. If one of q
and q' is q0, then remove the state that is not q0. After this rewiring, Rq(new) = Rq(old) ∪
Rq'(old). Sq(new) = Sq(old) and L(Mnew) = L(Mold).

This notion of indistinguishability (Sq = Sq') is central to Myhill-Nerode and to the algorithm we
present later for merging indistinguishable states.

Theorem 11 (Myhill-Nerode). The following statements are equivalent:

(a) L is a regular language over Σ.
(b) L is the union of some of the equivalence classes of some right-invariant equivalence
 relation of finite index.
(c) The equivalence relation RL defined on Σ* by: x RL y if and only if ∀(z ∈ Σ*)
 [xz ∈ L ⇔ yz ∈L], has finite index.

The proof will be established by showing that (a) ⇒ (b) ⇒ (c) ⇒ (a). But before doing the proof
we review definitions and properties of equivalence relations on sets.

Definition 23. Let S be a set and E ⊆ S × S (E is a relation on S). Then E is said to be an
equivalence relation if and only if:
(1) E is reflexive: for all x ∈S, (x,x) ∈E;
(2) E is symetric: (x,y) ∈E ⇒(y,x) ∈E; and
(3) E is transitive: (x,y) ∈E and (y,z) ∈E ⇒ (x,z) ∈E.

An equivalence relation E is said to be right-invariant with respect to a binary operation
θ: S × S →S iff (x,y) ∈ E ⇒ ∀z ∈S, (xθz, yθz) ∈ E. Left-invariance can be defined in a
similar fashion. Finally, E is said to be a congruence relation with respect to θ if it is both left-
and right-invariant with respect to θ.

An equivalence relation E on S partitions S into equivalence classes. That is, S can be expressed
as the union of the equivalence classes with respect to E. An equivalence class is denoted
[x]E and = { y | (x,y) ∈ E }. Since E is symetric and transitive, [x]E = [y]E where x and y are any
two distinct members of the same class. Finally, if (x,y) ∉ E then [x]E ∩ [y]E = Φ.

Example 29. Modulo n is a congruence relation on the set of integers. That is (x,y) ∈ ≡n if and
only if there is an integer k such that x = y + k×n. The equivalence classes are [0], [1], … [n-1].
Observe that (0,3) ∈ ≡3 that is, 0 ≡3 3 because 3 = 0 + 1×3. The concept of right-invariance
with respect to multiplication implies that if (x,y) ∈ ≡3 and z is any integer, then (x ×z, y ×z) ∈
≡3. To illustrate let z = 7, then (0,3) ∈ ≡3 implies (0×7,3×7) ∈ ≡3 or (0,21) ∈ ≡3. Since 21 = 7×3,
it follows that 21 = 0 + 7×3 and thus (0,21) ∈ ≡3.

An equivalence relation is said to have finite index if the number of distinct classes is finite, else
the relation is of infinite index. Mod-n has finite index.

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 36

Lemma 5. Let L ⊆ Σ*, then the relation RL is a right invariant equivalence relation on Σ*,
where (x,y) ∈ RL if and only if ∀z∈Σ*[xz∈L ⇔ yz ∈L].

Proof.
 (a) RL is reflexive: this is a trivial consequence of the definition of RL - replacing "y" by "x"
produces a tautology.

(b) RL is symetric: that (x,y) ∈ RL and (y,x) ∈ RL should again be obvious since logical
equivalence (⇔) is symetric. Specifically, ∀z∈Σ*[xz∈L ⇔ yz ∈L] holds if and only if
∀z∈Σ*[yz∈L ⇔ xz ∈L]. But this implies (y,x) ∈ RL.

(c) RL is transitive: if (x,y) and (y,z) ∈ RL then for all w ∈Σ*, xw, yw, and zw are all in L or all
are not in L. In particular, it is true that xw and zw are both in L or are both not in L for all w.
Thus (x,z) ∈ RL.

(d) RL is right invariant with respect to string concatenation: to show right invariance we must
show that for any u ∈Σ*, (x,y) ∈ RL implies (xu, yu) ∈ RL; to this end let w ∈Σ* and consider
xuw and yuw. Since (x,y) ∈ RL if follows that for any z ∈Σ*, xz and yz are both in L or both
not in L. In particular this is true for all z of the form uw, where w ∈Σ* is arbitrary and u is
fixed. Thus, for all w ∈Σ*, xuw and yuw are both in L or both not in L and we have established
(xu,yu) ∈ RL.

Proof of Myhill-Nerode.

(a) ⇒(b)
If L is regular, then L = L(M) for some DFA M = (Q, Σ, δ, q0, A). Define the relation RM on Σ*
as follows, (x,y) ∈RM if and only if δ*

M(q0,x) = δ*
M(q0,y). That is, x and y are related by RM if

and only if both define computations of M that end in the same state. We now show that RM is a
right invariant equivalence relation with respect to string concatenation.
(1) RM is reflexive: δ*

M(q0,x) = δ*
M(q0,x). Follows from reflexive property of equality (=).

(2) RM is symetric: δ*
M(q0,x) = δ*

M(q0,y) iff δ*
M(q0,y) = δ*

M(q0,x) by symetry of “=.”
(3) RM is transitive: δ*

M(q0,x) = δ*
M(q0,y) and δ*

M(q0,y) = δ*
M(q0,z) imply δ*

M(q0,x) = δ*
M(q0,z)

by the transitivity of "=".
(4) RM is right invariant: for any z ∈ Σ*, δ*

M(q0,xz) = δ*
M(δ*

M(q0,x),z) = δ*
M(δ*

M(q0,y),z)
 = δ*

M(q0,yz), if δ*
M(q0,x) = δ*

M(q0,y). Thus (x,y) ∈RM implies (xz,yz) ∈RM , for all z ∈ Σ*.

To complete this part of the proof we note that RM is of finite index. Specifically, each state of
M defines an equivalence class, [y]q = { y | ΔM(q0,y) = q}. So, RM is of finite index and we
finally observe that L = .

 (b)⇒(c) We assume that L is the union of some of the equivalence classes of a right invariant
equivalence relation of finite index, say E. From Lemma 5 we have already established that RL
is a right invariant equivalence relation, so what remains is to show that that RL is of finite index.
We do this by showing that for all x ∈Σ*, [x]E ⊆ . If we can show this, then the index of

RL can be no larger than the index of E. This holds because each equivalence class, , of

[]y q
q A∈

[]x RL

[]x RL

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 37

RL contains one or more equivalence classes [x]E of E.

To the contrary suppose there is some [x]E such that [x]E ∩ ≠Φ and [x]E - ≠Φ.

Then let u ∈[x]E - and v ∈[x]E ∩ . Because u and v are not in the same
equivalence class under RL, it follows that there is a z ∈Σ* such that uz ∈L but vz ∉L. Now, by
assumption, L is the union of some equivalence classes under E. Thus uz and uv must belong to
different equivalence classes under E. But because E was assumed to be right invariant, and
because u,v ∈[x]E , it must be the case that uz and uv belong to the same equivalence class under
E. Thus we have a contradiction and it must follow that for every x, that [x]E ∩ = Φ or

[x]E - = Φ. This implies that E is a refinement of RL and must therefore have an index no
smaller than RL. Thus RL is of finite index.

(c) ⇒ (a) Now we assume that RL is of finite index. We define a DFA ML = (Q, Σ, δ, q0, A)
where Q = { | x ∈ Σ*} the set of equivalence classes under RL is a finite set,

 q0 = , the class containing the null string, A = { | ∩ L ≠ Φ},

δ(, a) = , for all ∈ Q and a ∈ Σ.

To show this definition is valid, we must show that L is the union of some of the equivalence
classes of RL and that δ is a function and not a multi-valued relation. To show that L is the union
of some of the equivalence classes, we observe that if u,v are any two distinct members of

, then uz and vz are both in L or both not in L for all z ∈Σ*. In particular then, this holds
for z = λ. Thus either u and v are both in L or both are not in L. Consequently,

 ⊆ L or ∩ L = Φ, for all ∈Q.

To show δ is a function, let u and v be any two distinct members of and let a ∈Σ. By the

right invariance of RL (Lemma 5) we have . Thus δ assigns only one state to a
given member of Q×Σ and is therefore a function.

To complete the proof we note that L(ML) = L. This follows from the fact that δ*(q0, x) =
δ*(, x) = ∈ A if and only if ⊆ L if and only if x ∈ L. This fact follows by
induction on |x| from the definition of δ.

Finally, we note that from the proof of (a) ⇒(b) that every DFA for L has no fewer states than
the number of states in ML. This follows from the fact that the number of states in ML is exactly
the index of RL together with the fact that the proof of (a) ⇒(b) implies that for any DFA M for
which L(M) = L, the index of RM = number of states of M ≥ index of RL. Thus ML is the
smallest DFA that accepts L!!!!!!!!!!!!!

[]x RL
[]x RL

[]x RL
[]x RL

[]x RL

[]x RL

[]x RL

[]λ RL
[]x RL

[]x RL

[]x RL
[]xa RL

[]x RL

[]x RL

[]x RL
[]x RL

[]x RL

[]x RL

[] []ua vaR RL L
=

[]λ RL
[]x RL

[]x RL

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 38

Constructing ML

To construct ML we observe that given any DFA, M, accepting L the equivalence relation RM is
a refinement or “approximation” to the equivalence relation RL. Thus we have to identify
equivalence classes under RM that are subsets of the same equivalence class under RL. The
diagram below illustrates graphically what this means. For example, states q1 and q2 in the
machine M define equivalence classes of RM that merged into one equivalence class of RL
represented by the single state q’ of the minimal machine ML.

Given that equivalence classes of these two relations really represent abstract states of their
corresponding DFAs, it follows that we want to determine when two (or more) states of M are
equivalent to the same state of ML. This suggests our next definition.

Definition 24. Let M = (Q, Σ, δ, q0, A) be a DFA, and let q1 , q2 ∈ Q. Then the relation ≡ is
defined on Q as follows: q1 ≡ q2 if and only if ∀z ∈Σ* [δ*

M(q1, z) ∈ A ⇔ δ*
M(q2, z) ∈A].

Notice the parallel with the definition of RL. That is, (x,y) ∈RL if and only if ∀z ∈Σ*, xz and yz
are both in L, or both are not in L. Here q1 = δ*

M(q0,x) and q2 = δ*
M(q0,y).

Corollary-24a. ≡ is an equivalence relation on Q. Furthermore, q1 ≡ q2 if and only if ∀x ∈Σ*,
δ*

M(q1, x) ≡ δ*
M(q2, x).

Proof. It is trivial to show that ≡ is an equivalence relation on Q. This we leave to the reader.
By Definition 24, q1 ≡ q2 if and only if ∀z ∈Σ* [δ*

M(q1,z) ∈A ⇔ δ*
M(q2,z) ∈A].

This holds if and only if ∀x,y ∈Σ*[δ*

M(q1,xy) ∈A ⇔ δ*
M(q2,xy) ∈A] if and only if ∀x ∈Σ*

[∀y ∈Σ*[δ*
M(δ*

M(q1,x),y) ∈A ⇔ δ*
M(δ*

M(q2,x),y) ∈A]] if and only if
∀x ∈Σ*[δ*

M(q1,x) ≡ δ*
M(q2,x)]. QED

RM RL

q1

q2

q’

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 39

Corollary-24b. If q1 ≡ q2 and x and y are any strings in Σ* for which δ*
M(q0,x) = q1 and

 δ*
M(q0,y) = q2, then (x, y) ∈ RL. The converse is also true.

Proof. Again by Definition 24, q1 ≡ q2 if and only if ∀z ∈Σ* [δ*

M(q1,z) ∈A ⇔ δ*
M(q2,z) ∈A].

By assumption δ*
M(q0,x) = q1 and δ*

M(q0,y) = q2, so we have q1 ≡ q2 if and only if ∀z ∈Σ*
[δ*

M(δ*
M(q0,x),z) ∈A ⇔ δ*

M(δ*
M(q0,y),z) ∈A]. But by properties of δ*

M , this holds if and only if
∀z ∈Σ* [δ*

M(q0,xz) ∈A ⇔ δ*
M(q0,yz) ∈A]. And this holds by definition of membership to L =

L(M) if and only if ∀z ∈Σ*[xz ∈ L ⇔ yz ∈ L]. But this last statement is just the definition of
(x, y) ∈ RL. QED

The next Theorem gives us an iterative algorithm for computing the relation ≡ on the state set of
a given DFA, M. It also establishes that the minimal state DFA accepting L(M) can be derived
from ≡ by treating equivalence classes [q]≡ as states of this machine.

Theorem 12. Let M = (Q, Σ, δ, q0, A) be a DFA and for all k ≥ 0 define the relation ≡k on Q as
follows: q1 ≡k q2 if and only if ∀z ∈Σ*k [δ*

M(q1,z) ∈A ⇔ δ*
M(q2,z) ∈A]. (We say that q1 and q2

are indistinguishable by strings of length k or less.) Then

(a) ≡0 = {Q-A, A} and for each k ≥ 0, q1 ≡k+1 q2 if and only q1 ≡k q2 and if for every
 a ∈Σ, δ(q1,a) ≡k δ(q2,a); and

(b) for some k ≤ n-2, where n is the number of states in M, ≡ = ≡k ; and finally,

(c) ML = (Q', Σ, δ', [q0]≡ , A') , where Q' = { [q]≡ | q ∈Q}, A' = { [q]≡ | q ∈A}, and
 for all a ∈ Σ, δ'([q]≡, a) = [δ(q,a)]≡.

Proof (a). Applying the definition for k = 0, we see that q1 ≡0 q2 if and only if [q1 = δ*

M(q1,λ)
∈A ⇔ q2 = δ*

M(q2,λ) ∈A]. Thus ≡0 = {Q-A, A}. Now consider q1 ≡k+1 q2. Clearly if ∀z
∈Σ*(k+1) [δ*

M(q1, z) ∈A ⇔ δ*
M(q2, z) ∈A], then ∀z ∈Σ*k [δ*

M(q1,z) ∈A ⇔ δ*
M(q2,z) ∈A]. Thus

q1 ≡k q2. But because Σ*(k+1) = ΣΣ*k, q1 ≡k+1 q2 holds if and only if ∀a ∈Σ [∀z ∈Σ*k [δ*
M(q1, az)

∈A ⇔ δ*
M(q2, az) ∈A]. And this holds if and only if ∀a ∈Σ [∀z ∈Σ*k [δ*

M(δ(q1,a),z) ∈A ⇔
δ*

M(δ(q2,a),z) ∈A]. And finally this holds if and only if ∀a ∈Σ [δ(q1,a) ≡k δ(q2,a)].

(b) We first show that if ≡k = ≡k+1, then ≡k = ≡. It should be clear that q1 ≡ q2 if and only if for
all k ≥ 0, q1 ≡k q2. What we will show is that if ≡k = ≡k+1, then ≡k = ≡k+n, for all n ≥ 1. This is
easily established by induction on n. The basis (n = 1) is given by assumption. Now suppose q1
≡k+n+1 q2. Then by part (a) applied to ≡k+n+1 we have, q1 ≡k+n+1 q2 if and only if q1 ≡k+n q2 and for
all a ∈Σ [δ(q1,a) ≡k+n δ(q2,a)]. But by our induction hypothesis, ≡k = ≡k+n, and we have q1 ≡k+n+1
q2 if and only if q1 ≡k q2 and for all a ∈Σ [δ(q1,a) ≡k δ(q2,a)]. But this is the same as saying
q1 ≡k+1 q2. And then, since ≡k = ≡k+1, it follows that q1 ≡k+n+1 q2 if and only if q1 ≡k q2.
Thus ≡k = ≡k+n+1 and the induction is complete.

