
Complexity Theory
Formal Languages &

Automata Theory
Charles E. Hughes

COT6410 – Spring 2022 Notes

Regular Languages

I Hope This is Mostly Review
Read Sipser or Aho, Motwani, and

Ullman if not old stuff for you

Finite-State Automata
• A Finite-State Automaton (FSA) has only one

form of memory, its current state.
• As any automaton has a predetermined finite

number of states, this class of machines is quite
limited, but still very useful.

• There are two classes: Deterministic Finite-State
Automata (DFAs) and Non-Deterministic Finite-
State Automata (NFAs)

• We focus on DFAs for now.

1/27/22 UCF @ CS 3

Concrete Model of FSA

1/27/22 UCF @ CS 4

x1 x2 x3 … Xn-1 xn

A = (Q,Σ,δ,q0,F): Deterministic Final State Automaton (DFA)
L = L(A) is a finite-state (regular) language over finite alphabet S
Each xi is a character in S
w = x1 x2 … xn is a string to be tested for membership in L

• Blue arrow above represents read head that starts on left.
• q0 ∈ Q (finite state set) is initial state of machine.
• Only action at each step is to change state based on

character being read and current state. State change is
determined by a transition function d: Q × S ➝ Q.

• Once state is changed, read head moves right.
• Machine stops when head passes last input character.
• Machine accepts a string as a member of L if it ends up in

a state from Final State set F ⊆ Q.

q0

Deterministic Finite-State
Automata (DFA)

• A deterministic finite-state automaton (DFA) A is defined
by a 5-tuple
A = (Q,Σ,δ,q0,F), where
– Q is a finite set of symbols called the states of A
– Σ is a finite set of symbols called the alphabet of A
– δ is a function from Q×Σ into Q (δ: Q×Σ → Q) called

the transition function of A
– q0∈Q is a unique element of Q called the start state
– F is a subset of Q (F ⊆ Q) called the final states (can

be empty)

1/27/22 UCF @ CS 5

DFA Transitions
• Given a DFA, A = (Q,Σ,δ,q0,F), we can definition the reflexive

transitive closure of δ, δ*:Q×Σ* → Q, by
– δ*(q,l) = q where l is the string of length 0

• Some use ∊ rather than l as symbol for string of length zero
– δ*(q,ax) = δ*(δ(q,a),x), where a ∈ Σ and x ∈ Σ*
– Note that this means

δ*(q,a) = δ(q,a), where a ∈ Σ as a = al
– Also, if δ*(q,x) = p and δ*(p,y) = r then δ*(q,xy) = r

• We also define the transitive closure of δ, δ+, by
– δ+(q,w) = δ*(q,w) when |w|>0 or, equivalently, w ∈ Σ+

• The function δ* describes every step of computation by the
automaton starting in some state until it runs out of characters to
read

1/27/22 UCF @ CS 6

Regular Languages and DFAs
• Given a DFA, A = (Q,Σ,δ,q0,F), we can define the

language accepted by A as those strings that cause it to
end up in a final state once it has consumed the entire
string

• Formally, the language accepted by A is
– { w | δ*(q0,w) ∈ F }

• We generally refer to this language as L(A)
• We define the notion of a Regular Language by saying

that a language is Regular if and only if it is accepted
(recognized) by some DFA

1/27/22 UCF @ CS 7

State Diagram
• A finite-state automaton can be described by a

state diagram, where
– Each state is represented by a node labelled with that

state, e.g., q
– The start state has an arc entering it with no source,

e.g., q0

– Each transition δ(q,a) = s is represented by a directed
arc from node q to node s that is labelled with the
letter a, e.g., q a s

– Each final state has an extra circle around its node,
e.g., f

1/27/22 UCF @ CS 8

Really Simple DFAs # 1,2
• Accept the Empty Set over Σ

A = ({R, Σ, d, R, ∅), where d is defined by

• Accept Σ*
A = ({A}, Σ, d, A, {A}), where d is defined by

1/27/22 UCF @ CS 9

Σ

Σ

A

R

Sample DFAs # 3,4

1/27/22 UCF @ CS 10

E O
1

1

0 0

A = ({E,O}, {0,1}, d, E, {O}), where d is defined by above diagram.
L(A) = { w | w is a binary string of odd parity }

A

A’ = ({C,NC,X}, {00,01,10,11}, d’, C, {NC}), where d’ is defined by above
diagram.
L(A’) = { w | w is a pair of binary strings where the bottom string is the 2’s
complement of the top one, both read least (lsb) to most significant bit (msb) }

C NC11

00 01,10

A’

01,10

X

S

00,11

Sample DFA # 5

1/27/22 © UCF CS 11

A” = ({0,1,2,3,4}, {0,1}, d”, 0, {2,3}), where d” is defined by above
diagram. L(A”) = { w | w is a binary string that, read left to right (msb
to lsb), when interpreted as a decimal number divided by 5, has a
remainder of 2 or 3 }

A”

Sample DFA # 6

1/27/22 12

A”’ = ({N,E,W,S}, {R,L}, d”’, N, {N}), where d”’ is defined by above diagram.
L(A”’) = { w | w is a set of commands passed to a sentinel that starts facing
North and changes directions R(ight)/clockwise or L(eft)/counterclockwise
based on the corresponding input character. w must eventually lead the
sentinel back to facing North }

N E
RA”’ S

R
LL

© UCF EECS

W
R

L

L

R

State Transition Table
• A finite-state automaton can be described by a state

transition table with |Q| rows and |Σ| columns
• Rows are labelled with state names and columns with

input letters
• The start state has some indicator, e.g., a greater than

sign (>q) and each final state has some indicator, e.g.,
an underscore (f)

• The entry in row q, column a, contains δ(q,a)
• In general we will use state diagrams, but transition

tables are useful in some cases (state minimization)

1/27/22 UCF @ CS 13

Sample DFA # 7

1/27/22 UCF @ CS 14

A’’’ = ({0%5,1%5,2%5,3%5,4%5}, {0,1}, d’’’, 0, {3%5}), where d’’’ is defined
by above diagram.
L(A’’) = { w | w is a binary string of length at least 1 being read left to right
(msb to lsb) that, when interpreted as a decimal number divided by 5, has a
remainder of 3 }

Really, this is better done as a state diagram similar to what you saw earlier
but have put this up so you can see the pattern.

0 1
0 % 5 0 % 5 1 % 5
1 % 5 2 % 5 3 % 5
2 % 5 4 % 5 0 % 5
3 % 5 1 % 5 2 % 5
4 % 5 3 % 5 4 % 5

Accept State

Sample DFA # 8

1/27/22 UCF @ CS 15

This checks a string to see if it’s a legal password. In our case, a legal
password must contain at least one of each of the following: lower case letter,
upper case letter, number, and special character from the following set
{@#$%^&}. No other characters are allowed

A-Z a-z 0-9 @#$%^&
ð Empty A a 0 @

A A Aa A0 A@
a Aa a a0 a@
0 A0 a0 0 0@
@ A@ a@ 0@ @
Aa Aa Aa Aa0 Aa@
A0 A0 Aa0 A0 A0@
A@ A@ Aa@ A0@ A@
a0 Aa0 a0 a0 a0@
a@ Aa@ a@ a0@ a@
0@ A0@ a0@ 0@ 0@
Aa0 Aa0 Aa0 Aa0 Aa0@
Aa@ Aa@ Aa@ Aa0@ Aa@
A0@ A0@ Aa0@ A0@ A0@
a0@ Aa0@ a0@ a0@ a0@

Aa0@ Aa0@ Aa0@ Aa0@ Aa0@

FSAs and Applications
• A synchronous sequential circuit has

– Binary input lines (input admitted at clock tick)
– Binary output lines (simple case is one line)

• 1 accepts; 0 rejects input
– Internal flip flops (memory) that define state (n flip flops = 2n states)
– Simple combinatorial circuits (and, or, not) that combine current state

and input to alter internal state
– Simple combinatorial circuits (and, or, not) that use state to determine

output

• Think about FSA to recognize the string PAPAPAT
appearing somewhere in a corpus of text, say with a
substring PAPAPAPATRICK

• Comments about GREP and Lexical Analysis
1/27/22 UCF @ CS 16

Complement of Regular Sets
• Let A = (Q,Σ,δ,q0,F) and let L = L(A) then

w ∉ L(A) iff δ*(q0,w) ∉ F iff δ*(q0,w) ∊ Q-F
• Simply create new automaton

AC = (Q,Σ,δ,q0,Q-F)
• L(AC) = { w | δ*(q0,w) ∊ Q-F } =

{ w | δ*(q0,w) ∉ F } =
{ w | w ∉ L(A) }

• Choosing the right representation can make a very big
difference in how easy or hard it is to prove some
property is true

1/27/22 UCF @ CS 17

Parallelizing DFAs
• Regular sets can be shown closed under many binary operations

using the notion of parallel machine simulation
• Let A1 = (Q1,Σ,δ1,q0,F1) and A2 = (Q2,Σ,δ2,s0,F2) where

Q1∩Q2 = Ø
• B = (Q1×Q2,Σ,δ3,<q0,s0>,F3) where

δ3(<q,s>,a) = < δ1(q,a), δ2(s,a) >, qÎQ1, sÎQ2, aÎΣ
• Union is F3 = (F1×Q2) ∪ (Q1×F2)
• Intersection is F3 = F1×F2

– Can also do by combining union and complement
• Difference is F3 = F1×(Q2 – F2)

– Can also do by combining intersection and complement
• Exclusive Or is F3 = (F1×(Q2-F2)) ∪ ((Q1-F1)×F2)

1/27/22 UCF @ CS 18

Reversal of L
• If x is a string over Σ and x = a1 a2 … an,

then xR (x reversed) = an … a2 a1
• If L is some language, then

LR = { xR | x ∈ L }
• Trying to show if L is Regular that LR is also

Regular, using DFAs is problematic
• Could change start state to final, all final to start

states and reverse all arcs
that is, if δ(q,a) = p then δR(p,a) = q, but then
the automaton is no longer deterministic

1/27/22 UCF @ CS 19

Non-determinism NFA
• A non-deterministic finite-state automaton (NFA) A is

defined by a 5-tuple
A = (Q,Σ,δ,q0,F), where
– Q is a finite set of symbols called the states of A
– Σ is a finite set of symbols called the alphabet of A
– δ is a function from Q×Σe into P(Q) = 2Q ;

Note: Σe = (Σ∪{l})
δ: Q× Σe → P(Q) called the transition function of A;

by definition q ∈ δ(q,l)
– q0∈Q is a unique element of Q called the start state
– F is a subset of Q (F ⊆ Q) called the final states

1/27/22 UCF @ CS 20

Comments on NFAs
• A state/input (called a discriminant) can lead nowhere,

one place or many places in an NFA; moreover, an NFA
can jump between states without reading any input
symbol

• For simplicity, we often extend the definition of
δ: Q× Σe → P(Q) to a variant that handles sets of
states, where
δ: P(Q)× Σe → P(Q) is defined as
δ(S,a) = ∪q∈S δ(q,a), where a ∈ Σe
if S=Ø, ∪q∈S δ(q,a) =Ø

1/27/22 UCF @ CS 21

l-Closure
• Given an NFA, A = (Q,Σ,δ,q0,F), we can recursively

define the l-Closure of δ, l-Closure:Q → P(Q) by
– q ∈ l-Closure(q)
– If s ∈ l-Closure(q) then l-Closure(s) ⊆ l-Closure(q)

• We can then extend the l-Closure to work on sets so
that l-Closure:P(Q) → P(Q) is defined by
– l-Closure(S) = ∪q∈S l-Closure(q) where S ⊆ Q

1/27/22 UCF @ CS 22

NFA Transitions
• Given an NFA, A = (Q,Σ,δ,q0,F), we can define the

reflexive transitive closure of δ, δ*: P(Q)×Σ* → P(Q), by
– δ*(S,l) = l-Closure(S)
– δ*(S,ax) = δ*(l-Closure(δ(S,a)),x), where a ∈ Σ and x ∈ Σ*

• Note that δ*(S,ax) = ∪q∈S∪p∈l-Closure(δ(q,a)) δ*(p,x),
where a ∈ Σ and x ∈ Σ*

• We also define the transitive closure of δ, δ+, by
– δ+(S,w) = δ*(S,w) when |w|>0 or, equivalently, w ∈ Σ+

• The function δ* describes every “possible” step of
computation by the non-deterministic automaton starting
in some state until it runs out of characters to read

1/27/22 UCF @ CS 23

NFA Languages
• Given an NFA, A = (Q,Σ,δ,q0,F), we can define the

language accepted by A as those strings that allow it to
end up in a final state once it has consumed the entire
string – here we just mean that there is some accepting
path

• Formally, the language accepted by A is
– { w | (δ*(l-Closure({q0}),w) ∩ F) ≠ Ø }

• Notice that we accept if there is any set of choices of
transitions that lead to a final state

1/27/22 UCF @ CS 24

Finite-State Diagram
• A non-deterministic finite-state automaton can

be described by a finite-state diagram, except
– We now can have transitions labeled with l
– The same letter can appear on multiple arcs from a

state q to multiple distinct destination states

1/27/22 UCF @ CS 25

Equivalence of DFA and NFA
• Clearly every DFA is an NFA except that

δ(q,a) = s becomes δ(q,a) = {s}, so any
language accepted by a DFA can be
accepted by an NFA.

• The challenge is to show every language
accepted by an NFA is accepted by an
equivalent DFA. That is, if A is an NFA,
then we can construct a DFA A’, such that
L(A’) = L(A).

1/27/22 UCF @ CS 26

Constructing DFA from NFA
• Let A = (Q,Σ,δ,q0,F) be an arbitrary NFA
• Let S be an arbitrary subset of Q.

– Construct the sequence seq(S) to be a sequence that contains
all elements of S in lexicographical order, using angle brackets
to indicate a sequence not a set. That is, if S={q1, q3, q2} then
seq(S)=<q1,q2,q3>. If S=Ø then seq(S)=<>

• Our goal is to create a DFA, A’, whose state set contains
seq(S), whenever there is some w such that S=δ*(q0,w)

• To make our life easier, we will act as if the states of A’
are ordered sets, knowing that we really are talking
about corresponding sequences

1/27/22 UCF @ CS 27

l-Closure
• As before, we define the l-Closure of a state q as the set of states

one can arrive at from q, without reading any additional input.
• Formally l-Closure(q) = { t | t ∊ δ*(q,l) }
• We can extend this to S ∈ P(Q) by

l-Closure(S) = { t |t ∊ δ*(q,l), q ∈ S} = { t |t ∊ l-Closure(q),q ∈ S}

1/27/22 UCF @ CS 28

A B C D E
1 l

0

1

0,1

λ

0

1

A:

State A B C D E

l-closure { A } { B , C } { C } { D, E } { E }

DFA from NFA

1/27/22 UCF @ CS 29

A BC BCDE
1 1

10

0
A:

φ

0,1
0

A B C D E
1 l

0

1

0,1

λ

0

1
A:

Here the DFA has fewer states but, in general, it can have as
many as 2n states, where the NFA has n states.

Details of DFA
• Let A = (Q,Σ,δ,q0,F) be an arbitrary NFA
• In an abstract sense,

A’ = (<P(Q)>, Σ, δ’, <l-Closure({q0})>, F’),
where P(Q) is the power set of Q, but we rarely need so
many states (2|Q|) and we can iteratively determine those
needed by starting at l-Closure({q0}) and keeping only
states reachable from here

• Define δ’(<S>,a) = <l-Closure(δ(S,a))> =
<∪q∈S l-Closure(δ(q,a))>, where a∈Σ, S ∈ P(Q)

• F’ = {<S> ∈ <P(Q)> | (S ∩ F) ≠ Ø }

1/27/22 UCF @ CS 30

Regular Languages and NFAs
• Showing that every DFA can be simulated by an NFA

that accepts the same language and every NFA can be
simulated by a DFA that accepts the same language
proves the following

• A language is Regular if and only if it is accepted
(recognized) by some NFA

• We now have two equivalent classes of recognizers for
Regular Languages

1/27/22 UCF @ CS 31

Simple Exercise:
Convert from NFA to DFA

1/27/22 UCF @ CS 32

A aa B

a l

A
l DC

l

Regular Expressions

Regular Sets

Regular Expressions
• Primitive:

– Φ denotes {}
– λ denotes {λ}
– a where a is in Σ denotes {a}

• Closure:
– If R and S are regular expressions then so are R ・ S, R + S and

R*, where
• R ・ S denotes RS = { xy | x is in R and y is in S }
• R + S denotes RÈS = { x | x is in R or x is in S }
• R* denotes R* (defined in page 28 of preliminaries)

• Parentheses are used as needed

1/27/22 UCF @ CS 34

Lexical Analysis
• Consider distinguishing variable names from keywords

like
– IF return(IFSY);
– INT return(INT);
– [a-zA-Z]([a-zA-Z0-9_])* return(IDENT);

• Equivalent to a+b+…+z, etc.

• This really screams for non-determinism
– With added constraints of finding longest/first match

• Non-deterministic automata typically have fewer states
• However, non-deterministic FSA (NFA) interpretation is

not as fast as deterministic

1/27/22 UCF @ CS 35

Regular Sets =
Regular Languages

• Show every regular expression denotes a
language recognized by a finite-state
automaton (can do deterministic or non-
deterministic)

• Show every Finite-State Automata
recognizes a language denoted by a
regular expression

1/27/22 UCF @ CS 36

Every Regular Set is a
Regular Language

• Primitive:
– Φ denotes { }
– λ denotes {λ}
– a where a is in Σ denotes {a}

• Closure: (Assume that R’s and S’s states do not overlap)
– R ・ S start with machine for R, add l transitions from

every final state of R’s recognizer to start state of S,
making final state of S final states of new machine

– R + S create new start state and add l transitions from new
state to start states of each of R and S, making union
of R’s and S’s final states the new final states

– R* add l transitions from each original final state of R back to its
start state; keeping original start and making it only final state

1/27/22 UCF @ CS 37

λ

aa

Every Regular Language is a
Regular Set Using Rij

k

• This is a challenge that can be addressed in multiple ways.
but I like to start with the Rij

k approach. Here’s how it works.
• Let A = (Q,Σ,δ,q1,F) be a DFA, where Q = {q1,q2, … , qn}
• Rij

k = {w | δ*(qi,w) = qj, and no intermediate state visited
between qi and qj, while reading w, has index > k

• Basis: k=0, Rij
0 = { a | δ(qi,a) = qj } sets are either Φ, λ, or

elements of Σ, or λ + elements of Σ, and so are regular sets
• Inductive hypothesis: Assume Rij

m are regular sets for
0 ≤ m ≤ k, 1 ≤ i,j ≤ n

• Inductive step: k+1, Rij
k+1 = (Rij

k + Rik+1
k ・ (Rk+1k+1

k)* ・ Rk+1j
k)

• L(A) = +qf∈F R1f
n

1/27/22 UCF @ CS 38

Convert to RE (Odd Parity)

1/27/22 UCF @ CS 39

q2q1

1

1 00

R110= l+0 R120= 1 R220= l+0 R210= 1
R111= 0* R121= 0*1 R221= l+0+10*1 R211= 10*

R121= 1+(l+0)(l+0)*1 = 1+0*1 = 0*1
R221= l+0+1(l+0)*1 = l+0+10*1

R122= R121 + R121 (R221)* R221

L=R122= 0*1+0*1(l+0+10*1)*(l+0+10*1)=0*1(0+10*1)*
Why might a recursive rather than inductive approach be better?

Convert to RE

1/27/22 UCF @ CS 40

q2 q3q1

0

11

0, 1

0 1

q2 q3q1

0

1
1

0, 1

0 1

• R110= l R120= 0 R130= f
• R210= 0 R220= l + 1 R230= 0 + 1
• R310= f R320= 1 R330= l + 1

• R111= l R121= 0 R131= f
• R211= 0 R221= l + 1 + 00 R231= 0 + 1
• R311 = f R321= 1 R331= l + 1

• R112= l + 0(1+00)*0 R122= 0(1+00)* R132= 0(1+00)*(0+1)
• R212= (1+00)*0 R222= (1+00)* R232= (1+00)*(0+1)
• R312= 1(1+00)*0 R322= 1(1+00)* R332= l+1+1(1+00)*(0+1)

• L = R12
3=

0(1+00)* + 0(1+00)*(0+1) (1+1(1+00)*(0+1))* 1(1+00)*

THIS IS GREAT WAY TO GET FORMAL PROOF
1/27/22 UCF @ CS 41

State Ripping Concept
• This is like the generalized automata approach you might see in

Sipser and other places but with fewer arcs than text. It gets some of
its motivation from Rij

k approach as well.
• Add a new start state and add a l–transition to existing start state
• Add a new final state qf and insert l–transitions from all existing final

states to the new one; make the old final states non-final
• Excluding start and final states, successively pick states to remove
• For each state to be removed, change the arcs of every pair of

externally entering and exiting arcs to reflect the regular expression
that describes all strings that could result is such a double transition;
be sure to account for loops in the state being removed. Also, or (+)
together expressions that have the same start and end nodes

• When have just start and final, the regular expression that leads
from start to final denotes the associated regular set

1/27/22 UCF @ CS 42

State Ripping Details
• Let B be the node to be removed
• Let e1 be the regular expression on the arc from some node A to some

node B (A≠B); e2 be the expression from B back to B (or l if there is no
recursive arc); e3 be the expression on the arc from B to some other node
C (C ≠B but C could be A); e4 be the expression from A to C

• Note that this just says, what if I allowed the path from A to C to include
transitions through B, then what is new regular expression? The form is
exactly what we saw in Rijk.