To finish (b) suppose M has n states and assume both Q-A and A are non-empty. Then by part
(a), ≡0 = { Q-A, A}. Suppose that ≡0 ≠ ≡1, then ≡1 must have at least one more equivalence class
than ≡0 (at least 3). Furthermore, because q1 ≡k+1 q2 implies q1 ≡k q2, then at least one class of
≡1 was formed by splitting one of the classes of ≡0. Thus if we consider the progression of

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 40

equivalence relations, ≡0, ≡1, …, ≡k, where |≡0| = 2 and |≡j+1| ≥ |≡j|+1, then since the |≡k| cannot
exceed the number of states of M, it follows that k ≤ n-2 and ≡k = ≡k+1. Thus for any j > n-2, it
must follow that ≡j = ≡k = ≡.

STATE MINIMIZATION ALGORITHM
Let M = (Q, Σ, δ, q0, A) be a DFA. The minimal state DFA equivalent to M can be computed in
the following way.
Step 1: Eliminate the unreachable states of M to obtain M’ = (Q’, Σ, δ, q0, A’). The only
difference between M and M’ will be that Q’ ⊆ Q and A’ ⊆ A.

Step 2: If A’ = Φ, then L(M) = L(M’) = Φ, and both are equivalent to the 1-state DFA,
M’’ = ({q0}, Σ, δ’’, q0, Φ), where δ’’(q0,a) = q0, for all a ∈Σ. On the other hand, if A’ = Q’, then
L(M) = L(M’) = Σ*, and both are equivalent to M’’ = ({q0}, Σ, δ’’, q0, {q0}), where δ’’(q0,a) =
q0, for all a ∈Σ.

Step 3: If A’ ≠Φ and Q’-A’ ≠Φ, then do the following.
For k = 0, 1, … , compute ≡k until ≡k = ≡k+1. The minimal state DFA equivalent to M’ is the
machine, ML = (Q', Σ, δ', [q0]≡ , A') , where Q' = { [q]≡ | q ∈Q}, A' = { [q]≡ | q ∈A}, and for all a
∈ Σ, δ'([q]≡, a) = [δ(q,a)]≡. Use ≡k as ≡.

The above is essentially what we did earlier. We can also approach this from the concept of
finding incompatible states, a technique discussed earlier.

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 41

Chomsky’s Hierarchy

One of the fundamental questions computer scientists (language theorists) attempt to answer is:
“What general structural properties can be ascribed to computable languages accepted by
programs (algorithms) having given properties?” For example, can we write programs whose
input language is English (and whose output language is French?) In other words, are computers
capable of understanding and processing natural languages?

This last question, or something similar to it, motivated a natural linguist, Noam Chomsky, to
devise a formal mathematical system for describing (defining) English in the mid-50’s (in fact,
he may still be following this pursuit today.) Chomsky called his formal system a phrase
structure grammar and is defined formally in Definition 5.

DEFINITION 5. A general phrase structure grammar (psg) is a 4-tuple, G = (N, Σ, P, S), where
N is an alphabet of non-terminal symbols (also called syntax variables),
S ∈N is a unique non-terminal called the start symbol, and
Σ is an alphabet of terminal symbols (also called syntax constants). It is required that N ∩ Σ =
Φ.
VG = N ∪ Σ is called the vocabulary of G, and
P is a finite subset of (VG)*N(VG)* × (VG)* called the set of productions (also called re-writing
rules). A member (u,v) of P is denoted by u → v, where u is called the leftpart and v is called
the rightpart of the rule.

The term “re-writing rule” is intended to connote an operation, denoted ⇒G , defined on strings
of symbols over the vocabulary of G, called sentential forms, whereby a given sentential form, α,
can be rewritten to form another sentential β. This operation or relation is called the directly
produces (directly derives)(rewrites as) relation and is defined formally by:

For α, β∈ (VG)*: α ⇒G β if and only if α = α1uα2 and β = α1vα2 , where u → v ∈P.

We denote the transitive closure of ⇒G by (⇒G)+ and its reflexive-transitive closure by (⇒G)*
[α (⇒G)* β is read α “derives” (“produces”)(“generates”) β in G]. The relation α (⇒G)+ β tells
us that β can be derived from α by a sequence of one or more rewriting operations of G; α
(⇒G)* β implies that α = β or α (⇒G)+ β . Sometimes we write r⇒G to indicate that a particular
rule r: u → v ∈P was used in the re-writing operation. Finally, when α (⇒G)+ β and we are
interested in a specific sequence of rules (π) used in obtaining β from α , we write α π⇒G

 β .

DEFINITION 6. Let G = (N, Σ, P, S) be a phrase structure grammar. The language
generated(defined)(produced) by G is the set

L(G) = { x ∈ Σ* | S (⇒G)+ x }

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 42

Example 2. Consider G = (N, Σ, P, S) where N = {S, X}, Σ = {0, 1}, and
 P = { 1: S → 1S,
 2: S → λ, “λ” denotes the null string
 3: S → 0X,
 4: X → 1X,
 5: X → 0S }

 S 1⇒G 1S 1⇒G 11S 3⇒G 110X 4⇒G 1101X 5⇒G 11010S 2⇒G 11010 ∈ L(G).

Exercise: Prove that L(G) = { x ∈ Σ* | |x|0 is even }.

Example 3a. Consider G = (N, Σ, P, S) where N = {S}, Σ = {0, 1}, and
 P = { 1: S → 1S0,
 2: S → λ, “λ” denotes the null string
 }

 S 1⇒G 1S0 1⇒G 11S00 2⇒G 1100 ∈ L(G).

Exercise: Prove that L(G) = { 1n0n | n ≥ 0 }.

Example 3b. Consider G = (N, Σ, P, E) where N = {E, T, F, X}, Σ = {n,v, +, -, *, /, (,)} and

where
P = { 1: E → E + T,
 2: E → E − T,
 3: E → T,
 4: T → T∗ F,
 5: T → T/ F,
 6: T → F,
 7: F → +X
 8: F → −X
 9: F → X
 10: X → n,
 11: X → v,
 12: X → (E),
 }

G is an example of a Context-free grammar that is not a Linear CFG. It is also an
example of grammar for generating arithmetic expressions over binary operators
{+, -, , /} and operands {n , v} (“n” denotes a number, “v” denotes a variable.)

E 1⇒G E+T 3⇒G T+T 4⇒G T+T*F 66⇒G F+F*F (11)(11)(10)⇒G v+n*v ∈ L(G).

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 43

Exercise: Give a derivation for: v*(n+v/n)/n

Example 4. General psg. G = (N, Σ, P, S') where N = {S, S', X,Y,Z, Z'}, Σ = {a,b,c}, and

 P = { 1: S' → abc,
 2: S' → SXYZ',
 3: S → SXYZ,
 4: S → XYZ,
 5: YX → XY,
 6: ZX → XZ,
 7: ZY → YZ,
 8: Z' → c,
 9: Xa → aa,
 10: Xb → ab,
 11: Yb → bb,
 12: Yc → bc,
 13: Zc → cc }

S' 2⇒G SXYZ' 3⇒G SXYZ XYZ' 4⇒G XYZXYZ XYZ' 65⇒G XXYZYZXYZ'
6565⇒G
XXXYZYZYZ' 777⇒G XXXYYYZZZ' 8(13)(13)⇒G XXXYYYccc (12)(11)(11)⇒G
XXXbbbccc
(10)99⇒G aaabbbccc = a3b3c3 ∈ L(G).

Exercise 4. Prove that L(G) = { anbncn | n ≥ 1 }

Example 5. Consider G = (N, Σ, P, S) where N = {S, X,Y,Z}, Σ = {a,b,c}, and
 P = { 1: S → SXYZ,
 2: S → λ, “λ” denotes the null string
 3: YX → XY,
 4: ZX → XZ,
 5: ZY → YZ,
 6: X → a,
 7: aX → aa,
 8: aY → ab,
 9: bY → bb,
 10: bZ → bc,
 11: cZ → cc }

 S 1⇒G SXYZ 2⇒G XYZ 6⇒G aYZ 8⇒G abZ 10⇒G abc ∈ L(G).

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 44

Exercise 5. Give a characterization of L(G) in terms ordinary set notation. In other words,
describe mathematically the general form of strings in L(G). What form do members of
L(G) have? Hint: consider derivations (rule sequences) that begin with sequences in the
following set D = { 1k26k | k ≥ 2}. What can you say about the set of strings in L(G)
produced by derivations of this form?

In studying the properties of psgs, Chomsky imposed certain restrictions on the form rules could
take. Chomsky (and others) were able to show that these restrictions were very important
because they altered the family of languages that could be described by grammars conforming to
a given type of restriction.

Terminology. A family of languages is a set or collection of languages all
defined by the same formal system (e.g. Phrase Structure Grammar).

The restrictions defined by Chomsky and the family of languages they define are given in the
next definition.

DEFINITION 7. Let G = (N, Σ, P, S) be a general psg (PSG). Then define,

(a) A Type-0 grammar is a PSG with no restrictions;
(b) A Type-1 grammar (context-sensitive grammars)(CSG) is a PSG for which
 |u| ≤ |v| for all u → v ∈P (erasing rules are not allowed);
(c) AType-2 grammar (context-free grammar)(CFG) is a PSG for which
 P ⊆ N × VG

*; that is, u → v ∈P implies u must be a single non-terminal symbol, but the
 rightpart v can be any string, including λ.
(d) A Type-3 grammar (right-linear grammar)(RLG) is a PSG for which
 P ⊆ N × (Σ*)(N ∪ {λ}); that is, u → v ∈P implies u must be a single non-terminal
 symbol, and the rightpart v, if it has a non-terminal, it can only have one, and that
 non-terminal must be the rightmost symbol of v; otherwise, v can begin with zero or
more terminals.

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 45

Among the major results we shall establish this term are the following:

1. The family of languages defined by Type-3 grammars (Right-linear; see Example 2) (and
Left-linear Context-free grammars2) is precisely the family of Regular languages; and this
family is precisely the languages recognized by non-deterministic (and deterministic) finite
automata. FSA’s are algorithms that use a fixed and bounded amount of memory (the set of
states) independent of the length of the input. Because all computers are ultimately limited in
the amount of accessible memory space, one could argue that the input language of all
existing programs is, in a practical sense, a regular language!

2. The family of languages defined by Type-2 grammars(see Example 3), or the Context-free
languages, properly includes the Regular languages and can be recognized by non-
deterministic push-down automata (finite automata with a pushdown store or stack). The
Context-free family includes a subfamily called the Deterministic Context-free languages.
This family is particularly important because it is the family from which all programming
languages are defined. DCFLs can be accepted by deterministic pushdown automata and
defined by LR(k) grammars.

3. The family of languages defined by Type-1 grammars(see Example 4), or the Context-
sensitive languages, properly includes the Context-free languages and can be recognized by
Linear-bounded automata (Turing machines with memory space bounded by the length of
the input).

4. The family of languages defined by Type-0 grammars(see Example 5), or the Recursively
Enumerable languages, properly includes the Recursive languages, which properly includes
the Context-sensitive languages, and can be recognized by non-deterministic (and
deterministic) Turing machines.

Figure A-2 illustrates graphically the inclusion relationships among these language families. In
the remainder of this course, we will study the family of Regular languages in depth and
introduce the fundamental properties of the Context-free family. The sequel to this course, COT
5310, is a study of the remaining families of the Chomsky Hierarchy.

2 A left-linear grammar(LLG) is a PSG for which P ⊆ N × (N ∪ {λ})(Σ*). It will be shown later
that the LLGs and the RLGs define exactly the family of Regular Languages. For this reason,
the LLGs and RLGs are commonly (and collectively) called Regular grammars. LLGs and
RLGs are properly included in a larger subfamily of Type-2 grammars called the Linear Context-
free grammars (LCFG). A linear CFG (see Example 3) is one for which
P ⊆ N × (Σ*) (N ∪ {λ})(Σ*); that is u → v ∈P implies u is a single non-terminal and v can
have at most one non-terminal, but it can occur anywhere relative to the other terminals (if any).

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 46

Figure A-2. Chomsky Hierarchy

NOTE: Technically, Context-sensitive languages cannot contain the null string. So, it is
somewhat incorrect to depict the Context-free languages as being a proper subfamily of the
Context-sensitive family (Context-free languages may include λ). However, this relationship
holds for all Type-1 and Type-2 languages NOT containing λ, a "small" error, and so we
illustrate their relationship as shown in Figure A-2.

Type-0

Type-1

Type-2

Type-3

Recursively Enumerable
(NDTM)

Recursive Languages
(TMs that always halt)

Context-sensitive Languages
(LBAs)

Context-free Languages
(NPDAs)

Deterministic Context-free Languages
(DPDAs)(LR(1))

Regular Languages
(DFAs = NFAs)

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 47

Equivalence of NFAs to Right-linear Grammars

To establish the first equivalence suggested by the Chomsky Hierarchy, we now show that the
Regular languages (defined by DFAs and NFAs) is exactly the same family of languages that can
be defined by Type-3 or Right-linear grammars. This is the subject of our next theorem.

Theorem 3. Let M = (Q, Σ, δ,Q0, A) be an arbitrary NFA, then there is a Right-linear grammar
G = (N, Σ, P, S), such that L(G) = L(M). Conversely, if G is an arbitrary RLG, then one can
construct an NFA, M, for which L(M) = L(G).

Proof. Let M be given. We construct G from M essentially by (a) introducing a non-terminal
for each state of M, and (b) introducing one production for each transition of M. Formally, we
define N = Q ∪ {S}, where S denotes the start symbol of G and is distinct from all symbols
denoting states of M. P is then defined to be the union of three sets of rules denoted P[1] , P[2],
and P[3].

P[1] = { S → q | q ∈ Q0 },
P[2] = { q →σq’ | q’ ∈ δM(q, σ) for some σ∈ Σ ∪ {Λ} }, and
P[3] = { q → λ | q ∈ A }

To show that L(G) = L(M), we have to show that x ∈ L(G) if and only if x ∈ L(M). Suppose
that x ∈ L(M). Then there is some accepting computation of x, that is there is some sequence of
configurations: (q0, y0) M⇒ (q1, y1) M⇒ … M⇒ (qm, ym) = (qm, λ), where q0 ∈Q0, y0 = x, and
qm ∈ A. Then in G we have the following derivation: S G⇒ q0 G⇒π y0qm G⇒ y0 = x. The first
step of the derivation applies a rule in P[1] to rewrite S as the particular initial state (q0) of M that
determines an accepting computation. Each rule of π corresponds to a move of M in the
accepting computation – whatever input, σ, is consumed by M on any given move, σ will be
produced as output by the corresponding rule in P[2]; if σ = Λ, then no input is consumed by M
and nothing is written to the sentential form by G. Thus, if M consumes y0, G will generate y0
by mimicking the same transitions, but opposite in the IO sense. Finally, the last rule of the
derivation is a rule in P[3] – these rules permit the derivation in G to terminate if and only if M is
in an accept state.