1/27/22 UCF @ CS 43

A CB
e1

e2
e3

e4

State Ripping Details

• Erase the existing arcs from A to B and A to C, adding a new arc from A to
C labelled with the expression
e4 + e1 e2* e3

• Note that all other arcs associated with A and C are untouched.

1/27/22 UCF @ CS 44

A CB
e1

e2
e3

e4

A CB

e2

e4 + e1 e2* e3

State Ripping Details

• Do this for all nodes that have edges to B until B has no more entering.
edges; at this point remove B and any edges it has to other nodes and itself

• Iterate until all but the start and final nodes remain.
• The expression from start to final describes the regular set that is equivalent

to the regular language accepted by the original automaton.
• Note: Your choices of the order of removal make a big difference in how

hard or easy this is.

1/27/22 UCF @ CS 45

A CB

e2

e4 + e1 e2* e3

State Ripping (Odd Parity)

1/27/22 UCF @ CS 46

q2q1

1

1 00

s f
λ λ

q2q1

0*1

1 00

s f
λ

Disconnect q1 from s

Disconnect q1 from q2

q20*1

1

0 + 10*1

s f
λ

State Ripping (Continued)

1/27/22 UCF @ CS 47

1

Disconnect s from q2

0*1 (0 + 10*1)*
s f

q20*1

0 + 10*1

s f
λ

Got same regular expression as we saw with Rijk but what
would happen if we ripped q2 and then q1? Try it. The
expression will be different, but the set will be the same.

More Complex Case; Rip q3

1/27/22 UCF @ CS 48

q2 q3q1

0

11

0+1

0 1

qf

l
l

q0

q2q1

0

0 1+(0+1)1+

qf

l
l

q0

Continued; Rip q1

1/27/22 UCF @ CS 49

q2q1

0

0 1+(0+1)1+

qf

l
l

q0

q2
0

1+(0+1)1++00

qf

l

q0

Continued; Rip q2

1/27/22 UCF @ CS 50

q2
0

1+(0+1)1++00

qf

l

q0

0 (1+(0+1)1++00)*
qfq0

L = 0 (1+(0+1)1++00)*

Regular Equations (Arden)
• Assume that R, Q and P are sets such that P

does not contain the string of length zero, and R
is defined by

• R = Q + RP
• We wish to show that
• R = QP*
• This is called “Arden’s Theorem” (Google it!!)

1/27/22 UCF @ CS 51

Show QP* is a Solution
• We first show that QP* is contained in R. By

definition, R = Q + RP.
• To see if QP* is a solution, we insert it as the

value of R in Q + RP and see if the equation
balances.

• R = Q + QP*P = Q(λ+P*P) = Q(λ+P+) = QP*
• Hence QP* is a solution, but not necessarily the

only solution.

1/27/22 UCF @ CS 52

Uniqueness of Solution
• To prove uniqueness, we show that R is contained in QP*.
• By definition, R = Q+RP = Q+(Q+RP)P
• = Q+QP+RP2 = Q+QP+(Q+RP)P2

• = Q+QP+QP2+RP3

• ...
• = Q(λ+P+P2+ ... +Pi)+RPi+1, for all i>=0
• Choose any w in R, where |w| = k. Then, from above,
• R = Q(λ+P+P2+ ... +Pk)+RPk+1

• but, since P does not contain the string of length zero, w is not in
RPk+1. But then w is in

• Q(λ+P+P2+ ... +Pk) and hence w is in QP*.

1/27/22 UCF @ CS 53

Reg. Eq. Process
• Let A = (Q,Σ,δ,q1,F) be a DFA

• For each pair of states, A,B in Q, where for some input
‘a’, δ(B,a) = A, include the term Ba in the right-side of the
equation for A, that is, A = … + Ba
This just says that any solution for A must include the
solution for B followed by an ‘a’.

• If A is the start state, then include λ as one of the terms
as well, that is A = λ + …
This just says that any solution for A must include λ
since A is the start state.

1/27/22 UCF @ CS 54

Example
• We use the above to solve simultaneous regular equations.

For example, we can associate regular expressions with
finite-state automata as follows

• Hence,
• For A, Q=l+B1; P=0

A = QP* = (l+B1)0*
= B10* + 0*

• B = B10*1 + B0 + 0*1
For B, Q=0*1; P= B10*1 + B0 = B(10*1 + 0)

• and therefore
• B = 0*1(10*1 + 0)*
• Note: This technique fails if there are self lambda transitions.
1/27/22 UCF @ CS 55

Using Regular Equations

1/27/22 UCF @ CS 56

B CA

0

11

0, 1

0 1

A = l + B0
B = A0 + C1 + B1
C = B(0+1) + C1; C = B(0+1)1*
B = 0 + B00 + B(0+1)1+ + B1
B = 0 + B (00+(0+1) 1+ + 1); B = 0(00 +(0+1)1+ + 1)* = 0 (1+(0+1)1++00)*

This is same form as with state ripping. It won’t always be so.

Use Reg. Eq. to Solve for D + E

A = λ ; B = A1 + C1 + E(0+1) + B0 ; C = B + C0 ; D = C1 ; E = D
C = B0*
D = C1 = B0*1; also, since E = D, E = B0*1
B = A1 + C1 + E(0+1) + B0 = 1 + B0*1 + B0*1(0+1) + B0 = 1 + B0*1(0+1) + B(0*1 + 0)

= 1(0*1(0+1) + 0*1 + 0)*
C = B0* = 1(0*1(0+1) + 0*1 + 0)* 0*
D = C1 = 1(0*1(0+1) + 0*1 + 0)* 0*1 = 1(0*1(0+1+λ) + 0)* 0*1 = 1(0*1(0+1+λ) + 0)* 1
E = D so the language is denoted by 1(0*1(0+1+λ) + 0)* 1

1/27/22 UCF @ CS 57

Practice NFAs
• Write NFAs for each of the following

– (111 + 000)+

– (0+1)* 101 (0+1)+

– (1 (0+1)* 0) + (0 (0+1)* 1)
• Convert each NFA you just created to an

equivalent DFA.

1/27/22 UCF @ CS 58

DFAs to REs
• For each of the DFAs you created for the

previous page, use ripping of states and
then regular equations to compute the
associated regular expression. Note: You
obviously ought to get expressions that
are equivalent to the initial expressions.

1/27/22 UCF @ CS 59

State Minimization

Minimum State DFAs

State Minimization
• Sipser text makes it an assignment on Page 299 in Edition 2.
• This is too important to defer, IMHO.
• First step is to remove any state that is unreachable from the start

state; a depth first search rooted at start state will identify all
reachable states

• One seeks to merge compatible states – states q and s are
compatible if, for all strings x, δ*(q,x) and δ*(s,x) are either both an
accepting or both rejecting states

• One approach is to discover incompatible states – states q and s are
incompatible if there exists a string x such that one of δ*(q,x) and
δ*(s,x) is an accepting state and the other is not

• There are many ways to approach this but my favorite is to do
incompatible states via an n by n lower triangular matrix

1/27/22 UCF @ CS 61

Sample Minimization
• This uses a transition

table
• Just an X denotes

Immediately incompatible
• Pairs are dependencies

for compatibility
• If a dependent is

incompatible, so are pairs
that depend on it

• When done, any not x--ed
out are compatible

• Here, new states are
<1,3>, <2,4,5>, <6>;
<1,3> is start and not
accept; others are accept

• Write new diagram

1/27/22 UCF @ CS 62

Min DFA

1/27/22 UCF @ CS 63

1,3
a,b,c b

a

c
a,b

c

2,4,5 6

Closure Properties

Regular Languages

Reversal of Regular Sets
• It is easier to do this with regular sets than with NFAs
• Let E be some arbitrary expression; ER is formed by

– Primitives: ØR=Ø λR=λ aR=a
– Closure:

• (A ・ B)R = (BR ・ AR)
• (A + B)R = (AR + BR)
• (A*)R = (AR)*

• Challenge: How would you do this with FSA models?
– Start with DFA; change all final to start states; change start

to a final state; and reverse edges (now it’s an NFA)
– Note that this creates multiple start states; can create a

new start state with l-transitions to multiple starts
1/27/22 UCF @ CS 65

Substitution
• A substitution is a function, f, from each

member, a, of an alphabet, Σ, to a language La

• Regular languages are closed under substitution
of regular languages (i.e., each La is regular)

• Easy to prove by replacing each member of a∈Σ
in a regular expression for a language L with the
regular expression for La

• A homomorphism is a substitution where each
La is a single string

1/27/22 UCF @ CS 66

Quotient with Regular Sets
• Quotient of two languages B and C, denoted B/C, is defined as

B/C = { x | ∃y∈C where xy∈B }
• Let B be recognized by DFA

AB = (QB,Σ,δB,q1B,FB) and C by
AC = (QC,Σ,δC,q1C,FC)

• Define the recognizer for B/C by
AB/C = (QB∪QB×QC,Σ,δB/C,q1B, FB×FC)
δB/C(q,a) = {δB(q,a)} a∈Σ,q∈QB
δB/C(q,l) = {<q,q1C>} q∈QB
δB/C(<q,p>,l) = {<δB(q,a),δC(p,a)>} a∈Σ,q∈QB,p∈QC

• The basic idea is that we simulate B and then randomly decide it
has seen x and continue by looking for y, simulating B continuing
after x but with C starting from scratch and both making believe they
see the same character at every stage (none actually is seen)

1/27/22 UCF @ CS 67

Example of B/C via NFA
• Let B = a*b*; C = a+

• B/C = a* as C must remove at least one a and will not apply if there are any
b’s

• AB = ({q1,q2,q3}, {a,b}, δB, q1, {q1,q2})
δB(q1,a) = q1; δB(q1,b) = q2; δB(q2,a) = q3; δB(q2,b) = q2;
δB(q3,a) = q3; δB(q3,b) = q3

• AC = ({s1,s2,s3}, {a,b}, δC, s1, {s2})
δC(s1,a) = s2; δC(s1,b) = s3; δC(s2,a) = s2; δC(s2,b) = s3;
δC(s3,a) = s4; δC(s3,b) = s3

• AB/C = ({q1,q2,q3,<q1,s1>,<q1,s2>,<q1,s3>,<q2,s1>>,<q2,s2>,<q2,s3>,
<q3,s1>,<q3,s2>, <q3,s3>} {a,b}, δB/C, q1, {<q1,s2>,<q2,s2>})
δB/C(q,c) = {δB(q,c)}, q∈{q1,q2,q3}; c∈{a,b} // read ’x”
δB/C(q,λ) = {<q,s1>}, q∈{q1,q2,q3}; // jump to synthesize y
δB/C(<q,s>,l) = {<δB(q,c),δC(s,c)>}, c∈{a,b},q∈{q1,q2,q3},s∈{s1,s2,s3},

1/27/22 UCF @ CS 68

Example Worked Out #1

1/27/22 UCF @ CS 69

b a

a a,b

q2 q3

b

q1

s1
a b

a,b

s2 s3

a

b

AB

AC

Example Worked Out #2

1/27/22 UCF @ CS 70

q1 q2
b a

a a,b

q3

b

q1,s1 q2,s1 q2,s1

AB/C

λ λ λ

See next page

Example Worked Out #3

1/27/22 UCF @ CS 71

q1,s1 q1,S2 q2,s3

The lambda subscripts indicate the make-believe characters we are”consuming”

λa

λa

λb

λb

q3,s3

λa,λb

λa

λb

λa
q3,s2

λb

λa

q3,s1

λa

q2,s1

λb

λb

Quick State Reduction
• We had the possibility of 3 + 9 = 12 states
• Only 10 were reachable from start
• Of these, only three lead to a final state

q1, <q1,s1>, <q1,s2>
• We will need a dead state for all other

paths, so let’s look at what we have,
having done some obvious reductions

1/27/22 UCF @ CS 72

Reduced NFA

1/27/22 UCF @ CS 73

q1 q1,s1 q1,s2
λ λ

λ

dead

a,b

λ
a

b

Lambda Removal

q1
b

dead

a,b
a

start

Min machine for a* over alphabet {a,b}

Implications of Quotient
• PREFIX(L) = { x |∃y∈Σ* where xy∈L } =

L / Σ*
• SUFFIX(L) = { y |∃x∈Σ* where xy∈L } =

(LR / Σ*)R

• SUBSTRING(L) = { y |∃x,z∈Σ* where xyz∈L } =
PREFIX(SUFFIX(L)) =
SUFFIX(PREFIX(L))

• So, Regular Languages (Sets) are closed under Prefix,
Suffix, and Substring

• But is there a strategy that encompasses quotient and all
above and may work for other classes of languages?

1/27/22 UCF @ CS 74

Quotient Again
• Assume some class of languages, C, is closed

under concatenation, intersection with regular
and substitution of members of C, show C is
closed under Quotient with Regular

• L/R = { x |∃y∈R where xy∈L }, R and L over Σ
– Define Σ’ = { a’ | a∈Σ }
– Let h(a) = a; h(a’) = l where a∈Σ
– Let g(a) = a’ where a∈Σ
– Let f(a) = {a,a’} where a∈Σ
– L/R = h(f(L) ∩ (Σ* ・ g(R)))

1/27/22 UCF @ CS 75

Applying Meta Approach
• INIT(L) = PREFIX(L) = { x |∃y∈Σ* where xy∈L }

– INIT(L) = h(f(L) ∩ (Σ* ・ g(Σ*)))
– Also INIT(L) = L / Σ*

• LAST(L) = SUFFIX(L) = { y |∃x∈Σ* where xy∈L }
– LAST(L) = h(f(L) ∩ (g(Σ*) ・ Σ*))

• MID(L) = SUBSTRING(L) =
{ y |∃x,z∈Σ* where xyz∈L }

• MID(L) = h(f(L) ∩ (g(Σ*) ・ Σ* ・ g(Σ*)))
• EXTERIOR(L) = { xz |∃y∈Σ* where xyz∈L }

– EXTERIOR(L) = h(f(L) ∩ (Σ* ・ g(Σ*) ・ Σ*))
1/27/22 UCF @ CS 76

Substitution Examples
• Consider alphabet {a,b}
• Consider primed version g({a,b}) = {a’,b’}
• Note that g(aba) = a’b’a’
• f(aba) =

{aba,aba’,ab’a,ab’a’,a’ba,a’ba’,a’b’a,a’b’a’}
• h(f(aba)) = {aba,ab,aa,a,ba,b,λ}

1/27/22 UCF @ CS 77

Back to Quotient
• f(L) = { x1x2..xk | a1a2..ak ∈ L } and

each xi is either ai or ai’
• Σ*g(R) = { x g(y) | x∈Σ* and y∈R } =

{ xy’ | x∈Σ* and y∈R }
• f(L) ∩ Σ*g(R) = { xy’ | xy∈L and y∈R }
• h(f(L) ∩ Σ*g(R)) = { x | ∃y∈R where xy∈L }

= L/R
• Since Regular are closed under substitution,

intersection, and concatenation, they are also
closed under quotient

1/27/22 UCF @ CS 78

Making Life Easy
• The key in proving closure is to always try to identify the

“best” equivalent formal model for regular sets when
trying to prove a particular property

• For example, how could you even conceive of proving
closure under intersection and complement in regular
expression notations?

• Note how much easier quotient is when have closure
under concatenation, and substitution and intersection
with regular languages than showing in FSA notation

1/27/22 UCF @ CS 79

Reachable and Reaching
• Reachablefrom(q) = { p | ∃w ∍ δ*(q,w)=p }

– Just do depth first search from q, marking all
reachable states. Works for NFA as well.

• Reachingto(q) = { p | ∃w ∍ δ*(p,w)=q }
– Do depth first search from q, going backwards

on transitions, marking all reaching states.
Works for NFA as well.

1/27/22 UCF @ CS 80

Min and Max
• Min(L) = { w | w∈L and no proper prefix of w is in L } =

{ w | w∈L and if w=xy, x∈Σ*, y∈Σ+ then x∉L}
• Max(L) = { w | w∈L and w is not the proper prefix of any word in L } =

{ w | w∈L and if y∈Σ+ then wy∉L }
• Examples:

– Min(0(0+1)*) = {0}
– Max(0(0+1)*) = {}
– Min(01 + 0 + 10) = {0,10}
– Max(01 + 0 + 10) = {01,10}
– Min({aibjck | i ≤ k or j ≤ k}) = {aibjck | | i,j ≥0, k = min(i, j)}
– Max({aibjck | i ≤ k or j ≤ k}) = {} because k has no bound
– Min({aibjck | i ≥ k or j ≥ k}) = {λ}
– Max({aibjck | i ≥ k or j ≥ k}) = {aibjck | | i,j ≥0, k = max(i, j)}

1/27/22 UCF @ CS 81

Regular Closed under Min
• Assume L is regular then Min(L) is regular
• Let L= L(A), where A = (Q,Σ,δ,q0,F) is a DFA with no

state unreachable from q0

• Define Amin = (Q∪{dead},Σ,δmin,q0,F), where for a∈Σ
δmin(q,a) = δ(q,a), if q∈Q-F; δmin(q,a) = dead, if q∈F;
δmin(dead,a) = dead

The reasoning is that the machine Amin accepts only elements in L that
are not extensions of shorter strings in L. By making it so transitions
from all final states in Amin go to the new “dead” state, we guarantee
that extensions of accepted strings will not be accepted by this new
automaton.
Therefore, Regular Languages are closed under Min.

1/27/22 UCF @ CS 82

Regular Closed under Max
• Assume L is regular then Max(L) is regular
• Let L= L(A), where A = (Q,Σ,δ,q0,F) is a DFA with no state

unreachable from q0
• Define Amax = (Q,Σ,δ,q0,Fmax), where

Fmax= { f | f∈F and Reachablefrom+(f)∩F=Φ }
where Reachablefrom+(q) = { p | ∃w ∍ |w|>0 and δ(q,w) = p }

The reasoning is that the machine Amax accepts only elements in L that cannot be
extended. If there is a non-empty string that leads from some final state f to any final
state, including f, then f cannot be final in Amax. All other final states can be retained.
The inductive definition of Reachablefrom+ is:
1. Reachablefrom+(q) contains { s | there exists an element of S, a, such that d(q,a) = s }
2. If s is in Reachablefrom+ (q) then Reachablefrom+ (q) contains

{ t | there exists an element of S, a, such that d(s,a) = t }
3. No other states are in Reachablefrom+(q)
Therefore, Regular Languages are closed under Max.

1/27/22 UCF @ CS 83

Regular Expression for L

1/27/22 UCF @ CS 84

A
a,b b

a

B C

A = λ+Ba B = A(a+b) C = Bb
B = a+b + Ba(a+b) = (a+b)(aa+ab)*
C = (a+b)(aa+ab)*b
L = (a+b)(aa+ab)* (λ+b)
Min(L) = a+b Max(L) = (a+b)(aa+ab)*b

Min(L) and Max(L)

1/27/22 UCF @ CS 85

A
a,b

B

Min(L) = a+b Max(L) = (a+b)(aa+ab)*b

MIN

A B
a,b b

a

C
MAX

Pumping Lemma for
Regular Languages

What is not a Regular Language

Pumping Lemma Concept
• Let A = (Q,Σ,δ,q1,F) be a DFA, where Q = {q1,q2, … , qN}
• The “pigeon-hole principle” tells us that whenever we visit

N+1 or more states, we must visit at least one state more than
once (loop)

• Any string, w, of length N or greater leads to us making N
transitions after visiting the start state, and so we visit at least
one state more than once when reading w

1/27/22 UCF @ CS 87

Pumping Lemma For Regular
• Theorem: Let L be regular then there

exists an N>0 such that, if w Î L and
|w| ≥ N, then w can be written in the form
xyz, where |xy| ≤ N, |y|>0, and for all i≥0,
xyiz Î L

• This means that interesting regular
languages (infinite ones) have a very
simple self-embedding property that
occurs early in long strings

1/27/22 UCF @ CS 88

Pumping Lemma Proof
• If L is regular then it is recognized by some DFA, A=(Q,S,d,q0,F). Let |Q| = N

states. For any string w, such that |w| ≥ N, A must make N+1 state visits to
consume its first N characters, followed by |w|-N more state visits.

• In its first N+1 state visits, A must enter at least one state two or more times.
• Let w = v1…vj…vk…vm, where m =|w|, and d(q0,v1…vj)=d(q0,v1…vk), k > j,

and let this state represent the first one repeated while A consumes w.
• Define x = v1…vj, y = vi+1…vk, and z = vk+1…vm. Clearly w=xyz. Moreover,

since k > j, |y| > 0, and since k ≤ N, |xy| ≤ N.
• Since A is deterministic, d(q0,xy)=d(q0,xyi), for all i ≥ 0.
• Thus, if w Î L, d(q0,xyz) Î F, and so d(q0,xyiz) Î F, for all i ≥ 0.
• Consequently, if w Î L, |w|≥N, then w can be written in the form xyz, where

|xy| ≤ N, |y| > 0, and for all i ≥ 0, xyiz Î L.