Using a similar argument it is easily shown that any string x generated by G can also be accepted
by M. Thus M and G are equivalent specifications for the same language.

The converse result is established in a similar fashion, but there are some details that are
different. So, let us be given an arbitrary RLG, G = (N, Σ, P, S). To construct M we will
introduce a state for each non-terminal, analogous to our previous construction of G from M.
Consistent with the previous construction one might infer that we will also define a transition of
M for each rule of G. The problem with this idea is that a rule of G has one of the general forms:
X → wY, and X → w, where w ∈ Σ* and X,Y denote non-terminals. If |w| > 1, then M would
have to consume 2 or more symbols on a given transition, say from state X to state Y – this
violates what an NFA can do. To solve this problem, it is necessary to introduce some additional
intermediate states between X and Y, in fact we must introduce |w| -1 unique intermediate states
(states other than X or Y) when |w| > 1. If |w| ≤ 1, then a transition in M can be defined that

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 48

exactly mimics the given rule, X → wY. Furthermore, for terminating rules of G of the form,
X → w, what is the “next state”? To deal with these rules we introduce a unique accept state Ω.
Using this idea, we can think of terminating rules as being of the form, X → wΩ, and then
treating them exactly like rules of the form X → wY. Putting this all together formally, we have:

Q = N ∪ N’ ∪ {Ω}, where N’ is the set of intermediate states needed to support all the long rules
(rules with |w| > 1);

Q0 = {S}, the set consisting of the start symbol of G;
A = {Ω}, and δ, the transition relation of M is defined by,
[1] if X → wY ∈ P then
 case (w = λ) : define Y ∈ δ(X, Λ),
 case (w ∈ Σ) : define Y ∈ δ(X, w),
 case(w = a1a2…an ∈Σn, for some n > 1): let Z1, Z2, …Zn-1 be unique new states in N’
 and define Z1 ∈δ(X, a1), Y∈ δ(Zn-1, an), and for all 1 ≤ k < n define
 Zk+1 ∈ δ(Zk, ak+1).
[2] if X → w ∈ P then apply [1] to X → wΩ.

Note that there are no transitions defined for state Ω. The NFA M will halt precisely when the
derivation in G terminates with a rule of the form [2].

Like before, we must prove that L(M) is exactly the same language as L(G). However, since the
argument follows much the same line of thought as that given for the converse result, we will not
present it here. Nevertheless, there is one detail worth noting: M must complete exactly the
sequence of transitions defined through intermediate states (N’) to simulate the effect of a given
long rule of G. To guarantee this will happen, it is essential in [1] that the set of intermediate
states defined for long rules is unique to that rule – these states cannot be “reused” by different
long rules, for otherwise M might be able to make unintended transitions leading to accepting
strings that could not be generated by G.

We apply the construction techniques introduced by Theorem 3 in Examples 14 and 15 below.

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 49

Example 14. Converting an NFA to a Right-linear Grammar.

From the NFA, M, shown in the diagram above we note that there are two initial states, {3,5}and
three accept states {1, 4, 5}. Applying the construction of TTheoremT 3 we obtain the following
RLG, G = (N, Σ, P, S), where N = { S, A(=1), B(=2), C(=3), D(=4), X(=5), Y(=6), Z(=7) },
Σ = {a, b}, and P is given by:

P[1] = { 1: S → C, 2: S → X }
P[2] = { 3: C → bB, 4: C → aD, 5: A → bB, 6: A → C, 7: A → aX, 8: B → aA, 9: B → aZ,
 10: D → aC, 11: D → bB, 12: X → aA, 13: X → bB, 14: X → Z, 15: Y → aX,
 16: Y → aC, 17: Y → D, 18: Z → aD, 19: Z → bY }
P[3] = { 20: A → λ, 21: D → λ, 22: X → λ }

Example 15. Converting a Right-linear grammar to an NFA. Let G be given by:
N = {S, X, Y}, Σ = {0, 1}, and P = {1: S −> λ, 2: S −>01S, 3: S −> 110X, 4: X −>0Y,
5: Y −>11, 6: Y −> 0 }. The corresponding NFA is illustrated by the transition diagram below.
Pay particular attention to the new intermediate states, they are labeled Zij, where i denotes the
rule of G and j is a unique index.

2

3
6

1

7

b

a

a

a

b

a

a

a

5

4

b
a

a

b

b

a

Λ

Λ

start

start

NFA, M

Λ

0

0

0

1

λ

1

1

0

1

1

S Z21
Y

X

Z31

Ω

Z51

Z32

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 50

Closure Properties of Regular Languages

Definition 17. Let A, B be arbitrary languages over Σ, and let Δ be an arbitrary alphabet, then
we define:

(a) A - B (the Difference of A and B) = { x | x ∈ A and x ∉ B }
(b) ~A = Σ* - A (the Complement of A with respect to Σ)
(c) Arev (Reverse of A) = { rev(x) | x ∈A }, where
 rev(λ) = λ, and rev(ax) = rev(x)a, for x ∈Σ* and a ∈Σ.
(d) A homomorphism is a mapping, h :Σ* → Δ*, defined as follows:
 h(λ) = λ,
 h(a) ∈ Δ*, for all a ∈Σ, and
 for x = a1a2 … an ∈Σ+, n > 1, h(x) = h(a1)h(a2) … h(an).
 Finally, for A ⊆ Σ*, we define h(A) = { h(x) | x ∈ A }
(e) A substitution from Σ* to Δ* is a mapping, σ: Σ* → 2(

Δ
*), where

 σ(λ) = {λ}
 For each a ∈Σ, σ(a) = Ra ⊆ Δ* is a language over Δ, and
 for x ∈Σ*, and a ∈Σ, σ(ax) = σ(a)σ(x) and σ(xa) = σ(x)σ(a).

 Finally, for A ⊆ Σ*, we define σ(A) =
Ax

x
∈

)(σ .

 A substitution map is said to be a regular substitution from Σ* to Δ* if for every a ∈Σ,
 σ(a) = Ra is a regular language over Δ. Finally, if Δ = Σ, we say σ is a substitution on Σ*.

Theorem 4. RΣ is closed under finite application of the operations listed below. That is,
 if L ∈ RΣ and L’∈ RΣ , h is a homomorphism on Σ∗, and σ is a regular substitution on Σ∗, then
each of the following languages belongs to RΣ.

(a) ~L
(b) Lrev
(c) h(L)
(d) σ(L)
(e) L − L’
(f) L ∩ L’
(g) L ∪ L’
(h) L* (Kleene-*)
(h) LL’ (concatenation of L with L’)

Proof (sketch). For all parts we assume L = L(M1) and L’ = L(M2), where M1 = (Q1, Σ1, δ1,α1,
A1) and M2 = (Q2, Σ2, δ2, α2, A2) are DFAs. We further assume that their state sets are disjoint.
The objective in establishing each part is to define an NFA, M’ = (Q’, Σ’, δ’, , A’), such that
L(M’) is the desired target language and M’ is constructed from M1 and M2 in some fashion.
Alternatively, in light of Theorem 3, we can also assume L and L’ are defined by appropriate
RLGs, G1 and G2, respectively, and then attempt to construct an RLG, G’, such that L(G’) is the
desired language. Finally, each of the construction techniques will be illustrated by example.

Q0
'

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 51

 (a) L(M’) = ~L(M1): Given M1 = (Q1, Σ1, δ1, α1, A1), define M’ = (Q’, Σ’, δ’, , A’), where
Q’ = Q1, Σ’ = Σ1, δ’ = δ1, = { α1} and A’ = Q1 - A1. M’ is essentially M1 with a different set
of accepting states: an accepting state of M1 is non-accepting in M’ and vice versa. M’ is a DFA
and it is essential to this construction that L be defined by a DFA, and not an NFA. The reason
is that if the accepting states of an NFA are complemented, the resulting NFA may still be able
to accept strings it did before. The first example illustrates the correct construction. The second
example illustrates an incorrect construction using an NFA.

Example 16. (Complementing a DFA)

 M1 M'

Example 17. (Complementing an NFA – BAD!!!!)

 M1 M'

Observe that NFA M1 accepts λ and ba, as does M' = ~M1.

Q0
'

Q0
'

3

21

45

a

b
a

b

b

a,b

a,b

a

3

21

45

a

b a

b

b

a,b

a,b

a

2

4

5

a,b
a

λ

b1 3 31 a,b

a

λ

b

5

2

4

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 52

(b) L(M’) = Lrev = L(M1)rev.

To obtain M' from M1 we simply reverse the direction of transitions and interchange start states
with accepting states; that is, the start state of M1 becomes the only accept state of M' and each
accept state of M1 becomes a start state for M' Formally we have, M1 = (Q1, Σ1, δ1,α1, A1),
M’ = (Q’, Σ’, δ’, , A’), where Q’ = Q1, Σ’ = Σ1, = A1, A’ ={α1}, and for each q ∈Q' and
a ∈ Σ’, δ’(q, a) = {q' | δ1(q',a) = q}.

Example 18. M’ the reverse of M1.

 M1 M'

To prove that L(M’) = L(M1), we first observe that M’ has no spontaneous transitions.
Consequently, every move of M’ must consume one input symbol. Next we observe that if
x ∈L(M1), then there is some computation π, (α1, x) M1⇒π (q, λ), where q ∈ A1. Because δ’ = δ1

-

1, the computation π is reversible in M’. Specifically, (q, rev(x)) M’⇒
rev(

π
) (α1, λ). This can be

formally established by induction on |x| = |π|. It follows, then, that rev(x) ∈L(M’) and that
Lrev ⊆ L(M’). The reverse inclusion can be established by reversing this argument.

(c) L(M’) = h(L) = h(L(M1)).
(d) L(M’) = σ(L) = σ(L(M1)).

First we observe that every homomorphism on Σ* is a special type of regular substitution on Σ*.
Specifically, h(L) = σh(L), where σh(a) = {h(a)}, for each a ∈Σ. Since all finite languages over Σ
are Regular, σh is a regular substitution. Consequently, if we can demonstrate that RΣ is closed
under regular substitution, then it will follow as a corollary that RΣ is closed under
homomorphism.

To this end, for each a ∈Σ, let σ(a) = Ra ⊆ Σ* be regular. Let Ma = (Qa, Σ, δa, αa, Aa) be a DFA
that accepts Ra. We will assume that the state sets {Qa | a ∈Σ } are pair-wise disjoint. To
illustrate our method for constructing the NFA, M’, consider our objective: x = y1y2…yn is to be
accepted by M’, precisely when a1a2…an is accepted by M1, where yk ∈σ(ak) = Rak. We build M’
by rewiring the transitions of M1 in the following way. Let q = δ1(p, a). In M’, we will
introduce a Λ-transition from p to the start state of a copy of Ma, and then from each accept state
of Ma, we wire a Λ-transition back to q. The diagram below depicts this construction. M’, then,

Q0
' Q0

'

3

21

45

a

b
a

b

b

a,b

a,b

a

3

21

45

a

b a

b

b

a,b

a,b

astart

start

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 53

will only be able to reach state q from p by reading some string y ∈Σ* that would be accepted by
the copy of Ma. To implement this construction, we will need m copies of Ma, for each a ∈Σ,
where m is the number of states in M1. The size of Q’ will be ∑

Σ∈

+
a

aQmm || .

Formally then, M’ = (Q’, Σ, δ’, α’, A’) where
m

i a

i
aQQ

1
1Q'

= Σ∈

∪= , with m = |Q1| and the

superscript i designates the ith copy of Qa; α’ = α1 (start state of M’ is the start state of M1); A’ =
A1 (the accept states of M’ are the accept states of M1). To define δ’, let Q1 = {p1, p2, …, pm}.
Then for each transition, pj = δ1(pk, a) define δ’ by

.A q' allfor ,p),(q''

; b and Q q allfor),(),('

 ;),('

k
aj

k
a

k
a

∈=Λ

Σ∈∈=

=Λ

δ

δδ

αδ

bqbq

p k
ak

It may now be argued by induction on |x|, that if x = a1a2…an, n ≥1, is accepted by M1, then y is
accepted by M’, where y = y1y2…yn∈ σ(x) and each yk ∈σ(ak). The converse may be estab-
lished by decomposing an accepting computation of M’ for y into n segments beginning and
ending with states of Q1 (each such intermediate configuration must be reachable only by Λ-
transitions from accept states of some copy of Ma, for some a∈Σ.) An induction on the number
of such segments can then be used to establish there is a string x = a1a2…an, accepted by M1,
where y = y1y2…yn∈ σ(x) and each yk ∈σ(ak).

p q

a

start

Aa

Copy of Ma

Λ

Λ

y

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 54

Example 19. Building a substitution NFA from constituent DFAs. Shown below are DFAs M,
Ra, and Rb. L(M) = {ab}*, L(Ra) = {1}{0}* and L(Rb) = {1}*{0}{1}*. We want to construct an
NFA, M’, that accepts σ(L(M)), where σ:{a,b}* → {0,1}* is the regular substitution defined by:
σ(a) = L(Ra) and σ(b) = L(Rb).

Before constructing M’ we observe we can make some simplifications because M’ is, in general,
an NFA rather than a DFA. Specifically, we can eliminate transitions that cannot possibly lead
to acceptance. This yields a legal NFA, but would not be legal if we were building a DFA. In M
we can immediately remove state 3 and the transitions that lead to it. In like fashion, and for the
same reason, we can eliminate state 3’ in Ra and 3” in Rb. The resulting NFAs are reproduced
below.

Now to construct M’ we disconnect transitions in M and rewire them by spontaneously
transitions to the start states of a copy of the appropriate machine Ra or Rb. Since M only has
one transition for each symbol, we only need one copy of Ra and Rb. The resulting NFA is
shown below.

1 2

3

a
b

b a

a ,b

M

1” 2”

3”

1

0

0

0 ,1

R
b

1

1’ 2’

3’

0

1

0 1

0 ,1

Ra

1 2
a

b

M

1’ 2’

0

1

Ra

1” 2”

1

0

R
b

1

2 1 1’ 2’

0

1

1” 2”

1

0

1

M
’

Λ
Λ

Λ Λ

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 55

(e) L(M’) = L – L’
(f) L(M’) = L ∩ L’
(g) L(M’) = L ∪ L’

As with all previous cases, let M1 = (Q1, Σ1, δ1,α1, A1) and M2 = (Q2, Σ2, δ2, α2, A2). Without
any loss of generality we assume Σ = Σ1 = Σ2. To demonstrate each of these closure properties,
M' will be a cross-product machine. That is, M’ will be a DFA that simulates, in parallel, the
behavior of each component DFA, M1 and M2, on the next input. Specifically, define
M' = (Q1×Q2, Σ, δ', α1 × α2, A'), where δ' = δ1 × δ2 , that is, δ'((q1,q2), a) = (δ1(q1,a),δ2(q2,a)), for
all a ∈Σ.

(e) Now, to design M’ so that it will accept L – L’ = L(M1) – L(M2), we define
 A' = { (q1,q2) | q1 ∈A1 and q2 ∈ (Q2 - A2) } = A1 × (Q2 – A2).

(f) To design M’ to accept the intersection of these two languages, we define
 A’ = { (q1,q2) | q1 ∈A1 and q2 ∈ A2 } = A1 × A1.

(g) Finally, to design M’ to accept the union of these languages, define
 A' = { (q1,q2) | q1 ∈A1 or q2 ∈ A2 } = A1 × Q2 ∪ Q1× A2.