1/27/22 UCF @ CS 89

Lemma’s Adversarial Process
• Assume L = {anbn | n>0 } is regular
• P.L.: Provides N > 0

– We CANNOT choose N; that’s the P.L.’s job
• Our turn: Choose aNbN Î L

– We get to select a string in L
• P.L.: aNbN = xyz, where |xy| ≤ N, |y| > 0, and for all i ≥ 0, xyiz Î L

– We CANNOT choose split, but P.L. is constrained by N
• Our turn: Choose i = 0.

– We have the power here
• P.L: aN-|y|bN Î L; just a consequence of P.L.
• Our turn: aN-|y|bN Ï L; just a consequence of L’s structure
• CONTRADICTION, so L is NOT regular

1/27/22 UCF @ CS 90

xwx is not Regular (PL)
• L = { x w x | x,w∈{a,b}+ } :
• Assume that L is Regular.
• PL: Let N > 0 be given by the Pumping Lemma.
• YOU: Let s be a string, s ∈ L, such that s = aNbaaNb
• PL: Since s ∈ L and |s| ≥ N, s can be split into 3 pieces, s = xyz, such that

|xy| ≤ N and |y| > 0 and ∀ i ≥ 0 xyiz ∈ L
• YOU: Choose i = 2 (NOTE: for i=0 there is no conflict)
• PL: xy2z = xyyz ∈ L
• Thus, aN + |y|baaNb would be in L, but this is not so since N+|y| > N
• We have arrived at a contradiction.
• Therefore, L is not Regular.

1/27/22 UCF @ CS 91

aFib(k) is not Regular (PL)
• L = {aFib(k) | k>0} :
• Assume that L is regular
• Let N be the positive integer given by the Pumping Lemma
• Let s be a string s = aFib(N+3)Î L
• Since s Î L and |s| ≥ N (Fib(N+3)>N in all cases; actually Fib(N+2)>N as

well), s is split by PL into xyz, where |xy| ≤ N and |y| > 0 and for all i ≥ 0,
xyiz Î L

• We choose i = 2; by PL: xy2z = xyyzÎ L
• Thus, aFib(N+3)+|y| would be Î L. This means that there is a Fibonacci number

between Fib(N+3) and Fib(N+3)+N, but the smallest Fibonacci greater than
Fib(N+3) is Fib(N+3)+Fib(N+2) and Fib(N+2)>N
This is a contradiction; therefore, L is not regular ■

• Note: Using values less than N+3 could be dangerous because N could be
1 and both Fib(2) and Fib(3) are within N (1) of Fib(1).

1/27/22 UCF @ CS 92

Pumping Lemma Problems
• Use the Pumping Lemma to show each of

the following is not regular
– { 0m 12n | m £ n }
– { wwR | w Î {a,b}+ }
– { 1n2 | n > 0 }
– { ww | w Î {a,b}+ }

– What about { wxwR | w,x Î {a,b}+ } ?

1/27/22 UCF @ CS 93

State Minimization

We now want to show, for any
Regular Language R,

the minimum state DFA is unique
Myhill-Nerode Theorem

Myhill-Nerode Theorem
The following are equivalent:
1. L is accepted by some DFA
2. L is the union of some of the classes of a right invariant

equivalence relation, R, of finite index.
3. The specific right invariance equivalence relation

RL where x RL y iff "z [xz Î L iff yz Î L]
has finite index

Definition. R is a right invariant equivalence relation iff R is
an equivalence relation and "z [x R y implies xz R yz].
Note: This is only meaningful for relations over strings.

1/27/22 UCF @ CS 95

Myhill-Nerode 1 ⇒ 2
1. Assume L is accepted by some DFA, A = (Q,Σ,δ,q1,F)
2. Define RA by x RA y iff δ*(q1,x) = δ*(q1,y). First, RA is

defined by equality and so is obviously an equivalence
relation.
Clearly if δ*(q1,x) = δ*(q1,y) then "z δ*(q1,xz) = δ*(q1,yz)
because A is deterministic.
Moreover if "z δ*(q1,xz) = δ*(q1,yz) then
δ*(q1,x) = δ*(q1,y), just by letting z = l.
Putting it together x RA y L iff "z xz RA yz. Thus, RA is
right invariant; its index is |Q| which is finite; and
L(A) = ∪δ*(q1,x)∊F[x]RA, where [x]RA refers to the
equivalence class containing the string x.

1/27/22 UCF @ CS 96

DFA, A, Defines RIER, RA of
Finite Index (here 6)

1/27/22 UCF @ CS 97

1 3

4 5 6

2
a

b

c

a

a

a
a

a

b,c
b

c

b
c

b

c

b
c

A

Myhill-Nerode 2 ⇒ 3
2. Assume L is the union of some of the classes of a right

invariant equivalence relation, R, of finite index.
3. Since x R y iff "z [xz R yz], R is right invariant and L is

the union of some of the equivalence classes, then
x R y ⇒ "z [xz Î L iff yz Î L] ⇒ x RL y.
This means that the index of RL is less than or equal to
that of R and so is finite. Note than the index of RL is
then less than or equal to that of any other right
invariant equivalence relation, R, of finite index that
defines L.

1/27/22 UCF @ CS 98

Same Language but Index is 3
This is based on RL

1/27/22 UCF @ CS 99

1, 3
a,b,c b

a

c
a,b

c

2,4,5 6
AL

It is the case that RL is a refinement of RA in that x RA y implies x RL y.
This is true of any relationship for L that is based on the states of some
DFA that accepts L.
Thus, since in our first automata abba RA ac, then abba RL ac. It is this
property that makes the equivalence classes of AL be no more than
those of A.

Myhill-Nerode 3 ⇒ 1
3. Assume the specific right invariance equivalence

relation RL where x RL y iff "z [xz Î L iff yz Î L]
has finite index
Define the automaton A = (Q,Σ,δ,q1,F) by
Q = { [x]RL | x ∈ Σ* }
δ([x]RL,a) = [xa]RL
q1 = [l]
F = { [x]RL | x ∈ L }

Note: This is the minimum state automaton, and all others are either
equivalent or have redundant indistinguishable states

1/27/22 UCF @ CS 100

More Non-Regular

Myhill-Nerode Theorem as
Alternative to Pumping Lemma

Use of Myhill-Nerode
• L = {anbn | n>0 } is NOT regular.
• Assume otherwise.
• M-N says that the specific r.i. equiv. relation RL has finite

index, where x RL y iff "z [xz Î L iff yz Î L].
• Consider the equivalence classes [aib] and [ajb], where

i,j>0 and i ≠ j.
• aibbi-1 Î L but ajbbi-1 Ï L and so [aib] is not related to

[ajb] under RL and thus [aib] ≠ [ajb] when i ≠ j.
• This means that RL has infinite index.
• Therefore, L is not regular.

1/27/22 UCF @ CS 102

xwx is not Regular (MN)
• L = { x w x | x,w∈ {a,b}+ } :
• We consider the right invariant equivalence class [aib],

i>0.
• It’s clear that aibaaib is in the language, but akbaaib is

not when k > i.
• This shows that there is a separate equivalence class,

[aib], induced by RL, for each i>0. Thus, the index of RL is
infinite and Myhill-Nerode states that L cannot be
Regular.

1/27/22 UCF @ CS 103

aFib(k) is not Regular (MN)
• L = {aFib(k) | k>0} :
• We consider the collection of right invariant equivalence

classes [aFib(j)], j > 2.
• It’s clear that aFib(j)aFib(j+1) is in the language, but

aFib(k)aFib(j+1) is not when k>2 and k≠j and k≠j+2
• This shows that there is a separate equivalence class

[aFib(j)] induced by RL, for each j > 2.
• Thus, the index of RL is infinite and Myhill-Nerode states

that L cannot be Regular.

1/27/22 UCF @ CS 104

Myhill-Nerode and
Minimization

• Corollary: The minimum state DFA for a
regular language, L, is formed from the
specific right invariance equivalence
relation RL, where
x RL y iff "z [xz Î L iff yz Î L]

• Moreover, all minimum state machines
have the same structure as the above,
except perhaps for the names of states

1/27/22 UCF @ CS 105

What is Regular So Far?
• Any language accepted by a DFA
• Any language accepted by an NFA
• Any language denoted by a Regular Expression
• Any language representing the unique solution

to a set of properly constrained regular
equations

• Any language, L, that is the union of some of the
classes of a right invariant equivalence relation
of finite index

1/27/22 UCF @ CS 106

What is NOT Regular?
• Well, anything for which you cannot write an

accepting DFA or NFA, or a defining regular
expression, or a right/left linear grammar (to be
discussed shortly), or a set of regular equations,
but that’s not a very useful statement

• There are two tools we now have that are useful:
– Pumping Lemma for Regular Languages
– Myhill-Nerode Theorem

1/27/22 UCF @ CS 107

Transducers

Automata with Output

Finite-State Transducers
• A transducer is a machine with output
• Mealy Model

– M = (Q, S, G, d, g, q0)
G is the finite output alphabet
g: Q × S ® G is the output function

– Essentially a Mealy Model machine produces a character of
output for each character of input it consumes, and it does so on
the transitions from one state to the next.

– A Mealy Model represents a synchronous circuit whose output is
triggered each time a new input arrives.

1/27/22 UCF @ CS 109

Sample Mealy Model
• Write a Mealy finite-state machine that

produces the 2’s complement result of
subtracting 1101 from a binary input
stream (assuming at least 4 bits of input)

1/27/22 UCF @ CS 110

C
1..1
001

NC
1..1
0011

1/0

0/1 NC
1..1
001

C
1..1
00

NC
1..1
00

1/0

1/1,0/0

0/1

C
1..1
0

NC
1..1
0

0/1

1/0

0/0,1/1

C
1..1

NC
1..1

0/1

1/0

0/0,1/1

1/1,0/0

0/1

1/0

Finite-State Transducers
• Moore Model

– M = (Q, S, G, d, g, q0)
G is the finite output alphabet
g: Q ® G is the output function

– Essentially a Moore Model machine produced a
character of output whenever it enters a state,
independent of how it arrived at that state.

– A Moore Model represents an asynchronous circuit
whose output is a steady state until new input arrives.

1/27/22 UCF @ CS 111

Summary of Decision and
Closure Properties

Regular Languages

Decidable Properties
• Membership (just run DFA over string)
• L = Ø: Minimize and see if minimum state DFA is

• L = Σ*: Minimize and see if minimum state DFA is

• Finiteness: Minimize and see if there are no loops
emanating on a path to a final state

• Equivalence: Minimize both and see if isomorphic

1/27/22 UCF @ CS 113

A

Σ

A

Σ

Closure Properties
• Virtually everything with members of its own class as we

have already shown

• Union, concatenation, Kleene *, complement,
intersection, set difference, reversal, substitution,
homomorphism, quotient with regular sets, Prefix, Suffix,
Substring, Exterior, Min, Max and so much more

1/27/22 UCF @ CS 114

1/27/22 UCF @ CS 115

Regular Languages # 1
• Finite Automata
• Moore and Mealy models: Automata with output.
• Regular operations
• Non-determinism: Its use. Conversion to

deterministic FSAs. Formal proof of equivalence.
• Lambda moves: Lambda closure of a state
• Regular expressions
• Equivalence of REs and FSAs.
• Pumping Lemma: Proof and applications.

115

1/27/22 UCF @ CS 116

Regular Languages # 2
• Regular equations: REQs and FSAs.
• Myhill-Nerode Theorem: Right invariant

equivalence relations. Specific relation for a
language L. Proof and applications.

• Minimization: Why it's unique. Process of
minimization. Analysis of cost of different
approaches.

• Regular (right linear) grammars, regular
languages and their equivalence to FSA
languages – Grammars are coming up.

116

1/27/22 UCF @ CS 117

Regular Languages # 3
• Closure properties: Union, concatenation,

Kleene *, complement, intersection, set
difference, reversal, substitution, homomorphism
and quotient with regular sets, Prefix, Suffix,
Substring, Exterior.

• Algorithms for reachable states and states that
can reach some other chosen states.

• Decision properties: Emptiness, finiteness,
equivalence.

117

Formal Languages

Includes and Expands on
Chapter 2 of Sipser

History of Formal Language
• In 1940s, Emil Post (mathematician) devised rewriting systems as a

way to describe how mathematicians do proofs. Purpose was to
mechanize them.

• Early 1950s, Noam Chomsky (linguist) developed a hierarchy of
rewriting systems (grammars) to describe natural languages.

• Late 1950s, Backus-Naur (computer scientists) devised BNF (a
variant of Chomsky’s context-free grammars) to describe the
programming language Algol.

• 1960s was the time of many advances in parsing. In particular,
parsing of context free was shown to be no worse than O(n3). More
importantly, useful subsets were found that could be parsed in O(n).

1/27/22 UCF @ CS 119

Grammars
• G = (V, Σ, R, S) is a Phrase Structured Grammar (PSG)

where
– V: Finite set of non-terminal symbols
– Σ: Finite set of terminal symbols (V ∩ Σ = ∅)
– R: finite set of rules of form α ® β,

• α in (V È Σ)* V (V È Σ)*
• β in (V È Σ)*

– S: a member of V called the start symbol
• Right linear restricts all rules to be of forms

– α in V
– β of form ΣV, Σ or λ

1/27/22 UCF @ CS 120

Derivations
• x Þ y reads as x derives y iff

– x = γαδ, y = γβδ and α ® β
• Þ* is the reflexive, transitive closure of Þ
• Þ+ is the transitive closure of Þ
• x Þ* y iff x = y or x Þ* z and z Þ y
• Or, x Þ* y iff x = y or x Þ z and z Þ* y
• L(G) = { w | S Þ* w and w ∈Σ* } is the

language generated by G.
1/27/22 UCF @ CS 121

Regular Grammars
• Regular grammars are also called right

linear grammars
• Each rule of a regular grammar is

constrained to be of one of the three
forms:
A → l, A ∈ V
A → a, A ∈ V, a ∈ Σ
A → aB, A, B ∈ V, a ∈ Σ

1/27/22 UCF @ CS 122

Example Regular Grammars
G = ({<EVEN>,<ODD>}, {0,1}, R, <EVEN>); R is:
<EVEN> → 0 <EVEN> | 1<ODD>
<ODD> → 1 <EVEN> | 0 <ODD> | l
L(G) = { w | w ∊ {0,1}* and w has odd parity }
G = ({<0>,<1>,<2>}, {0,1}, R, <0>); R is:
<0> → 0<0> | 1<1>
<1> → 0<2> | 1<0> | l
<2> → 0<1> | 1<2>
L(G) = { w | w ∊ {0,1}* and “You tell me” }

1/27/22 UCF @ CS 123

DFA to Regular Grammar
• Every language recognized by a DFA is

generated by an equivalent regular
grammar

• Given A = (Q,Σ,δ,q0,F), L(A) is generated
by GA = (Q,Σ,R,q0) where R contains
q ® as iff δ(q,a) = s, a ∈ Σ
q ® l iff q ∈ F

1/27/22 UCF @ CS 124

Example of DFA to Grammar
• DFA

• Grammar
G = ({A,B,C}, {0,1), R, A), where R is:

A ® 0 B | 1 B
B ® 0 A | 1 C | l
C ® 0 C | 1 A | l

1/27/22 UCF @ CS 125

A CBA:

0

0,1

0

1

1

Regular Grammar to NFA
• Every language generated by a regular grammar

is recognized by an equivalent NFA
• Given G = (V, Σ, R, S), L(G) is recognized by

AG = (V∪{f},Σ,δ,S,{f}) where δ is defined by
δ(A,a) ⊆ {B} iff A → aB
δ(A,a) ⊆ {f} iff A → a
δ(A,l) ⊆ {f} iff A → l

1/27/22 UCF @ CS 126

Example of Grammar to NFA
• Grammar G = ({S,A,B}, {0,1), R, S),

where R is:
S ® 0 S | 1 A
A ® 0 S | 0 A | 1 B | l
B ® 1 S | 0 B
• NFA (can remove f and make A final)

1/27/22 UCF @ CS 127

S BA:

0 0 0
1
0

1

1

A f

λ

What More is Regular?
• Any language, L, generated by a right linear

grammar (A → a, A → l, A → aB)
• Any language, L, generated by a left linear

grammar (A → a, A → l, A → Ba)
– Easy to see L is regular as we can reverse these

rules and get a right linear grammar that generates
LR, but then L is the reverse of a regular language
which is regular

– Similarly, the reverse LR of any regular language L is
right linear and hence the language itself is left linear

1/27/22 UCF @ CS 128

More than One Letter?
• Any language, L, generated by an extended right linear

grammar (A → α, A → l, A → α B)
Any language, L, generated by an extended left linear
grammar (A → α, A → l, A → B α)
where α is a non-zero-length string over the alphabet

• Can just change a rule involving α = a1a2..ak, k> 1 to a series
of k rules

• One is A → a1 A’, where A’ is a new symbol
• If k=2, the other is a2 or a2 B depending on whether we

had A → α or A → α B
• If k>2, then repeat above on the new rule involving

a2a3..ak (either A → a2a3..ak or A → a2a3..ak B)

1/27/22 UCF @ CS 129

Mixing Right and Left Linear
• We can get non-Regular languages if we

present grammars that have both right and left
linear rules

• To see this, consider G = ({S,T}, Σ, R, S), where
R is:
– S → aT
– T → Sb | b

• L(G) = { anbn | n > 0 } which is a classic non-
regular, context-free language

1/27/22 UCF @ CS 130

Context Free Languages

Context Free Grammar
G = (V, S, R, S) is a PSG where
Each member of R is of the form
A ® a where a is a strings (VÈS)*
Note that the left-hand side (lhs) of a rule is a letter in V;
The right-hand side (rhs) is a string from the combined alphabets
The right-hand side can even be empty (e or λ)
A context free grammar is denoted as a CFG and the language
generated is a Context Free Language (CFL).
A CFL is recognized by a Push Down Automaton (PDA) to be
discussed a bit later.

1/27/22 UCF @ CS 132

Classic CFLs
L1 = { an bn | n ≥ 0 }
G = ({S}, {a,b}, R, S) is a CFG where R is:
S ® a S b | λ

L2 = { w wR | w ∊ {a,b}* }
G = ({S}, {a,b}, R, S) is a CFG where R is:
S ® a S a | b S b | λ

L3 = { w | w ∊ {a,b}* and the number of a’s is the same as b’s}
G = ({S}, {a,b}, R, S) is a CFG where R is:
S ® a S b S | b S a S | λ
Culd also do S ® S a S b S | S b S a S | λ

1/27/22 UCF @ CS 133

More CFLs
Gi = ({S}, {a,b}, Ri, S) is a CFG where:

R1: S ® a S b | a | a S L1 = { am bn | m >n }

R2: S ® a S a | b S b | λ | a | b L2 = { w | w is a palindrome over {a,b} }

1/27/22 UCF @ CS 134

Sample “Useful” CFG
Example of a grammar for a small language:

G = ({<program>, <stmt-list>, <stmt>, <expression>},
{begin, end, ident, ;, =, +, -}, R, <program>) where R is

<program> à begin <stmt-list> end

<stmt-list> à <stmt>; | <stmt> ; <stmt-list>

<stmt> à ident = <expression>

<expression> à ident + ident | ident - ident | ident

Here “ident” is a token return from a scanner, as are “begin”,
“end”, “;”, “=”, “+”, “-”
1/27/22 UCF @ CS 135

Derivation

1/27/22 UCF @ CS 136

A sentence generation is called a derivation.

Grammar for a simple
assignment statement:

R1 <assgn> à <id> = <expr>
R2 <id> à a | b | c
R3 <expr> à <id> + <expr>
R4 | <id> * <expr>
R5 | (<expr>)
R6 | <id>

The statement a = b * (a + c)
Is generated by the leftmost derivation:

<assgn> Þ <id> = <expr> R1
Þ a = <expr> R2
Þ a = <id> * <expr> R4
Þ a = b * <expr> R2
Þ a = b * (<expr>) R5
Þ a = b * (<id> + <expr>) R3
Þ a = b * (a + <expr>) R2
Þ a = b * (a + <id>) R6
Þ a = b * (a + c) R2In a leftmost derivation in that only the

leftmost non-terminal is replaced
This is odd as it treats expression parse as right to left associativity
even without parentheses used here

Parse Trees

1/27/22 UCF @ CS 137

A parse tree is a graphical representation of a derivation
For instance, the parse tree for the statement a = b * (a + c) is:

<assign>

<id> = <expr>

a <id> * <expr>

b (<expr>)

<id> + <expr>

a <id>

c

Every internal node of a
parse tree is labeled with
a non-terminal symbol.

Every leaf is labeled with a
terminal symbol.

The generated string is read
left to right

Ambiguity
A grammar that generates a sentence for which there are two or more
distinct parse trees is said to be “ambiguous”

For instance, the following grammar is ambiguous because it generates
distinct parse trees for the expression a = b + c * a

<assgn> à <id> = <expr>
<id> à a | b | c
<expr> à <expr> + <expr>

| <expr> * <expr>
| (<expr>)
| <id>

1/27/22 UCF @ CS 138

Ambiguous Parse

1/27/22 UCF @ CS 139

This grammar generates two parse trees for the same expression.

If a language structure has more than one parse tree, the semantic
meaning of the structure cannot be determined uniquely.