To prove L(M’) is the desired combination of L(M1) and L(M2), one first proves that for any
q ∈ Q1 and any p ∈ Q2 , δ*

M’((q, p), x) = (δ*
M1(q,x), δ*

M2(p,x)). This can be done easily by
induction on |x|. We leave this as an exercise.

To complete the proof for case (e) as an example, let x ∈ L(M’), then δ*

M’((α1, α2), x) ∈ A’, but
this holds if and only if δ*

M’((q, p), x) = (δ*
M1(α1,x), δ*

M2(α2,x)) ∈ A’. This holds if and only if
δ*

M1(α1,x) ∈ A1 and δ*
M2(α2,x) ∈ (Q2 - A2). But this is true if and only if x ∈L(M1) and

x ∉L(M2). The last conclusion depends on the fact that M2 is a DFA, as we illustrated in the
proof of complement (~) in part (a).

Example 20. (Cross Product Machine) Let M1 and M2 be the DFAs shown below.

 M1 M2

The transition tables below define M' for the difference and intersection, respectively, of L1 and
L2. Accepting states are marked with an “*”, and transitions in the table that enter an accepting

4

2

3a

b a

b

b1
a

start

a,b

12
b

b
astart

3 a

a,b

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 56

state are shaded.

δ ' a b δ ' a b
(1,1) (1,1) (2,2) (1,1) (1,1) (2,2)
(2,1) (3,1) (4,2) *(2,1) (3,1) (4,2)
(3,1) (4,1) (3,2) *(3,1) (4,1) (3,2)
(4,1) (4,1) (4,2) (4,1) (4,1) (4,2)
(1,2) (1,3) (2,1) (1,2) (1,3) (2,1)
*(2,2) (3,3) (4,1) (2,2) (3,3) (4,1)
*(3,2) (4,3) (3,1) (3,2) (4,3) (3,1)
(4,2) (4,3) (4,1) (4,2) (4,3) (4,1)
(1,3) (1,3) (2,3) (1,3) (1,3) (2,3)
*(2,3) (3,3) (4,3) (2,3) (3,3) (4,3)
*(3,3) (4,3) (3,3) (3,3) (4,3) (3,3)
(4,3) (4,3) (4,3) (4,3) (4,3) (4,3)

 L1 - L2 L1 ∩ L2

Exercise 10. Define the set of accept states for M’ that will accept each of the following
languages.

(a) L1 ∪ L2
(b) L2 – L1

(h) L* (Kleene-*)

To show closure under Kleene-* it is easier, perhaps, to use a grammar construction. So, if L is
Regular, then L = L(G), for some Right-linear grammar, G = (N, Σ, P, S). We wish to construct
an RLG, G’ = (N’, Σ, P’, S’), such that L(G’) = L*. If this can be done, then by TTheoremT 3,
L* must be Regular.

Define G as follows, N’ = {S’} ∪ N and P’ = { 1: S’ → S, 2: S’ → λ } ∪
{ X → wY | X,Y ∈ N and X → wY ∈P } ∪ { X → wS’ | X → w ∈ P, a terminating rule of P}.

Suppose x1, x2, … xn ∈ L, for any n ≥ 1. Then we must show that x1x2 … xn ∈ L(G’) and that
λ∈L(G’). This will established that L* ⊆ L(G’). Rule 2 of P’ ensures that λ∈L(G’). So,
suppose that π1, π2, ... , πn are derivations, respectively, of x1, x2, … xn ∈ L in G. Furthermore, let
µ1, µ2, ..., µn be corresponding derivations in G’ constructed from π1, π2, ... , πn, respectively, by
replacing the last rule of the form, X →w, by X →wS’. Then the following is a derivation in G’:
S’ 1⇒ S µ

1⇒ x1S’ µ
2⇒ x1x2S’ … µ

n⇒ x1x2 … xnS’ 2⇒ x1x2 … xn. Thus x1x2 … xn ∈ L(G’).
Showing that L(G’) ⊆ L* is straightforward and essentially involves reversing the argument we
just presented. The details are left to the interested reader.

Example 21. Closure under Kleene-*.

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 57

Let L = L(G), where G = (N, Σ, P, S) is given by, N = {S, X, Y }, Σ = {a, b}, and P =
{1: S → aX, 2: S → Y, 3: X → bbX, 4: X → λ , 5: Y → baS, 6: Y → b }. G’ is given by:
N’ = {S’, S, X, Y } and P’ = {1: S’ → λ, 2: S’ → S } ∪ {3: S → aX, 4: S → Y, 5: X → bbX,
7: Y → baS } ∪ { 6: X → S’ , 8: Y → bS’ }. Rules 1 & 2 are unique to P’. Rules 3 – 8 of P’ are
obtained directly from rules 1 – 6 of G, respectively. Rules 1,2,3,5 of G are copied exactly,
while rules 4 and 6 of G are modified by appending the start symbol S’ to the right end to obtain
rules 6 and 8 of G’, respectively.

Observe that 1334 and 25256 are derivations in G of “abbbb” and “babab”, respectively. Then
the corresponding derivation of “abbbbbabab” in G’ would be: 23556474781. Verify this for
you self.

(i) LL’ (Concatenation)

Concatenation follows a construction similar to that of Kleene-*. Let L = L(G1) and L’ = L(G2),
where G1 = (N1, Σ1, P1, S1) and G2 = (N2, Σ2, P2, S2) are Right-linear grammars. We also assume
that their non-terminal alphabets are disjoint – note, too, that they may have different terminal
alphabets. We wish to construct a Right-linear grammar, G’ = (N’, Σ’, P’, S’) such that L(G’) =
LL’. To this end define N’ = N1 ∪ N2, Σ’ = Σ1 ∪ Σ2, S’ = S1, and P’ = P2 ∪
{ X → wY | X,Y ∈ N1 and X → wY ∈P1 } ∪ { X → wS2 | X → w ∈ P1, a terminating rule of
P1 and S2 is the start symbol of G2}. A derivation in G’ must begin with the start symbol, S1 of
G1 and continue in P1 until a rule of the form r’: X → wS2 is used. This sequence of rules
duplicates a derivation of some string x ∈ L(G1) = L, because r’ is based on a rule r: X → w in
G1. Now the derivation in G’ must continue using only rules of P2. This sequence of rules must
also define a derivation of some string y in L(G2) = L’. The complete derivation in G’ then
results in a string xy ∈ LL’. Thus L(G’) ⊆ LL’. Showing the reverse inclusion is left as an
exercise for the interested reader.

Example 22. Closure under Concatenation.

Let L = {a}* and L’ = {b}*. G1 = ({S1}, {a}, {1: S1 → aS1, 2: S1 → λ }, S1) and
 G2 = ({S2}, {b}, {1’: S2 → bS2, 2’: S2 → λ }, S2) .
 Then G’ = ({S1, S2 }, {a,b}, {1: S1 → aS1, 2: S1 → S2 , 3: S2 → bS2, 4: S2 → λ }, S1).

Observe that 1112 is a derivation of “aaa” in G1 and 1’1’2’ is a derivation of “bb” in G2. In G’
the corresponding derivation is 1112334, and the resulting string is “aaabb”.

TTheoremT 5. Let h: Σ* → Δ* be a homomorphism. Then the inverse homomorphism defined
by h is a mapping, h-1: Δ* → Σ*, defined by: for all x ∈Δ*, h-1(x) = { y ∈ Σ* | h(y) = x }. h-1 is
extended to subsets of Δ* in the obvious way. Then, RΣ is closed under inverse homomorphism

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 58

on Σ.

Proof. A homomorphism h is said to be erasing if and only if h(a) = λ, for some a ∈ Σ.

To illustrate, let h: {a,b,c}* → {0,1}* be given by h(a) = λ, h(b) = 1010, h(c) = 10.
Then h-1(101010) = { ucvcwcx | u,v,w,x ∈{a}* } ∪ { ucvbx | u,v,x ∈{a}* } ∪
{ ubvcx | u,v,x ∈{a}* }. Thus, if h is an erasing homomorphism, h-1(x) can be an infinite set. In
fact, h-1(x) is infinite if and only if h is erasing. Also note that h−1(λ) = {λ} if and only if h is non-
erasing, that is, h(a) ≠λ, for all a ∈Σ.

To show that h-1(L) is regular if L is regular we assume that L = L(M), for some DFA,
M = (Q, Δ, δ, q0, A), and let h: Σ* → Δ* be a homomorphism. Define Σ0 = { a ∈Σ | h(a) = λ }
and Σ1 = Σ - Σ0. We want to define an DFA, M’ = (Q’, Σ1, δ’, q’0, A’), such that L(M’) = h

-1
(L) ∩ (Σ1)

+
. First we define, M1 = (Q ∪{α},

Σ1, δ1, A), where α is a new start state, α ∉A, and δ1(α,a) = δ(q0,a), for all a ∈Σ. It should be clear that L(M1) = L(M) - {λ}. Now we construct M’

from M1 as follows: Q’ = { q ∈Q1 | q is reachable from α }, A’ = Q’∩ A, q’0 = α, and

δ’: Q’ × Σ→ Q’ is defined by, δ’(q, a) = (q, h(a)), for all a ∈Σ1. Since the start state of Q’ is not an accepting state, it follows that L(M’) does

not contain λ. Furthermore, x = a1a2…an ∈ (Σ1)
+

, is accepted by M’ if and only if (α, h(a1)h(a2)…h(an)) ∈A if and only if h(x) ∈ L(M1) =

L(M) - {λ}. Thus L(M’) = h
-1

(L) ∩ (Σ1)
+

. The diagram below illustrates what has been established so far.

The strings in h-1(L) - L(M’) include h-1(λ) = (Σ0)*, if λ ∈ L, and all strings of the form
x0a1x1a2x2...anxn where xi ∈(Σ0)+ and a1a2...an ∈ L(M’). Thus

 [1] h-1(L) = σ(L(M’)) ∪ (Σ0)*, if λ ∈ L, or
 [2] h-1(L) = σ(L(M’)), if λ∉L,

where σ: (Σ1)→ Σ* is the substitution given by σ(a) = (Σ0)*{a}(Σ0)*, for all a ∈Σ1. Since the
regular languages are closed under union and substitution, it follows that h-1(L) is regular.
(NOTE: the representation for h-1(L) in terms of σ and Σ0 is valid even in the case Σ0 is empty.)

To complete the proof, we define DFA, M’’, such that L(M’’) = h-1(L). If [1] applies, then M’’
can be obtained from M’ by making two simple changes: (a) make α an accept state, and (b)
extend δ’ to Σ = Σ1 ∪ Σ0 by defining δ’(q,b) = q, for all q ∈Q’ and all b ∈Σ0. If [2] applies, then
we must ensure that (Σ0)* ⊄ L(M’’). To this end, apply the construction as in [1] but do not
make α an accept state; that is, do only part (b).

ΔM1

ΔM1

L

Δ∗

Σ∗

Σ1∗

h-1(L)

L(M’)

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 59

Example 23. (Inverse Homomorphism)
Let h: {a,b,c,d,e}* → {0,1}* be the homomorphism defined by: h(d) = h(e) = λ,
h(a) = 01, h(b) = 10, h(c) = 0. Let L = { x ∈{0,1}* | x = uvw and |v| = 2 ⇒
v ∈{01,10}}. Construct an NFA or DFA that accepts h-1(L). Νote: Σ0 = {d,e} and
Σ1 = {a,b,c}

Step 1: Construct a DFA, M, for L. Note: λ ∈L.

Step 2: Construct the DFA for M’. Note that state 3 of M1 becomes inaccessible in M’.

1

2 4

6
01 1

0

10

0

0

1

1

M

3 5

0,1 α

2 4

6
01 1

0

10

0

0

1

1

M1

3 5

0,1

α

2 4

6

M’

5

a,b,c
a

b

c a,c

b
c

a

b

a,c

b

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 60

Step 3: h-1(L) = σ(L(M’)) ∪ (Σ0)*, where σ(a) = (d+e)*a(d+e)*, σ(b) = (d+e)*b(d+e)*, and σ(c)
= (d+e)*c(d+e)*. Note: (Σ0)* = L[(d+e)*]. To obtain the DFA, M’’, simply make α an accept
state and for each symbol in Σ0 = {d,e} and each state add a transition that leaves M’’ in the
same state (a self-loop). This machine is shown below as M’’[1]. If λ ∉L, then we obtain the
machine illustrated in M’’[2].

The next definition introduces the notion of a finite state machine that produces output.
Sequential Transducers, as they are called, model a class of translators or encoding devices that
translate strings over some input alphabet into strings over some output alphabet. Sequential
Transducers (STs) are, in their most general form, non-deterministic finite state automata that
can output a string on each transition (spontaneous and reading). Deterministic versions, called
Mealy machines and Moore machines, can be defined by imposing restrictions on the ST model.
The reader will also note that substitutions and homomorphisms accomplish essentially the same
result, but, as we shall see, are really special instances of sequential transducer maps.

α

2 4

6

M’’[1]

5

a,b,c,
d,e

a
b

c a,c

b,d,e
c

a,d,eb

a,c

b,d,e

d,e

α

2 4

6

M’’[2]

5

a,b,c,
d,e

a
b

c a,c

b,d,e
c

b

a,c

b,d,e

d,e

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 61

Definition 19. A Sequential Transducer is a 6-tuple, S = (Q, Σ, Δ, δ, Q0, A), where
Q = finite, non-empty set of states; Σ = input alphabet; Δ = output alphabet; Q0 ⊆ Q, the set of
initial states; A ⊆ Q, the set of accepting states; and δ : Q × (Σ ∪{Λ}) → Q × Δ* is the transition
relation. Specifically, if S is in state q, then it can choose either to read a ∈Σ from its input tape,
or ignore its input (Λ), in making a transition to one of several possible next states. In addition,
the result of making either type of transition is to write some string y (possibly λ)to its output
tape. If S can enter an accepting state after having read all its input (just like an NFA), then the
contents of its output tape is a valid translation of that input. This is illustrated in the figure
below.

More formally, we define a configuration of S to be a 3-tuple, (q, x, y), where q denotes the
current state of S, x denotes the remaining input (left most symbol next to be read), and y the
current contents of its output tape (right end most recently written).

Similar to NFAs, we define the move relation (⇒S) on configurations of S as follows:
[1] (q, x, y) ⇒S (q’, x, yu) if and only if (q’, u) ∈ δ(q, Λ);
[2] for a ∈Σ, (q, ax, y) ⇒S (q’, x, yu) if and only if (q’,u) ∈ δ(q, a).
Finally, we define the language recognized by S to be

 L(S) = { x ∈Σ* | (p, x, λ) (⇒S)* (f, λ, y) for some p ∈Q0 and f ∈A }

For x ∈ L(S), we define the translation of x produced by S to be

 S(x) = { y ∈Δ* | (p, x, λ) (⇒s)* (f, λ, y) for some p ∈Q0 and f ∈A }

Finally, for some L ⊆ Σ* we define the translation of L to be

 S(L) =

a1 a2 a3 ai ai+1... ...
input tape

b1 b2 b3 bjbj+1... ...
output tape

q

S x
x L L S

()
()∈ ∩

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 62

Example 24. Consider the homomorphism h:{a,b}* → {0,1}* defined by h(a) = 110, h(b) =
010. Then the following sequential transducer realizes the same mapping as h.

S = ({q1},{a,b},{0,1}, δ, {q1}, {q1}), where δ is illustrated by the state transition diagram below.
Observe how transitions are represented in this diagram. Since S accepts all of {a,b}* it behaves
exactly like a homomorphism by writing h(a) to its output tape whenever a is read from its input
tape and writing h(b) whenever b is read from the input.

Example 25. Consider the regular substitution, σ: {a,b,c}* → {0,1}*, where σ(a) = {01}*,
σ(b) = {λ,1,01}, σ(c) = {λ}. Observe that the sequential transducer can produce an unbounded
sequence of output symbols for every input symbol by making any number of transitions that
ignore the input and write some string to its output tape. Thus sequential transducers can also
emulate regular substitutions.

1

a/110

b/010

1

2

a/λ

3
λ/0

λ/1
λ/λ

4

b/λ

λ/1
5

λ/0
λ/1

λ/λ

c/λ

COT 4210 Finite State Automata © D.A. Workman

9/18/12 Page 63

Theorem 6. RΣ is closed under sequential transducer maps. That is, if L is a regular subset of
Σ* and S: Σ* → Δ* is a sequential transducer map, then S(L) is regular.

Proof. Because a formal proof is somewhat involved, we only sketch the salient details. First
observe that we can describe a transition of S as a 4-tuple, t = (q1, σ, y, q2), where q1 denotes the
current state of S, σ ∈ Σ ∪{Λ} the input read (if any), y ∈Δ* the output written, and q2 the next
state. If we think of these "tuples" as symbols in a third alphabet, Ω, then we can see that a
string z ∈Ω* represents a valid sequence of transitions in S if and only if z = (q1, a1, y1, q2)
(q2, a2, y2, q3) … (qn, an, yn, qn+1). That is, for each tuple the current-state component must agree
with next-state of the preceding tuple, and the current-state component of the first tuple must be
one of the initial states of S. If z is to represent an accepting computation of S, then, of course,
the next-state component of the last tuple must be an accepting state of SF3F. It should therefore
not be difficult to see how to define a DFA, M = (Q', Ω, δ', q0, A'), that accepts only strings in
Ω* that represent accepting computations of S. Clearly, L(M) is regular.

Next we define a homomorphism, h: Ω* →Δ*, given by h(t) = y, where t = (q1, a, y, q2) ∈Ω. In
other words, h simply replaces t by its output-component, y. And, we define a homomorphism,
g: Ω* →Σ*, given by g(t) = a, where t = (q1, a, y, q2) ∈Ω.

Given some regular set L ⊆ Σ*, we now claim that S(L) = h(L(M) ∩ g-1(L ∩ L(S))). L ∩ L(S) is
the subset of L accepted by S and is a regular set because L was assumed to be regular and L(S),
the language accepted by S, is regular. Applying g-1 to this set gives all strings in Ω* that would
map to an input accepted by S. Intersecting this set with L(M) yields all the accepting
computations of S corresponding to some accepted input. Finally, applying the homomorphism
h to this set of computations yields the set of outputs produced by accepting computations of S
only for inputs from L ∩ L(S). To conclude that S(L) is regular requires closure of RΣ for
intersection, homomorphism, and inverse homomorphism.

Exercise 11. We have seen that sequential transducer maps can emulate homomorphism and
regular substitution. What other closure operations can sequential transducers emulate?

3 Actually, acceptance is a bit more complicated than this. We require that the next-state component be an accept
state of S sometime after the last read transition. A DFA can check this by remembering when an accept state has
been reached, and then whether any read transitions of S occur thereafter.

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 64

Context-free Grammars and Languages

Definition 25. A Context-free grammar (CFG) is a PSG, G = (N, Σ, P, S), where P ⊆ N × VG*.
A production r ∈ P is denoted r: X → w and means that an occurrence of X can be replaced by
w in any context in which X occurs - this is where the term "context free" originates - rewriting
X "free of any contextual constraints." NOTE: Context-free grammars were defined by
Chomsky to be Phrase Structure grammars with the Type-2 restriction. CFG and Type-2
grammars are synonymous terms.

The family of all languages defined by Context-free grammars is called the family of Context-free Languages
(CFLs).

Example 31. Ge = ({E, T, F, X}, {n,v, +, -, *, /, (,)}, P, E), where

E = { 1: E → E + T,
 2: E → E − T,
 3: E → T,
 4: T → T∗ F,
 5: T → T/ F,
 6: T → F,
 7: F → +X
 8: F → −X
 9: F → X
 10: X → n,
 11: X → v,
 12: X → (E),
 }

L(Ge) = { x ∈{n, v, +, -, *, /, (,)}* | x denotes a well-formed arithmetic expression over the operator symbols
{+, −, ∗, /} and operand symbols {v, n}allowing parenthesized sub-expressions nested arbitrarily deep.}

A derivation of x = (n+v)∗n ∈ L(Ge) is illustrated below. In general, x ∈ L(G) may have several
distinct derivations. Note: ⇒ refers to Ge

[1] E 3⇒ T 4⇒ T∗F 6⇒ F∗F 9⇒ X∗F 12⇒ (E)∗F 1⇒ (E+T)∗ F 3⇒ (T+T)∗F 6⇒ (F+T)∗F
 9⇒ (X+T)∗F

10⇒ (n+T)∗F 6⇒ (n+F)∗F 9⇒ (n+X)∗F 11⇒ (n+v)∗F 9⇒ (n+v)∗X
 10⇒ (n+v)∗n

Exercise 14: Show that 3469(10)9(12)169(11)369(10) is also a derivation for (n+v)∗n in Ge.
Can you construct yet another derivation for (n+v)∗n in Ge that is distinct from either of the ones
already identified?

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 65

Definition 26. Let G = (N,Σ,P,S) be a Context-free grammar. A derivation, π ∈ P* in G is said
to be leftmost (rightmost) if and only if every rule of π rewrites the leftmost (rightmost)
nonterminal occurring in the sentential form defined at each step.

Example 32. Verify that derivation [1] above is a leftmost derivation of (n+v)*n, and [2] is a
rightmost derivation of (n+v)∗n in Ge.

[2] E 3⇒ T 4⇒ T∗F 9⇒ T∗X 10⇒ T*n 6⇒ F*n 9⇒ X*n 12⇒ (E)∗n 1⇒ (E+T)∗n 6⇒

(E+F)∗n
9⇒ (E+X)∗n 11⇒ (E+v)∗n 3⇒ (T+v)∗n 6⇒ (F+v)∗n 9⇒ (X+v)∗n 10⇒ (n+v)∗n

π(rightmost) = 349(10)69(12)169(11)369(10)

Defintion 27. Let G = (N,Σ,P,S) be a Context-free grammar. Let x ∈ L(G). A syntax tree for x
is a two-dimensional representation of a derivation of x as illustrated in the diagram below. Each
rule in the derivation of x that is used to rewrite a non-terminal is expanded as a subtree rooted at
the nonterminal (in the figure, X is expanded by the rule: X → Y1Y2…Yn or X → λ).

The syntax tree is complete and valid if the root node is the start symbol of G and each
nonterminal in the tree is expanded by one of its rules in G. The frontier of a syntax tree is the
sequence of leaves (terminal symbols or λ) enumerated in a left-to-right order.

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 66

Example 33. A syntax tree for the expression: (n+v)∗n, as defined by the grammar, G, in Example 31, is
given below.

Observe that when given a syntax tree for an expression, it is very easy to generate a leftmost
and rightmost derivation of the expression. A leftmost derivation is generated by a pre-order
traversal of the tree, top-down, left-to-right, listing the rule used to expand each nonterminal on
the first visit to that node. A rightmost derivation is generated by a top-down, right-to-left post-
order traversal in the same fashion.

Syntax trees are important in compiling and translating programming languages. Compilers, for
example, typically construct an Operator tree from (or instead of) a syntax tree and use the
Operator tree for allocating hardware registers or temporary variables needed to evaluate the
associated expression. The shape and structure of the Operator tree also determines the order in
which operands and sub-expressions will be evaluated.

Definition 28. An Operator Grammar, is a CFG, G = (N, Σ,P,S), where Σ = Σopr ∪ Σopnd ∪
Σbrk. The terminals are respectively, the operators, the operands, and the brackets. Brackets are
matching pairs of one or more types of parentheses. Every rule has one of the following forms:
[1] X → Y θ Z, where θ∈ Σopr and Y, Z ∈ N (binary operators)
[2] X → Y θ , where θ∈ Σopr and Y∈ N (postfix unary operators)
[3] X → θ Y, where θ∈ Σopr and Y∈ N (prefix unary operators)
[4] X → Y, where Y∈ N
[5] X → a, where a ∈ Σopnd ,
[6] X → (Y), where (,) are matching pairs in Σbrk.

T

E 3

T F *

4

X

9

n

10 F

6

X

9

E (

12

)

E

E T +

1

T

3

F

6

X

9

v

11 F

6

X

9

n

10

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 67

If T is a syntax defined by an Operator Grammar, then it is frequently desirable to construct its
equivalent Operator Tree(OT). The Operator Tree constructed from the syntax tree shown in
Example 33 is illustrated below.

The shape of the operator tree determines the order in which operators are applied to their
operands. The rules for evaluating an operator tree top-down are the following.

Operator Tree Evaluation: Value(T)
Let T be an operator tree.
(1) If root(T) is an operand, then Value(T) = content(T).
(2) If root(T) is an operator, θ, then let SL and SR be the operator subtrees denoting, respectively,

the left operand expression and the right operand expression. Let x = Value(SL) and y =
Value(SR). Then Value(T) = θ(x,y). NOTE: if θ is a unary operator, only SL is defined and
evaluated.

The operator tree associated with a given expression defines its evaluation semantics. Since the
operator tree is extracted from the syntax tree, it is logical to conclude that the structure of the
grammar somehow encodes the evaluation semantics. Indeed this is the case. In fact, the
relative precedence of operators (sometimes called binding strength) and their associativity
properties are encoded in the order and form of rules used to introduce operators. Specifically,

X + Y * Z (+ has lower binding strength than *)(+ has lower precedence compared to *)
X + Y + Z (Left associativity defines relative binding strength for operators with the same
precedence)

Rule 1: All operators having the same binding strength (precedence) should be introduced by
the same nonterminal. Therefore, if the operator set is partitioned into k strength (precedence)
groups, then k distinct nonterminals should be defined, one to introduce each group of operators.
For example, the grammar Ge of Example 31 has 3 precedence groups binary{+, -}, binary{*,/}
and unary{+,-}. The nonterminal (and start symbol), E, introduces the first group, T introduces
the second group, and F introduces the third group.

Rule 2: The set rules introducing each precedence group should be linked by a single unit rule
(X → Y) and ordered so that the precedence group having the lowest binding strength is
introduced by the start symbol, and the precedence group having the highest binding strength is

*

+ n

n v

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 68

introduced by the last nonterminal. The unit rule, X → Y, suggests that the operator group
introduced by Y has precedence level one higher than the group introduced by X.

Rule 3: Within each precedence group, all operators should have the same associativity: Left,
Right, None. Left associativity is achieved by using left-recursive rules to introduce the
operators, while right-associativity is achieved using right-recursive rules. For example,
E → E + T, is a left recursive rule because the nonterminal in the leftpart is also the leftmost
symbol of the rightpart. Some operators are not associative, e.g., negation. Non-associative
operators should be introduced by non-recursive rules. Note: For unary operators, associativity
depends on whether they are prefix or posfix operators – associative prefix operators are always
right-associative, while associative postfix operators are left-associative.
 X ^ Y ^ Z = (X ^ Y)^Z = (XY)Z = XY*Z (X ^ (Y ^ Z)) =

ZYX
 Boolean-exp ? X1 : X2 B ? (B’ ? Y1 : Y2) : X1 : X2
 -X (do not want ------X)

Rule 4: Finally, a unique nonterminal should be defined to introduce all operand forms
including nested subexpressions. For example, in Ge, X is used to introduce operands n,v, and
subexpressions (E).

Example. 34. Consider designing an Operator Grammar that realizes the following operator
precedence and associativity properties (L, R, N).

Precedence (Low to High): BL{ &, | } < BN{ <, >, = } < UR{*, # } < UN{ $, @ }.
Operand symbols: a, b.
P = {
1: S → S & T //Binary Left Associative of lowest precedence
2: S → S | T
3: S → T
4: T → F < F //Binary Non-associative of next lowest precedence
5: T → F > F
6: T → F = F
7: T → F
8 : F → *F //Unary Associative (prefix) operators of next higher precedence
9 : F → #F
10 : F → X
11 : X → Y$ //Unary non-associative (postfix) operators of next higher precedence
12: X → Y@
13: X → Y
14 : Y → a //Operands
15: Y → b
16: Y → (S) //nested subexpressions
}

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 69

 Ambiguous vs. Unambiguous Grammars

Context-free languages and grammars have special significance to computer science because
they provide the basis for the specification of programming languages. All well-known
programming languages have a syntax defined by a member of the class of unambiguous
Context-free grammars. Unambiguous grammars are necessary for defining programming
languages for two primary reasons: (a) every string (program) in the language has exactly one
parse; (b) syntax analysis can be performed in linear time (time proportional to the length of the
source program.)

A parse is the inverse of a derivation. That is, parsing is the process a compiler uses to
reconstruct a derivation of the source program with respect to the rules of the underlying
Context-free grammar that defines the programming language in which the source program is
written. When a compiler reports a syntax error, then it has failed in this process. If the parsing
process succeeds, the compiler has implicitly reconstructed the derivation of the source program.

Parsing algorithms fall generally into two categories:
• Top-down alorithms are distinguished as algorithms that simulate a leftmost derivation in

some underlying CFG that defines the language. Examples of such algorithms are Recursive
Descent and LL(k). The former uses backtracking (trial and error); this applies to a large
family of grammars, but is very inefficient. LL(k) parsers are based on LL(k) grammars.
These parsers are very efficient, but apply to a very limited class of grammars. (NOTE:
LL(k) means Left-to-right scan of input producing a Leftmost derivation using k symbols
(tokens) of input lookahead.

• Bottom-up algorithms are distinguished as algorithms that simulate the reverse of a
rightmost derivation. Examples are the Weak-precedence algorithms and the LR(k)
algorithms, identified with grammar classes by the same name. WP algorithms are simple
and efficient, but apply to a small class of grammars relative to the LR(k). WP parser use
one (1) symbol of lookahead. LR(k) parsers use k symbols of lookahead, although all
practical implementations use k = 1. The well-known UNIX tool, YACC, is a parser
generator based for LR(1) grammars.

The semantics (meaning)(computational behavior) of a program is defined in terms of the rules
comprising its derivation. Thus, if there is more than one derivation of a program, there could
possibly be more than one meaning assigned to the program - and the meaning assigned by the
compiler may not be the meaning the programmer intended - it is also possible that two different
compilers might not assign the same meaning to the same program. Clearly, such “ambiguity” in
the behavior of computer programs is not desired - it is a kind of nondeterminism we cannot
tolerate. So, computer scientists have invested considerable research effort in identifying and
classifying unambiguous Context-free grammars. The next definition formally defines this
important class of grammars.

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 70

Definition 29. A Context-free grammar, G = (N,Σ,P,S), is said to be unambiguous if and only if
for every x ∈L(G), x has exactly one (leftmost derivation)(rightmost derivation)(syntax tree).

To illustrate the principle that syntactic ambiguity can lead to semantic ambiguity, consider the
following grammar.