<assign>

<id> = <expr>

A <expr> + <expr>

<id> <expr> * <expr>

B <id> <id>

C A

<assign>

<id> = <expr>

A <expr> * <expr>

<expr> + <expr> <id>

<id> <id> A

B C

Precedence

1/27/22 UCF @ CS 140

Operator precedence:
If an operator is generated lower in the parse tree, it indicates that the
operator has precedence over the operator generated higher up in the tree.

An unambiguous grammar for expressions:

<assign> à <id> = <expr>
<id> à a | b | c
<expr> à <expr> + <term>

| <term>
<term> à <term> * <factor>

| <factor>
<factor> à (<expr>)

| <id>

This grammar indicates the usual
precedence order of multiplication and
addition operators.

This grammar generates unique parse
trees independently of doing a
rightmost or leftmost derivation

Left (right)most Derivations

1/27/22 UCF @ CS 141

Rightmost derivation:
<assgn> Þ <id> = <expr>

Þ <id> = <expr> + <term>
Þ <id> = <expr> + <term> *<factor>
Þ <id> = <expr> + <term> *<id>
Þ <id> = <expr> + <term> * a
Þ <id> = <expr> + <factor> * a
Þ <id> = <expr> + <id> * a
Þ <id> = <expr> + c * a
Þ <id> = <term> + c * a
Þ <id> = <factor> + c * a
Þ <id> = <id> + c * a
Þ <id> = b + c * a
Þ a = b + c * a

Leftmost derivation:
<assgn> à <id> = <expr>

à a = <expr>
à a = <expr> + <term>
à a = <term> + <term>
à a = <factor> + <term>
à a = <id> + <term>
à a = b + <term>
à a = b + <term> *<factor>
à a = b + <factor> * <factor>
à a = b + <id> * <factor>
à a = b + c * <factor>
à a = b + c * <id>
à a = b + c * a

Ambiguity Test
• A Grammar is Ambiguous if there are two

distinct parse trees for some string
• Or, two distinct leftmost derivations
• Or, two distinct rightmost derivations
• Some languages are inherently ambiguous, but

many are not
• Unfortunately (to be shown later) there is no

systematic (algorithmic) test for ambiguity
ofarbitrary context free grammars

1/27/22 UCF @ CS 142

Unambiguous Grammar
When we encounter ambiguity, we try to rewrite the grammar to avoid
ambiguity.

The ambiguous expression grammar:

<expr> à <expr> <op> <expr> | id | int | (<expr>)
<op> à + | - | * | /

Can be rewritten as:

<expr> à <term> | <expr> + <term> | <expr> - <term>
<term> à <factor> | <term> * <factor> | <term> / <factor>.
<factor> à id | int | (<expr>)

1/27/22 UCF @ CS 143

Parsing Problem
The parsing Problem: Take a string of symbols in a language (tokens)
and use a grammar for that language to construct the parse tree or
report that the sentence is syntactically incorrect.

For correct strings:

Sentence + grammar à parse tree

For a compiler, a sentence is a program:

Program + grammar à parse tree

Types of parsers:

Top-down aka predictive (recursive descent parsing)

Bottom-up aka shift-reduce

1/27/22 UCF @ CS 144

Inherent Ambiguity
• There are some CFLs that are inherently

ambiguous and others for which we may
just have carelessly written an ambiguous
grammar.

• We will see later in course that it is not
possible to inspect an arbitrary CFG and
determine if it is unambiguous.

• However, parsers must be unambiguous
to avoid semantic ambiguity.

1/27/22 UCF @ CS 145

Not All is Lost
• Just because we cannot determine ambiguity of a grammar

does not mean we cannot have a subclass of grammars that
are guaranteed to be unambiguous and that can be used to
generate precisely the set of unambiguous CFLs.

• Note the distinction between the class of unambiguous CFGs
and unambiguous CFLs.
– Every CFL has an infinite number of CFGs
– Some of the CFGs for an unambiguous CFL are

unambiguous; some are not
– Every unambiguous CFL has some grammars that are in

forms that can be recognized as unambiguous and are the
bases of parsers that run in linear time

1/27/22 UCF @ CS 146

LR(k) and LL(k) Grammars
• An LL(k) grammar is a grammar that can

drive a top-down parse by always making
the right parsing decision with just k
tokens of lookahead.

• An LR(k) grammar is a grammar that can
drive a bottom-up parse by always making
the right parsing decision with just k
tokens of lookahead.

1/27/22 UCF @ CS 147

LL(k) Grammars
• LL means we read the input from left-to-right using a

leftmost derivation with a correct decision requiring just k
tokens of lookahead.

• There is an algorithm to determine, for any given k,
whether an arbitrary CFG is LL(k).

• LL(k+1) grammars can generate languages that cannot
be generated by LL(k) ones.

• Lim k➞∞ LL(k) gets all unambiguous CFLs.
• All programming languages you work with are LL(1) so

long as we cheat and use a symbol table.
• LL parsers hate left recursion
1/27/22 UCF @ CS 148

LR(k) Grammars
• LR means we read the input from left-to-right using a

rightmost derivation run in reverse with a correct
decision requiring just k tokens of lookahead.

• There is an algorithm to determine, for any given k,
whether an arbitrary CFG is LR(k).

• LR(1) grammars are sufficient to generate any and all
unambiguous CFLs.

• All programming languages you work with are LR(1) so
long as we cheat and use a symbol table.

• LR parsers hate right (tail) recursion.

1/27/22 UCF @ CS 149

Removing Left Recursion if
doing Top Down

Given left recursive and non left recursive rules
A ® Aa1 | … | Aan | b1 | … | bm

Can view as
A ® (b1 | … | bm) (a1 | … | an)*
Star notation is an extension to normal notation with
obvious meaning
Now, it should be clear this can be done right recursively as
A ® b1B | … | bm B
B ® a1B| … | anB | λ

1/27/22 UCF @ CS 150

Left to Right Recursive
Expressions

Grammar: Expr à Expr + Term | Term
Term à Term * Factor | Factor
Factor à (Expr) | Int

Fix: Expr à Term ExprRest
ExprRest à + Term ExprRest | l
Term à Factor TermRest
TermRest à * Factor TermRest | l
Factor à (Expr) | Int

1/27/22 UCF @ CS 151

Removing Right Recursion if
doing Bottom Down

Given left recursive and non left recursive rules
A ® a1 A | … | an A | b1 | … | bm

Can view as
A ® (a1 | … | an)* (b1 | … | bm)
Star notation is an extension to normal notation with
obvious meaning
Now, it should be clear this can be done right recursively as
A ® B b1 | … | B bm

B ® B a1 | … | B an | λ

1/27/22 UCF @ CS 152

Bottom Up vs Top Down
• Bottom-Up: Two stack operations (shift/reduce)

– Shift (move input symbol to stack)
– Reduce (replace top of stack a with A, when A ® a)
– Challenge is when to do shift or reduce and what reduce to do.

• Can have both kinds of conflict (shift-reduce, reduce-reduce)

• Top-Down: (predictive)
– If top of stack is terminal

• If same as input, read and pop
• If not, we have an error

– If top of stack is a non-terminal A
• Replace A with some a, when A ® a
• Challenge is what A-rule to use

1/27/22 UCF @ CS 153

Recursive Descent Parsing
Recursive Descent parsing uses recursive procedures to model the
parse tree to be constructed. The parse tree is built from the top down,
trying to construct a left-most derivation.

Beginning with start symbol, for each non-terminal (syntactic class) in
the grammar a procedure which parses that syntactic class is
constructed.

Consider the expression grammar:
E à T E’
E’ à + T E’ | λ
T à F T’
T’ à * F T’ | λ
F à (E) | id

The following procedures can parse strings top-down in this language:
1/27/22 © UCF EECS 154

Recursive Descent Example

1/27/22 © UCF EECS 155

Procedure E
begin { E }

call T
call E’
print (“ E found ”)

end { E }

Procedure E’
begin { E’ }

If token = “+” then
begin { IF }
print (“ + found “)
Get next token
call T
call E’

end { IF }
print (“ E’ found “)

end { E’ }

Procedure T
begin { T }

call F
call T’
print (“ T found ”)

end { T }

Procedure T’
begin { T’ }

If token = “ * ” then
begin { IF }
print (“ * found “)
Get next token
call F
call T’

end { IF }
print (“ T’ found “)

end { T’ }

Procedure F
begin { F }

case token is
“(“:

print (“ (found ”)
Get next token
call E
if token = “)” then
begin { IF }

print (“) found”)
Get next token
print (“ F found “)

end { IF }
else
call ERROR

“id“:
print (“ id found ”)
Get next token
print (“ F found “)

otherwise:
call ERROR

end { F }

Reduced CFG
• No Nullable (A ® λ) unless λ is in language; if so, we

can have S ® λ, provided S appears on no rhs
• No chain (unit) rules (A ® B)
• No non-productive non-terminal symbols (variables);

a variable, A, is productive if A Þ+ w for some w ∊ Σ*
• No useless symbols; a symbol is useless is it never

appears in a syntactic form that is derivable from the
start symbol

1/27/22 UCF @ CS 156

Nullable Symbols
• Let G = (V, S, R, S) be an arbitrary CFG
• Compute the set Nullable(G) = {A | A ⇒* l }
• Nullable(G) is computed as follows

Nullable(G) ⊇ { A | A → l }
Repeat

Nullable(G) ⊇ { B | B → a and a ∈ Nullable* }
until no new symbols are added

1/27/22 UCF @ CS 157

Removal of l-Rules
• Let G = (V, S, R, S) be an arbitrary CFG
• Compute the set Nullable(G)
• Remove all l-rules
• For each rule of form B → aAb where A is nullable, add

in the rule B → ab
• The above has the potential to greatly increase the

number of rules and add unit rules
(those of form B → C, where B,C∈V)

• If S is nullable, add new start symbol S0, as new start
state, plus rules S0, → l and S0 → a, where S → a

1/27/22 UCF @ CS 158

Chains (Unit Rules)
• Let G = (V, S, R, S) be an arbitrary CFG that has

had its l-rules removed
• For A∈V, Chain(A) = { B | A ⇒* B, B∈V }
• Chain(A) is computed as follows

Chain(A) ⊇ { A }
Repeat

Chain(A) ⊇ { C | B → C and B ∈ Chain(A) }
until no new symbols are added

1/27/22 UCF @ CS 159

Removal of Unit-Rules
• Let G = (V, S, R, S) be an arbitrary CFG that has had its
l-rules removed, except perhaps from start symbol

• Compute Chain(A) for all A∈V
• Create the new grammar G = (V, S, R, S) where R is

defined by including for each A∈V, all rules of the form
A → a, where B → a ∈ R, a ∉ V and B ∈ Chain(A)
Note: A∈Chain(A) so all its non-unit-rules are included