Example 34. G' = (N, Σ, P', S), where P' =
 { 1: S → S + S,

 2: S → S - S,
 3: S → S * S,
 4: S → S / S,
 5: S → n,
 6: S → v
 7: S → (S) }

The expression, n+v*n, has two distinct leftmost derivations, π1 = 15365 and π2 = 31565. The
operator trees that correspond to these derivations are shown below. The evaluation semantics
is clearly different for the two trees.

Several important families of unambiguous grammars have been found, the Weak Precedence
grammars, the LR(k) grammars, and the LL(k) grammars. Grammars from these families are
almost always used as the basis for defining programming languages. However, there is some
bad news. Not all Context-free languages have an unambiguous grammar that defines them
(these are called inherently ambiguous languages) -clearly we do not want to uses these
languages as models of programming languages. Worse yet, there does not exist an algorithm
for detecting such languages. The good news is that the classes of unambiguous grammars
mentioned above are relatively easy to design and so these negative results do not have any
significant practical consequences.

Definition 30. A Context-free grammar, G = (N, Σ, P, S), is said to be linear if and only if
P ⊆ N × Σ*(N∪{λ}) Σ*. G is said to be right-linear if and only if P ⊆ N × Σ*(N∪{λ}), and
left-linear if and only if P ⊆ N × (N∪{λ}) Σ*.

+

*

n

n

v

*

+ n

n v

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 71

Example 35. Linear, right-linear, and left-linear grammars for the language, L = aa*#(ba)*.

G1 = (N1, {a,b,#}, P1, S) is a linear grammar for L. G2 = (N2, {a,b,#}, P2, S) is a right-linear
grammar for L.
G3 = (N3, {a,b,#}, P3, S) is a left-linear grammar for L.

P1 = { 1: S → aX, 2: X → aX, 3: X → Xba, 4: X → # }
P2 = { 1: S → aX, 2: X → aX, 3: X → #Y, 4: Y → baY, 5: Y → λ }
P3 = { 1: S → Y, 2: Y → Yba, 3: Y → X#, 4: X → Xa , 5: X → a }

Exercise 15: Prove that G1, G2, and G3 are unambiguous grammars!

Theorem 14. Every left-linear Context-free grammar is equivalent to some right-linear Context-free grammar and
conversely.

Proof. Let G = (N, Σ, P, S) be a right-linear CFG. We describe a construction that produces an equivalent left-
linear grammar. In doing so, we establish that any language defined by a right-linear grammar can also be defined
by a left-linear grammar. A similar and analogous construction can be used to reverse this argument. We leave the
converse construction and proof as an exercise for the reader.

Let n = |P| and define G’ = (N ∪ {S’}, Σ, P’, S’) from G, where |P’| = n+1, as follows.

P’ = {k:S’ → X w | k:X → w ∈P, where w ∈Σ* }[1]
 ∪ {k:Y → Xw | k:X → wY ∈P, where w ∈Σ*}[2]
 ∪ { n+1: S → λ }[3]

Claim: S π⇒ xY k⇒ xw, where xw ∈Σ*, if and only if S’ k⇒Yw

θ⇒ S xw [3]⇒ xw, in G’, where θ = πrev

Claim can be established by a straightforward induction on the |π| noting that the terminating production k in G
corresponds to a production k in set P’[1], and each G-production k appearing in π corresponds 1-1, but in the reverse
order, with a G’-production k in θ = πrev ∈ . The remaining details are left to the reader.

Exercise. Let G = (N, Σ, P, S) be a left linear grammar. Give a formal specification of the equivalent right linear
grammar as was done in the proof of Theorem 14 above.

Definition 31. A production, k: X → w, of a Context-free grammar, G, is said to be useless if and only if one of the
following is true about rule k:
(a) ∀π ∈ P*, S π⇒ α implies α ≠ uXv, for any u,v ∈VG* (X is unreachable)
(b) ∀π ∈ P*, w π⇒ β implies β∉Σ*. (w is non-terminating)

Our next theorem gives an algorithm for identifying and removing all useless productions from a
arbitrary Context-free grammar. The resulting grammar is said to be in reduced normal form.

Theorem 15. Let G = (N, Σ, P, S) be a Context-free grammar. Then G is equivalent to a
Context-free grammar, G’ = (N’, Σ, P’, S), where N’ ⊆ N and P’ ⊆ P. G’ is said to be the
reduced form of G. Also observe that if G is linear (right linear)(left linear), then G’ will be too.

Proof. Apply algorithm F-1a to G to obtain G1 = (N1, Σ, P1, S). Then either G1 is the desired grammar G’,
or algorithm F-1b must be applied to G1 to obtain G’.

(P[2]
')+

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 72

ALGORITHM F-1a: Eliminate non-terminating (non-generating) rules.
Step 1: Set Q0 = { X → w ∈P | w ∈Σ* }.
 Set Z0 = { X ∈N | X → w ∈ Q0}. Set k = 0.
Step 2: Set Qk+1 = Qk ∪ { X → w ∈P | w ∈(Σ ∪ Zk)* }.
 Set Zk+1 = Zk ∪ { X∈N | X → w ∈Qk+1 }.
Step 3: If (Qk+1 - Qk) ≠ Φ Then { k := k+1; goto Step 2;} // Have we converged?
Step 4: If S ∈ Zk Then {G’ = Algorithm 1b applied to: G1 = (Zk, Σ, Qk, S);}
 else {G’ = ({S}, Σ, Φ, {S});} // L(G) = L(G’) = Φ
Step 5: Halt!

ALGORITHM F-1b: Eliminate unreachable non-terminals.
Step 1: Set Z0 = {S}. Set Q0 = { S → w ∈ P1 }. Set k = 0.
Step 2: Set Zk+1 = Zk ∪ {X ∈N1 | Y → uXv ∈Qk, for some strings u and v}.
 Set Qk+1 = Qk ∪ { X → w ∈ P1 | X ∈ Zk+1}.
Step 3: If (Zk+1 - Zk) ≠ Φ Then { k := k+1; goto Step 2;} else { G’ = (Zk, Σ, Qk, S); Halt!}

Example 36. Consider the grammar G = (N, Σ, P, S), where N = {S, A, B, C, X, Y, Z},
Σ = {a, b}, and
P = { 1: S → aSX
 2: S → AB
 3: X → Y
 4: Y → bY
 5: Y → ZX
 6: Z → aa
 7: Z → λ
 8: A → Cb
 9: C →B
 10: B → BCa
 11: B → λ
 }

To construct the reduced form of G we first run Algorithm F-1a to identify and eliminate any
non-terminating rules.
Step 1a: Set Q0 = { X → w ∈P | w ∈Σ* } = {6, 7, 11}
 Set Z0 = { X ∈N | X → w ∈ Q0} = {Z, B}. Set k = 0.
Step 2a: Set Q1 = Q0 ∪ { X → w ∈P | w ∈(Σ ∪ Z0)* }= Q0 ∪ {9}.
 Set Z1 = Z0 ∪ { X∈N | X → w ∈Q1 }= Z0 ∪ {C}.

Set Q2 = Q1 ∪ { X → w ∈P | w ∈(Σ ∪ Z1)* }= Q1 ∪ {8,10}.
Set Z2 = Z1 ∪ { X∈N | X → w ∈Q2 }= Z1 ∪ {A}.
Set Q3 = Q2 ∪ { X → w ∈P | w ∈(Σ ∪ Z2)* }= Q2 ∪ {2}.
Set Z3 = Z2 ∪ { X∈N | X → w ∈Q3 }= Z2 ∪ {S}.

Step 3a: Q4 = Q3, so exit
Step 4a: G1 = (N1 = {S,A,B,C,Z}, {a,b}, P1 = {2,6,7,8,9,10,11}), since S ∈ N1 we must apply
Algorithm F-1b.

Step 1b: Set Z0 = {S}. Set Q0 = { S → w ∈ P1 } = {2}. Set k = 0.
Step 2b: Set Z1 = Z0 ∪ {X ∈N1 | Y → uXv ∈Q0, for some strings u and v} = Z0 ∪ {A, B}.
 Set Q1 = Q0 ∪ { X → w ∈ P1 | X ∈ Z1} = Q0 ∪ {8, 10, 11}.

 Set Z2 = Z1 ∪ {X ∈N1 | Y → uXv ∈Q1, for some strings u and v} = Z1 ∪ {C}.
 Set Q2 = Q1 ∪ { X → w ∈ P1 | X ∈ Z2} = Q1 ∪ {9}.

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 73

Step 3b: Z3 = Z2, so halt!
Step 4b: G' (reduced form of G) = (N'= {S,A,B,C}, {a,b}, P' = {2, 8, 9, 10, 11}).

Definition 32. Let G = (N,Σ, P, S) be a CFG. X ∈ N is said to be nullable if and only if
 X ⇒+ λ. Furthermore, Nullable(G) = { X ∈ N | X is a nullable }.

ALGORITHM F-2: Compute the Nullable(G), where G = (N,Σ, P, S) is a CFG.

Step 1: Define Z0 = { X ∈ N | X → λ ∈ P }. Set k = 0.
Step 2: Define Zk+1 = Zk ∪ { X ∈ N | X → α ∈ P, where α∈ (Zk)* }.
Step 3: If Zk+1 ≠ Zk then { k = k+1. goto step 2. }
Halt: Nullable(G) = Zk.

Example 37. Consider the reduced grammar G' obtained in Example 36. Compute Nullable(G').

G' = (N, Σ, P, S), where N = {S, A, B, C}, Σ = {a, b}, and
P = { 1: S → AB
 2: A → Cb
 3: C →B
 4: B → BCa
 5: B → λ
 }
Step 2.1: Define Z0 = { X ∈ N | X → λ ∈ P } = {B}. Set k = 0.
Step 2.2: Define Z1 = Z0 ∪ { X ∈ N | X → α ∈ P, where α∈ (Z0)* } = Z0 ∪ {C}.
Step 2.3: Z2 = Z1, so halt. Nullable(G') = {B, C}

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 74

ALGORITHM F-3: Removing the λ-rules (erasing rules) from G = (N,Σ, P, S), a CFG.

Step 1: Compute Nullable(G).
Step 2: Define G' = (N', ,Σ, P', S), where P' = { X → β | β ≠ λ and β ∈ σ(α) where X → α ∈ P
 and σ is the substitution defined by: σ(a) = {a} for each a ∈ Σ;
 σ(Y) = {Y} for each Y ∈ N - Nullable(G); σ(Y) = {Y,λ} for each Y ∈ Nullable(G) }

Rationale: To eliminate λ-rules, we must add new rules that compensate for the effect of X ⇒+
λ occurring in some derivation. For example, suppose S π⇒ αXβ r⇒ αxYzβ θ⇒ αxzβ, where r:
X → xYz ∈ P and Y θ⇒ λ. Then the effect of the subderivation, rθ, can be accomplished by the
single rule : X → xz. This is exactly what the substitution σ is doing - it is replacing nullable
nonterminals by λ in all combinations, if more than one appears in the same rightpart, to generate
a set of rules that simulate the effect of a given rule followed by a derivation that erases one or
more of the nullable nonterminals introduced by the given rule into a sentential form. The only
effect that cannot be duplicated by adding rules, is the derivation S θ⇒ λ. Thus, the new
grammar may not generate λ as a member of the language.

Step 3: Reduce G' to obtain the desired grammar.

NOTE: L(G') = L(G), if S ∉ Nullable(G). Otherwise, L(G') = L(G) - {λ }.

Example 38. Consider the reduced grammar G' obtained in Example 37. Eliminate rule 5 to
obtain a grammar without λ-rules equivalent to L(G') - {λ}.

G' = (N, Σ, P, S), where N = {S, A, B, C}, Σ = {a, b}, and
P = { 1: S → AB
 2: A → Cb
 3: C →B
 4: B → BCa
 5: B → λ
 }

Step 1: Compute Nullable(G'). This was done in Example 37. Nullable(G) = {B, C}.

Step 2: Construct P' = {

1: S → AB ⇒ S → AB, S → A (A is not nullable)
 2: A → Cb ⇒ A → Cb, A → b
 3: C →B ⇒ C →B (eliminating B would produce a new λ-rule)
 4: B → BCa ⇒ B → BCa, B → Ca, B → Ba, B → a
}

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 75

Step 3: Reduce P' to obtain G" = (N = {S, A, B, C}, {a,b}, P", S), where
P" = { 1: S → AB,

2: S → A,
3: A → Cb,
4: A → b,
5: C →B,
6: B → BCa,
7: B → Ca,
8: B → Ba,
9: B → a
} Observe that P" = P' (P' was already in reduced form)

NOTE: Since S was not nullable in G', then λ∉L(G'). Therefore L(G") = L(G').

ALGORITHM F-4: Removing the unit rules (X →Y) from G = (N,Σ, P, S), a reduced CFG
having no λ-rules.

Step 1: For each X ∈ N, compute Unit(X) = { Y ∈ N | X ⇒* Y in G }.
 NOTE: X ∈ Unit(X).
Step 2: Define P1 as follows.
 P1 = { X → β | β ∈ σ(α) where X → α ∈ P with α ∉ N, and σ is the substitution
 defined by: σ(a) = {a} for each a ∈ Σ; σ(Y) = U(Y) for each Y ∈ N }
 P1 contains no unit rules and includes one or more copies of the non-unit rules in G
 where occurrences of nonterminals in the rightpart are replaced by members of their
 Unit-set.

Rationale: An approach similar to that used in Algorithm 3 for eliminating λ-rules works well
for eliminating unit rules. Specifically, we are trying to simulate a derivation of the form, S π⇒
αXβ r⇒ αxYzβ θ⇒ αxZzβ, where r: X → xYz ∈ P and Y θ⇒ Z where θ consists only of the
application of unit rules. Clearly the single rule, r': X → xZz achieves the same effect as the
derivation rθ, where Z is any nonterminal in Unit(Y).

For example, if A → aXbY ∈ P and Unit(X) = {X, B} and Unit(Y) = {Y, C} then the
following productions would be added to P1: {A → aXbY, A → aBbY, A → aXbC, A → aBbC}

Step 3: Define G' = (N', Σ, P', S) to be the reduced form of G2 = (N, S, P2, S) where
 P2 = P1 ∪ { S → β | X → β ∈ P1 and X ∈ U(S) }.
 NOTE: L(G') = L(G) and G' has no unit rules.

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 76

Example 39. Eliminate the unit rules from G", the grammar produced in Example 38.
G" = (N = {S, A, B, C}, {a,b}, P", S), where

P" = { 1: S → AB,
2: S → A,
3: A → Cb,
4: A → b,
5: C →B,
6: B → BCa,
7: B → Ca,
8: B → Ba,
9: B → a}

Step 1: Compute Unit(X) for each nonterminal X.
 Unit(S) = {S, A}
 Unit(A) = {A}
 Unit(B) = {B}
 Unit(C) = {C, B}

Step 2: Compute P"1 = { rules obtained by substituting Unit(X) in the non-unit rules of P" }
= { S → AB ⇒ S → AB
 A → Cb ⇒ A → Cb, A → Bb
 A → b ⇒ A → b
 B → BCa ⇒ B → BCa, B → BBa
 B → Ca ⇒ B → Ca, B → Ba
 B → Ba ⇒ B → Ba (redundant)
 B → a ⇒ B → a }

Step 3: Construct P"2 = P"1 ∪ { S → β | X → β ∈ P"1 and X ∈ U(S) - {S} } =
 P"1 ∪ { { S → β | A → β ∈ P"1 } = P"1 ∪ { S → Cb, S → Bb, S → b }

Step 4: Reduce P"2 to obtain the final grammar. The reduced subset of P"2 is the following:
 { S → AB, S → Bb, S → b, A → Bb, A → b, B → BBa, B → Ba, B → a }

Definition 33. Let G = (N, Σ, P, S) be a CFG. G is said to be in Chomsky Normal Form (CNF)
if and only if X → α ∈ P implies α ∈ Σ ∪ NN.

Example 40. The following is a CNF grammar for L = { anbn | n ≥ 1 }. G = (N, Σ, P, S), where
 N = {S, X, A, B }, Σ = {a, b}, and P =
 { 1: S → XA
 2: X → BS
 3: S → AB
 4: A → a
 5: B → b
 }
Theorem 16. Every CFL without λ is defined by a reduced grammar in CNF.

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 77

Proof. Let L = L(G) ⊆ Σ* and assume that λ ∉L. Applying Algorithms F-3 (remove λ-rules),
F-4 (remove unit rules) and F-1 (reduce) to G we can obtain a reduced and equivalent grammar
G1 having no erasing or unit rules. G1 is equivalent to G because L(G) was assumed not to
contain λ. Consequently, G1 must contain only rules having one of the following forms:
[1] X → a, where a ∈ Σ, or
[2] X → Y1Y2…Yn, where n ≥ 2 and Yk ∈ VG1 .

Observe that rules of type [1] already satisfy CNF. It is rules of type [2] that we are concerned
with. The first equivalence preserving transformation is to replace each terminal Yk = a ∈ Σ by
a new nonterminal, Za in all rules of type [2]. Next we define a new set of rules
 PΣ = { Za → a | a ∈Σ } of type [1] that rewrite the new nonterminals.

Let G2 = (N2 , Σ, P2, S) be the grammar obtained as a result of this transformation; N2 = N1 ∪
{Za | a ∈ Σ } and P2 = P1 ∪ PΣ . Observe that rules in P2 are of type [1] or of type [3], where

[3] X → Y1Y2…Yn, where n ≥ 2 and Yk ∈ N2.

The only difference between the form of G2 and CNF is that rules of type [3] may have rightparts
longer than two! So, the final transformation is to replace each type [3] rule for which n ≥ 3 by
the following set of equivalent rules :

{ X → Y1A1,
A1 →Y2A2 ,
…
An-2 → Yn-1Yn }

As part of this transformation we introduce new nonterminals A1, A2, … An-2 unique to each
replaced rule. This is necessary to ensure that any derivation that applies, X → Y1A1, cannot
terminate until An-2 → Yn-1Yn has been applied. In short, the single rule X → Y1Y2…Yn in G2 is
simulated by the derivation X ⇒ Y1A1 ⇒ Y1Y2A2 ⇒ …⇒
Y1Y2…Yn-2An-2 ⇒ Y1Y2…Yn in the new grammar, call it G3.

It should be clear that G3 is in CNF and equivalent to G1. It should also be apparent that G3 will
be a reduced grammar.

The significance of Chomsky Normal Form is derived from the following theorem due to Coche,
Younger and Kasami.

Theorem 17. Let L ⊆ Σ* be any Context-free language not containing the null string, λ. Then
there exists an algorithm for answering the question, For any x ∈ Σ* [Is x ∈ L]?, in O(|x|3)
steps.

Proof. The algorithm depends on the fact that L = L(G) for some grammar G in Chomsky
Normal Form. The details are available upon request.

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 78

Pushdown Automata

We now answer the question: What kind of machine can accept Context-free languages? We show in this section
that if an NFA is augmented with additional memory in the form of a stack, then it can recognize any Context-free
language. We will also show that the converse of this statement is also true.

Definition 34. A Non-deterministic Pushdown Automaton (NPDA) is a 7-tuple,
M = (Q, Σ, Γ, δ, q0, Z0, A), where
Q = finite set of states,
Σ = input alphabet,
Γ = stack alphabet,
q0 ∈Q = the initial state
Z0 ∈Γ = bottom of stack marker (or initial stack symbol),
δ: Q × (Σ∪{λ}) × Γ → Q × Γ* = the transition relation. In any given state, M optionally reads the next input
symbol, pops and examines the top stack symbol, pushes a string γ (perhaps null) back on the stack, and non-
deterministically chooses its next state. The diagram below illustrates this behavior.

There are several sources of nondeterminism in this model. First, the NPDA can choose to ignore the input tape and
make a transition based only on information provided by the top stack symbol. Second, it can choose one of several
possible next states based on whatever information it has read (input and/or stack). And, third, it can push one of
several possible strings before entering the next state.

A PDA must halt if its stack ever becomes empty after a transition to a new state. It can accept its input only if it
has completely read the input (or it the input tape is initially λ), AND one of the following criteria is used.
(a) Its stack is empty, OR
(b) It has entered an accept state.

Thus there are two classes of NPDA depending on how acceptance is defined. One class accepts by empty stack,
the other accepts by final state. It should be understood that an NPDA cannot accept one string by empty stack and
another by final state. One criterion must be for all strings in Σ*. When acceptance by empty stack is intended, A is
chosen to be the empty set.

Like NFAs, computations of a PDA are defined in terms of configurations and the move relation ⇒M.
Configurations of a PDA, however, have a third component - the stack contents. Formally we define,

 For Z ∈Γ, (q, x, Zθ) ⇒M (q’, x, γθ) if and only if (q’,γ) ∈ δ(q, λ,Z)
 For a ∈Σ and Z ∈Γ, (q, ax, Zθ) ⇒M (q’, x, γθ) if and only if (q’,γ) ∈ δ(q,a,Z)

Now we can give formal definitions for the language accepted by empty stack and final state.

Definition 35. Let M = (Q, Σ, Γ, δ, q0, Z0, A) denote a PDA that accepts by final state. Then the language accepted
by M is

q

a1 a2 a3 … an ….

Zm Zm-1 … Z0

read only input

read/write stack

NPDA

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 79

 Lste(M) = {x ∈Σ* | (q0, x, Z0) (f, λ, θ), for some f ∈ A and θ ∈ Γ*}.

Let M’ = (Q, Σ, Γ, δ, q0, Z0, Φ) denote a PDA that accepts by empty stack. Then the language accepted by M’ is

 Lstk(M’) = {x ∈Σ* | (q0, x, Z0) (q’, λ, λ), for some q’∈ Q}.

It turns out that the family of languages a PDA can accept by empty stack is exactly the same family that can
accepted by final state. This result is straightforward to prove and will be presented after we have considered a few
examples.

A State Transition Diagram (STD) can be augmented to describe the behavior of a PDA as illustrated below. The
transition from q to q’ depicts a transition in which “a” is read from the input and “Z” is read from the stack, with
the string γ replacing Z in the process. The transition from q’ to q depicts a transition in which the input stream is
ignored and the top stack symbol Z is replaced by the null string - this is equivalent to simply popping Z from the
stack.

Example 41. Construct a PDA that accepts L = { wwrev | w ∈{0,1}*}by empty stack. M begins by making a
nondeterministic decision about whether the input is null or not. If it decides the input is λ, then it pops the stack
marker Z0 and accepts (the stack will be empty). If it decides the input is non-λ, then it reads the next symbol and
pushes it on the stack to replace Z0. If M guesses incorrectly that the input is null, then M halts not having read all
of the input - acceptance is inconclusive in this case. If M guesses incorrectly that the input is not null - that is, by
trying to read - then we must use the following analysis: if there is some other transition M could make (a Λ-move),
then choose one nondeterministically and continue, otherwise halt with a non-empty stack.

Once M reaches state 2, it continues to read and push the input symbol onto the stack. At a point halfway through
the input (M must “guess” when that occurs), M begins matching the input with the top symbol of the stack and then
popping the stack. In the fortuitous circumstance when the input belongs to L and M makes all guesses correctly,
the stack will be empty after having read the last symbol of the input - and M accepts. If the stack empties before all
input has been read, then acceptance is undefined, or inconclusive. If the input is exhausted before the stack
empties, then the input is not accepted. If a mismatch occurs in state 3, then M halts without an empty stack - and
acceptance is either undefined, or the input is rejected outright.

Observe how important non-determinism is to the behavior of this PDA. Like the NFA, the PDA can make “wrong”
guesses without penalty. An input string belongs to the language accepted by the PDA as long as there exists at
least one accepting computation (sequence of moves)! What we cannot permit is a computation that rejects an input,
when it belongs to L.

⇒M
*

⇒M
*

q q’start

(a,Z)/γ

(λ,Z)/λ

1 2

3

start
(0,Z0)/0

(λ,Z0)/λ

(1,Z0)/1
(0,Z)/0Ζ
(1,Z)/1Z

(1,1)/λ
(0,0)/λ

(1,1)/λ
(0,0)/λ

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 80

Example 42. To illustrate, informally, the construction used to establish that any PDA accepting by empty stack is
equivalent to one that accepts by final state, we redo the previous example by constructing a PDA M’ that accepts L
= { wwrev | w ∈{0,1}*}by final state. This is done by simulating M of the previous example as follows. M’ will use
a new bottom of stack marker, , that is different from that used by M, one M cannot recognize. M’ starts the
simulation by ignoring the input and pushing M’s stack marker (Z0) on the stack. It then gives control to M in its
initial state. If the simulation of M ever reaches a configuration where is the top stack symbol, then this must
mean M has emptied its own stack and M’ regains control by entering its one and only accepting state and halts. If
input remains, then M emptied its stack prematurely and M’ will neither accept nor reject - acceptance is
inconclusive. On the other hand, if the input is empty, then M would have accepted and so M’ will halt in an
accepting configuration as well. If M halts for any other reason, then M’ also halts (in a state of M - a non-accepting
configuration for M’).

PDA Accepting by Final State

Theorem 18. Let M = (Q, Σ, Γ, δ, q0, Z0, Φ) be a PDA that accepts by empty stack. Then there exists a PDA, M’ =
(Q’, Σ, Γ’, δ’, q’0, Z’0, A’) , such that Lste(M’) = Lstk(M). The converse is also true.

Proof. Define Q’ = Q ∪ {q’0, Ω }, Γ’ = Γ ∪ {Z’0}, A’ = {Ω}, and δ’ = δ ∪ T’, where T’ are the following
transitions: δ’(q’0,Λ,Z’0) = {(q0, Z0Z’0)}, and for all q ∈ Q, δ’(q, Λ,Z’0) = {(Ω, Z’0)}. As we outlined in Example
42, M’ simulates M until M empties its stack in some state, q. At this point Z’0 is on top of the stack and only the
new transition δ’(q, Λ,Z’0) = (Ω, Z’0) is defined. M’ thus enters its accept state, Ω. If the input is exhausted when M
emptied its stack, then M would have accepted. In this case M’ can also accept. If the input was not consumed
when M’ enters Ω, then neither M nor M’ will accept – acceptance is inconclusive for both PDAs. To state this
more formally, suppose x ∈ Lstk(M). Then (q0, x, Z0) M⇒* (q, λ, λ) for some state q∈Q. Now in M’ we have :
(q’0, x, Z’0) M’⇒ (q0, x, Z0Z’0) M’⇒

* (q, λ, Z’0) M’⇒(Ω, λ, Z’0). The first and last moves of M’ are transitions in T’.
Since δ’ = δ ∪ T’, the computation (q0, x, Z0) M⇒* (q, λ, λ) can be duplicated in M’ resulting in the configuration
(q, λ, Z’0) instead of
(q, λ, λ). Thus Lstk(M) ⊆ L ste(M’). Since the argument is reversible, the reverse inclusion holds establishing the
desired result.

To prove the converse, we adopt essentially the same approach. Let M = (Q, Σ, Γ, δ, q0, Z0, A) be a PDA that
accepts by final state (we may assume A ≠Φ). We want to construct M’ such that Lstk(M’) = Lste(M). Once again
let M’ = (Q’, Σ, Γ’, δ’, q’0, Z’0, Φ), where Q’ = Q ∪ {q’0, Ω}, Γ’ = Γ ∪ {Z’0}, and δ’ = δ ∪ T’. Note that Ω is not
an accept state. The additional transitions (T’) are designed to enable M’ to simulate M and empty its stack in any
configuration of M that reaches an accept state. We also need to prevent M’ from accepting accidentally during the
simulation of M, should M happen to empty its stack in a non-accept state after consuming its input. This situation
is prevented in our design by having M’ push a new initial stack symbol on the stack before starting the simulation
of M. Thus we have: δ’(q’0, Λ,Z’0) = {(q0, Z0Z’0)} as before, and for every f ∈ A, and Z’ ∈ Γ’ define δ’(f, Λ,Z’) =
{(Ω,λ)}, finally, δ’(Ω, Λ,Z’) = {(Ω,λ)} for every Z’ ∈ Γ’. Every computation of M’ begins by pushing Z0, the
initial stack symbol of M, onto the stack and entering the initial state of M to begin the simulation. Now, should M
empty its stack on some given input, then the simulation of M by M’ will result in Z’0 appearing on top of the stack
instead. If the final state of M is non-accepting in this case, then no transition to Ω will be defined in M’ and M’
will also halt, but with a non-empty stack. On the other hand, if M reaches an accept state when its stack becomes
empty, then M’ can make a transition to Ω emptying its stack. In this case both M and M’ will accept if and only if

Z0
'

Z0
'

1 2

3

start
(0,Z0)/0

(λ,Z0)/λ

(1,Z0)/1
(0,Z)/0Ζ
(1,Z)/1Z

(1,1)/λ
(0,0)/λ

(1,1)/λ
(0,0)/λ

1’
() /λ , Z Z0

'
0
'Z0

3’
() /λ , Z 0

'
0
'Z

() /λ , Z 0
'

0
'Z

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 81

the input has been consumed. If M consumes its input and ends in an accepting configuration with a non-empty
stack, then in the simulation of M, M’ can make a transition to Ω and empty its stack while ignoring the input.
Thus, M’ can accept whenever M can accept. If M’ prematurely empties its stack (when the input is not consumed),
then M could not have accepted either. It follows that both PDAs are able to accept exactly when the other would
accept. This concludes the proof.

Equivalence of PDAs to CFGs

We now address the question of equivalence between PDAs and CFGs.

The first key idea to understanding this equivalence is to view a PDA as a non-deterministic parser for a given
Context-free language. Recall that a bottom-up parser attempts to reverse a rightmost derivation in the defining
CFG when presented with some string over the terminal alphabet. On the other hand, a top-down parser attempts to
construct a leftmost derivation in the defining CFG when presented its input. As we shall see, a PDA that accepts
by empty stack provides the perfect model of a non-deterministic top-down parser for a given CFG. To understand
how a parsing PDA must work, we consider a leftmost derivation in the familiar expression grammar.

Example 43. Consider the grammar for arithmetic expressions we introduced earlier. It is reproduced below for
convenience. G = ({E, T, F}, {n,v, +, *, (,)}, P, E), where

E = { 1: E → E + T,
 2: E → T,
 3: T → T∗ F,
 4: T → F,
 5: F → n,
 6: F → v,
 7: F → (E),
 }

Suppose the input to our parser is the expression, n*(v+n*v). Since G is unambiguous this
expression has only one leftmost derivation, π = 2345712463456. We describe the behavior of
the PDA in general, and then step through its moves using this derivation to guide the
computation.

PDA Behavior.

Step 1: Initialize the stack with the start symbol (E in this case). The start symbol will serve as the bottom of stack
marker.

Step 2: Ignoring the input, check the top symbol of the stack.
Case (a) The top of stack is a nonterminal, “X”: non-deterministically decide which X-rule to use as the next step
of the derivation. After selecting a rule, replace X in the stack with the rightpart of that rule. If the stack is non-
empty, repeat step 2. Otherwise, halt (input may or may not be empty.)

Case(b) Top of stack is a terminal, “a”: read the next input. If the input matches “a”, then pop the stack and repeat
step 2. Otherwise, halt (without popping “a” from the stack.)

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 82

We illustrate this parsing algorithm by showing the sequence of configurations the parser would assume in an
accepting computation for the input, n*(v+n*v). Assume “q0” is the one and only state of this PDA. π
= 2345712463456.

(q0, n*(v+n*v), E)
2⇒M (q0, n*(v+n*v), T)
3⇒M (q0, n*(v+n*v), T*F)
4⇒M (q0, n*(v+n*v), F*F)
5⇒M (q0, n*(v+n*v), n*F) read⇒M (q0, *(v+n*v), *F) read⇒M (q0, (v+n*v), F)
7⇒M (q0, (v+n*v), (E)) read⇒M (q0, v+n*v), E))
1⇒M (q0, v+n*v),E+T))
2⇒M (q0, v+n*v), T+T))
4⇒M (q0, v+n*v), F+T))
6⇒M (q0, v+n*v), v+T)) read⇒M (q0, +n*v), +T)) read⇒M (q0, n*v), T))
3⇒M (q0, n*v), T*F))
4⇒M (q0, n*v), F*F))
5⇒M (q0, n*v), n*F)) read⇒M (q0, *v), *F)) read⇒M (q0, v), F))
6⇒M (q0, v), v)) read⇒M (q0,),)) read⇒M (q0, λ, λ) accept!

The above example can be generalized for any Context-free grammar and so we state the following,

Theorem 19. Let G = (N, Σ, P, S) denote any reduced Context-free grammar. Then there is a PDA, M = ({q0}, Σ,
VG, δ, q0, Φ), such that Lstk(M) = L(G). The converse is also true. If M is any PDA accepting by empty stack, then
there is a Context-free grammar, G, such that
L(G) = Lstk(M).

Proof. We have only to define the transition relation d in terms of the productions of G. For every a ∈Σ, define
δ(q0, a, a) = { (q0, λ) }; if a terminal in on top of the stack that matches the next input, the stack is popped. For
every X ∈ N, and X → β ∈ P, add (q0, β) to δ(q0,Λ, X). What we wish to show is that (q0, x, S) M⇒+ (q0, λ, λ) if
and only if S G⇒π x , where π is a leftmost derivation in G. To this end we prove a slightly stronger statement:

IH(n): For any Z ∈ N, and x,y ∈ Σ*, (q0, xy , Z) M⇒µ (q0, y, θ) if and only if Z G⇒π xθ, where µ is a sequence of
moves of M and π is a leftmost derivation in G related in the following fashion.
(a) π∈P+ and |π| = n > 0.
(b) µ ∈ (Σ ∪ P)+ and |µ| = n + |x|; µ should be interpreted in the following way.
If (q0, az, aγ) M⇒ (q0, z, γ), then we identify this as an “a-move”.
If (q0, z, Xγ) M⇒ (q0, z, βγ), where r = X→β, then this is identified as an “r-move”.
(c) h(µ) = π, where h is the homomorphism h(a) = λ, for each a ∈Σ, and h(r) = r, for each r ∈P.
(d) h’(µ) = x, where h’ is the homomorphism h’(r) = λ, for all r ∈P, and h’(a) = a, for all a ∈Σ.

This can be established by induction on n in a straightforward manner by applying the definition of M and leftmost
derivations in G. Details are left to the interested reader.
From IH it then follows that (q0, x, S) M⇒µ (q0, λ, λ) if and only if S G⇒π x. This establishes that L(G) = Lstk(M).

We now consider the converse. Let M be PDA that accepts by empty stack. To construct a grammar from M it is
necessary to define nonterminals to be triples of the form [qZq’], where q and q’ denote states of M and Z denotes a
possible stack symbol. The grammar rules are defined as follows:

(a) Let S be the start symbol of G, where S is distinct from any symbol in Γ (we assume Σ ⊆ Γ). Then define the

following productions for S, { S → [q0Z0q’] | q0 is the initial state of M, Z0 is the initial stack symbol of M, and
q’ ∈ QM is arbitrary}.

(b) For (q’, λ) ∈ δ(q, σ ,Z), where σ ∈ (Σ ∪{Λ}), add the production, [qZq’] → σ, to G.

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 83

(c) For (q’,Y1Y2…Yn) ∈ δ(q, σ, Z), where n ≥1 and σ ∈ (Σ∪{Λ}), add the set
{ [qZpn] → σ [q’Y1p1][p1Y2p2] … [pn-1Ynpn] | p1,p2, …,pn ∈Q } to G.

It can be shown that [qZq’] G⇒π x ∈ Σ*, where π is a leftmost derivation, if and only if
(q, x, Z) M⇒µ (q’, λ, λ). A formal proof of this fact would proceed by induction on the length of |π| = |µ|. From this
it straightforward to argue that L(G) = Lstk(M).

Example 44. We illustrate the construction of a CFG from a PDA with a PDA, M, for which Lstk(M) = {0n1n | n ≥
0}.

The rules of G produced for this PDA are:
(a) { S → [1Z01], S → [1Z02], S → [1Z03] } ∪
(b) { [1 Z01] → λ, [203] → 1, [303] → 1} ∪
(c) { [1Z01] → 0[201], [1Z02] → 0[202], [1Z03] → 0[203] } ∪

{ [201] → 0[201][101], [201] → 0[202][201], [201] → 0[203][301] } ∪
{ [202] → 0[201][102], [202] → 0[202][202], [202] → 0[203][302] } ∪
{ [203] → 0[201][103], [203] → 0[202][203], [203] → 0[203][303] }

This construction always creates useless productions. So, as a good exercise of your understanding of the reduction
algorithm for CFGs, apply it to G to obtained its reduced form.
Compare your result to the one given below. Then test this grammar to convince yourself that it does indeed
generate the language Lstk(M) = {0n1n | n ≥ 0}.

Reduced form of G:
{ 1: S → [1Z01], 2: S → [1Z03] } ∪ { 3: [1 Z01] → λ, 4: [203] → 1, 5: [303] → 1} ∪
{ 6: [1Z03] → 0[203], 7: [203] → 0[203][303] }

Observe that S 13⇒ λ, and S 2677455⇒ 000111. You can generalize from these examples.
Deterministic PDAs

Now that we have characterized the family of Context-free languages in terms of nondeterministic PDAs, we
consider the power of deterministic PDAs. After all, in any practical application, such as designing a compiler, we
intend to use only deterministic algorithms. Since a nondeterministic parser will not do, we are natually led to
wonder what family of languages can be recognized by DPDAs (Deterministic PDA), and equally important, what
class of Context-free grammars corresponds to this new family.

Definition 36. A Deterministic Pushdown Automaton (DPDA) is a 7-tuple,
M = (Q, Σ, Γ, δ, q0, Z0, A), where Q = finite set of states, Σ = input alphabet, Γ = stack alphabet,
q0 ∈Q = the initial state, Z0 ∈Γ = bottom of stack marker (or initial stack symbol), and
δ: Q × (Σ ∪{Λ}) × Γ → Q × Γ* = the transition function (not necessarily total). Specifically,
if δ(q, a, Z) is defined for some a ∈Σ and Z ∈Γ, then δ(q, Λ, Z) = Φ and ⏐δ(q, a, Z)⏐= 1. Conversely, if δ(q, Λ, Z) ≠
Φ, for some Z, then δ(q, a, Z) = Φ, for all a ∈Σ, and ⏐δ(q, Λ, Z)⏐= 1.

What this means is that for a given pair in Q × Γ, M may either read from its input and change the stack, or ignore
the input and change the stack - it can do one or the other, perhaps neither, but it cannot do both. In either case,
whatever action is taken, the outcome is unique - that is, the next state and string pushed on the stack to replace Z
will always be unique whenever δ is defined. We illustrate the power of a DPDA with some examples.

1 2start (0,Z0)/0

(λ,Z0)/λ

(0,0)/00

(1,0)/λ
3 (1,0)/λ

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 84

Example 45. Lstk(M) = {w#wrev | w ∈{0,1}* } The # is needed to so that the DPDA can detect the middle of the
input, that is, the point at which it can begin comparing its stack contents symbol-by-symbol with the remaining
input.

Compare this with the PDA, M’, below which accepts: Lstk(M’) = {wwrev | w ∈{0,1}* }. Note that in state 1, when
Z0 is the stack top, M’ can make a transition that reads from the input and can make a transition that ignores the
input. Also, in state 2, when a 0 (or 1) is the stack top, M’ has two possible transitions - both of which read from
the input - M’ can push the symbol read, or if it matches the stack symbol, can pop the stack. Both of these
behaviors are prohibited for a DPDA. As it turns out, one can prove that L = {wwrev | w ∈{0,1}* } cannot be
recognized by any DPDA !

Non-deterministic PDA for L = {wwrev | w ∈{0,1}* }

Corollary 36-1. The family of DCFLs (Deterministic Context-free Languages) is properly included in the CFLs.
In particular, L = {wwrev | w ∈{0,1}* } cannot be recognized by any DPDA !

Corollary 36-2. L = {anbn | n > 0 } = Lstk(M), for some DPDA, M, but L’ = {(ab)n | n > 0 } ≠ Lstk(M), for any
DPDA, M. On the other hand, there is a DPDA, M’, such that L’ = Lste(M’).

Proof. The DPDA M shown below accepts L by empty stack.

In general, if L is a language that is not prefix-free, then L cannot be accepted by a DPDA by empty stack. L is
prefix-free if for every pair of distinct strings x, y ∈ L neither is a prefix of the other. (Note: if λ ∈ L and L is
prefix-free, then L = {λ}!)

The reason why this is true is simple. Suppose DPDA M accepts L by empty stack, and suppose L is not prefix-free.
Then for some x and y in L, y = xu, where u ≠λ. Consider the behavior of M on input y. After reading x the stack

1 2

3

start
(0,Z0)/0
(1,Z0)/1

(0,Z)/0Ζ
(1,Z)/1Z

(#,1)/1
(#,0)/0

(1,1)/λ
(0,0)/λ

(#,Z0)/λ

1 2

3

start
(0,Z0)/0

(λ,Z0)/λ

(1,Z0)/1
(0,Z)/0Ζ
(1,Z)/1Z

(1,1)/λ
(0,0)/λ

(1,1)/λ
(0,0)/λ

1 2start (a,Z0)/a
(a,a)/aa

(b,a)/λ
3 (b,a)/λ

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 85

will be empty (x ∈L) and the DPDA cannot continue. Since M is deterministic, no other behavior is possible. Thus
u can never be read and y can never be accepted.

Since λ is a proper prefix of any non-null string, it follows that any language that contains both λ and some non-null
string cannot be prefix-free and therefore cannot be accepted by a DPDA by empty stack.

Now consider L’. Clearly ab and abab both belong to L’. Thus L’ is not prefix-free and cannot be accepted by any
DPDA that accepts by empty stack.

To complete our proof we offer a DPDA, M’, for which Lste(M’) = L’ = {(ab)n | n > 0 }. First observe that L’ is
actually Regular. Thus L’ can be accepted by a DPDA that does not use its stack at all!

The DPDA, M’

Corollary 36-3. DCFLstk ⊂ DCFLste ⊂ CFL. Furthermore, if R denotes the Regular languages, then R - DCFLstk ≠
Φ and DCFLstk - R ≠ Φ, but R ⊂ DCFLste.

1 2start (a,Z0)/Z0

(b,Z0)/Ζ0

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 86

Added material from C. E. Hughes

Cocke-Kasami-Younger (CKY) Context Free Language Recognizer

This O(n3) parsing algorithm was originally designed to work for just Chomsky Normal Form
(CNF). Fortunately, the conversion of an arbitrary CFG, G = (N, Σ, S, P), to an equivalent CNF
increases the size of the grammar to at most a square of its original size so, while this will add to
the constants associated with our n3.

The key concept behind CKY is that any derivation of a string w = a1 a2 a3 … an, where k >1,
from a CNF grammar must start with S ⇒ A B where A,B ∈ N and, for some j, 1 < j ≤ n,
A ⇒* a1 … aj-1
B ⇒* aj … an

While CKY uses this concept, it uses it in a bottom up manner. Here we compute, for each i, the
set of non-terminals that derive ai directly. In effect, we start by determining the set of non-
terminals that derive the substring of w starting at ai and extending for a total length of just 1
character. We then compute, for each i, 1 ≤ i < n, the set of non-terminals that derive the
substring of w starting at ai and extending for a total length of 2 characters. This can be
computed by looking at set of all pairs, (A,B), such that A ⇒ ai and B ⇒ ai+1. We then add any C
such that C → A B is one of the productions in G. This continues with substrings of length 3 and
so on until we end with the only substring of length n, w.

We implement this process by drawing the upper triangle of an n×n matrix, where |w| = n. We
then label the columns

a1 a2 a3 … an
We label the rows 1 .. n. We refer to the cells as P[i,j], where i is the row and j is the column

We can quickly fill in the first row by defining P[1,j] to be the set of all A in N, such that A → ai.

We then fill in successive rows using the following rule

Add C to P[i,j], i > 1, j ≤ n-i+1, whenever there is a 1 ≤ k < i, such that A ∈ P[k,j], B ∈ P[i-k,j+k]
and C → A B.

Note: A ∈ P[k,j] means that A ⇒* aj … aj+k-1; B ∈ P[i-k,j+k] means that B ⇒* aj+k … aj+i-1

The goal is to see what non-terminals can derive w. This will end up in the cell P[n,1].
Thus, w ∈ L(G) if and only if S ∈ P[n,1].

COT 4210 Context Free Languages © D.A. Workman

9/18/12 Page 87

Example:

Present the CKY recognition matrix for the string b b a a b a assuming the grammar specified
by the rules

S -> S T | T S | a
T -> B S | b
B -> b

 b b a a b a

1 T,B T,B S S T,B S

2 S,T S S,T

3 S,T S S

4 S,T S

5 S,T S

6 S,T

A slight variation:
From Wikipedia
Let the input be a string S consisting of n characters: a1 ... an.
Let the grammar contain r nonterminal symbols R1 ... Rr.
This grammar contains the subset Rs which is the set of start symbols.
Let P[n,n,r] be an array of booleans. Initialize all elements of P to false.
For each i = 1 to n
 For each unit production Rj -> ai, set P[i,1,j] = true.
For each i = 2 to n -- Length of span
 For each j = 1 to n-i+1 -- Start of span
 For each k = 1 to i-1 -- Partition of span
 For each production RA -> RB RC
 If P[j,k,B] and P[j+k,i-k,C] then set P[j,i,A] = true
If any of P[1,n,x] is true (x is iterated over the set s, where s are all the
indices for Rs)
 Then S is member of language
 Else S is not member of language