1/27/22 UCF @ CS 160

Non-Productive Symbols
• Let G = (V, S, R, S) be an arbitrary CFG that has had its
l-rules and unit-rules removed

• Non-productive non-terminal symbols never lead to a
terminal string (not productive)

• Productive(G) is computed by
Productive(G) ⊇ { A | A → a, a∈S* }
Repeat

Productive(G) ⊇ { B | B → a, a∈(S∪Productive)* }
until no new symbols are added

• Keep only those rules that involve productive symbols
• If no rules remain, grammar generates nothing

1/27/22 UCF @ CS 161

Unreachable Symbols
• Let G = (V, S, R, S) be an arbitrary CFG that has had its l-

rules, unit-rules and non-productive symbols removed
• Unreachable symbols are ones that are inaccessible from

start symbol
• We compute the complement (Useful)
• Useful(G) is computed by

Useful(G) ⊇ { S }
Repeat

Useful(G) ⊇ { C | B → aCb, C∈V∪Σ, B∈ Useful(G) }
until no new symbols are added

• Keep only those rules that involve useful symbols
• If no rules remain, grammar generates nothing

1/27/22 UCF @ CS 162

Chomsky Normal Form
• Each rule of a reduced CFG whose rules

are constrained to be of one of the three
forms:
A → a, A ∈ V, a ∈ Σ
A → BC, A,B,C ∈ V

• If the language contains l then we allow
S → l
and constrain non-terminating rules to be
A → BC, A ∈ V, B,C ∈ (V - {S})

1/27/22 UCF @ CS 163

CFG to CNF
• Let G = (V, S, R, S) be arbitrary reduced CFG
• Define G’=(V ∪ { <a> | a∈Σ }, S, R, S)
• Add the rules <a> → a, for all a ∈ Σ
• For any rule, A → a, |a| > 1, change each terminal

symbol, a, in a to the non-terminal <a>
• Now, for each rule A → BCa, |a| > 0, introduce the new

non-terminal B<Ca>, and replace the rule A → BCa with
the rule A → B<Ca> and add the rule <Ca> → Ca

• Iteratively apply the above step until all rules are in CNF

1/27/22 UCF @ CS 164

Example of CNF Conversion

Starting Grammars
• L = { ai bj ck | i=j or j=k }
• G = ({S,A,<B=C>,C,<A=B>}, {a,b}, R, S)
• R:

– S à A | C
– A à a A | <B=C>
– <B=C> à b <B=C> c | λ
– C à C c | <A=B>
– <A=B> à a <A=B> b | λ

1/27/22 UCF @ CS 166

Remove Null Rules
• Nullable = {<B=C>, <A=B>, A, C, S}

– S’ à S | λ // S’ added to V
– S à A | C
– A à a A | a |<B=C>
– <B=C> à b <B=C> c | b c
– C à C c | c | <A=B>
– <A=B> à a <A=B> b | ab

1/27/22 UCF @ CS 167

Remove Unit Rules
• Chains=

{[S’:S’,S,A,C,<A=B>,<B=C>],[S:S,A,C,<A=B>,<
B=C>],
[A:A,<B=C>],[C:C,<B=C>],[<B=C>:<B=C>],
[<A=B>:<A=B>]}
– S’ à λ | aA | a | b<B=C>c | bc | Cc | c | a<A=B>b | ab
– S à aA | a | b<B=C>c | bc | Cc | c | a<A=B>b | ab
– A à aA | a | b<B=C>c | bc
– <B=C> à b<B=C>c | bc
– C à Cc | c | a<A=B>b | ab
– <A=B> à a<A=B>b | ab

1/27/22 UCF @ CS 168

Remove Useless Symbols
• All non-terminal symbols are productive (lead

to terminal string)

• S is useless as it is unreachable from S’ (new
start).

• All other symbols are reachable from S’

1/27/22 UCF @ CS 169

Normalize rhs as CNF
• S’ à λ | <a>A | a | <<B=C><c>> | <c> |

C<c> | c | <a><<A=B>> | <a>
• A à <a>A | a |<<B=C><c>> | <c>
• <B=C> à <<B=C><c>> | <c>
• C à C<c> | c | <a><<A=B>> | <a>
• <A=B> à <a> <<A=B>> | <a>
• <<B=C><c>> à <B=C><c>
• <<A=B>> à <A=B>
• <a> à a
• à b
• <c> à c

1/27/22 UCF @ CS 170

CKY (Cocke, Kasami, Younger)
O(N3) PARSING

1/27/22 UCF @ CS 171

Dynamic Programming
To solve a given problem, we solve small parts of the problem
(subproblems), then combine the solutions of the subproblems to reach
an overall solution.
The Parsing problem for arbitrary CFGs was elusive, in that its
complexity was unknown until the late 1960s. In the meantime,
theoreticians developed notion of simplified forms that were as powerful
as arbitrary CFGs. The one most relevant here is the Chomsky Normal
Form – CNF. It states that the only rule forms needed are:

A ® BC where B and C are non-terminals
A ® a where a is a terminal

This is provided the string of length zero is not part of the language.

1/27/22 UCF @ CS 172

CKY (Bottom-Up Technique)
Let the input string be a sequence of n letters a1 ... an.
Let the grammar contain r terminal and nonterminal symbols R1 ... Rr,
Let R1 be the start symbol.
Let P[n,n] be an array of Sets over {1,…n}. Initialize all elements of P to empty ({}).
For each col = 1 to n

For each unit production X → ai, set add X to P[1,col].
For each row = 2 to n

For each col = 1 to n-row+1
For each row2 = 1 to row-1

if B ∈ P[row2,col] and C ∈ P[row-row2,col+row2] and A -> B C then
add A to P[row,col]

If R1 ∈ P[n,n] is true then a1 ... an is member of language
else a1 ... an is not a member of language

1/27/22 UCF @ CS 173

CKY Parser
Present the CKY recognition matrix for the string abba assuming the Chomsky
Normal Form grammar, G = ({S,A,B,C,D,E}, {a,b}, R, S), specified by the rules R:

S ® AB | BA
A ® CD | a
B ® CE | b
C ® a | b
D ® AC
E ® BC

1/27/22 UCF @ CS 174

a b b a
1 A,C B,C B,C A,C
2 S,D E S,E
3 B B
4 S,E

2nd CKY Example

1/27/22 UCF @ CS 175

a - a + a - a
1 E M E P E M E

2 E, F E, F E, F

3 E E E

4 E, F E, F

5 E E

6 E, F

7 E

E ® E F | M E | P E | a
F ® M F | P F | M E | P E
P ® +
M ® -

Pumping Lemma for
Context Free Languages

What is not a CFL

CFL Pumping Lemma
Concept

• Let L be a context free language then there is CNF grammar
G = (V, Σ, R, S) such that L(G) = L.

• As G is in CNF all its rules that allow the string to grow are of the form
A ➝ BC, and thus growth has a binary nature.

• Any sufficiently long string z in L will have a parse tree that must have deep
branches to accommodate z’s growth.

• Because of the binary nature of growth, the width of a tree with maximum
branch length k at its deepest nodes is at most 2k; moreover, if the frontier
of the tree is all terminals, then the string so produced is of length at most
2k-1; since the last rule applied for each leaf is of the form A ➝ a.

• Any terminal branch in a derivation tree of height > |V| has more than |V|
internal nodes labelled with non-terminals. The “pigeonhole principle” tells
us that whenever we visit |V| +1 or more nodes, we must use at least one
variable label more than once. This creates a self-embedding property that
is key to the repetition patterns that occur in the derivation of sufficiently
long strings.

1/27/22 UCF @ CS 177

Pumping Lemma For CFL
• Let L be a CFL then there exists an N>0 such

that, if z Î L and |z| ≥ N, then z can be written in
the form uvwxy, where |vwx| ≤ N, |vx|>0, and for
all i≥0, uviwxiy Î L.

• This means that interesting context free
languages (infinite ones) have a self-embedding
property that is symmetric around some central
area, unlike regular where the repetition has no
symmetry and occurs at the start.

1/27/22 UCF @ CS 178

Pumping Lemma Proof
• If L is a CFL then it is generated by some CNF grammar, G = (V, Σ,

R, S). Let |V| = k. For any string z, such that |z| ≥ N = 2k, the
derivation tree for z based on G must have a branch with at least
k+1 nodes labelled with variables from G.

• By the PigeonHole Principle at least two of these labels must be the
same. Let the first repeated variable be T and consider the last two
instances of T on this path.

• Let z = uvwxy, where S ⇒* uTy ⇒* uvTxy ⇒* uvwxy
• Clearly, then, we know S ⇒* uTy; T ⇒* vTx; and T ⇒* w
• But then, we can start with S ⇒* uTy; repeat T ⇒* vTx zero or more

times; and then apply T ⇒* w.
• But then, S ⇒* uviwxiy for all i≥0, and thus uviwxiy Î L, for all i ≥0.

1/27/22 UCF @ CS 179

Visual Support of Proof

1/27/22 UCF @ CS 180

T

T

T

T

T

2 =i 0 =i
T

S S S

u v w x y

w

u yu v x y

v w x

Lemma’s Adversarial Process
• Assume L = {anbncn | n>0 } is a CFL
• P.L.: Provides N>0 We CANNOT choose N; that’s the P.L.’s job
• Our turn: Choose aNbNcN Î L We get to select a string in L
• P.L.: aNbNcN = uvwxy, where |vwx| ≤ N, |vx|>0, and for all i≥0,

uviwxiy Î L We CANNOT choose split, but P.L. is constrained by N
• Our turn: Choose i=0. We have the power here
• P.L: Two cases:

(1) vx contains some a’s and maybe some b’s. Because |vwx| ≤ N, it
cannot contain c’s if it has a’s. i=0 erases some a’s but we still have N c’s so
uwy∉L
(2) vx contains no a’s. Because |vx|>0, vx contains some b’s or c’s or some
of each. i=0 erases some b’s and/or c’s but we still have N a’s so uwy∉L

• CONTRADICTION, so L is NOT a CFL

1/27/22 UCF @ CS 181

Second Example: PL for CFL
• Assume L = { ww | w ∈ {a,b}+ } is a CFL
• P.L.: Provides N>0 We CANNOT choose N; that’s the P.L.’s job
• Our turn: Choose aNbNaNbN Î L We get to select a string in L
• P.L.: aNbNaNbN = uvwxy, where |vwx| ≤ N, |vx|>0, and for all i≥0,

uviwxiy Î L We CANNOT choose split, but P.L. is constrained by N
• Our turn: Choose i=0. We have the power here
• P.L: Two cases:

(1) vx contains some a’s and maybe some b’s. Because |vwx| ≤ N, it
cannot contain a’s from both parts involving a’s. i=0 erases at least one a
from one sequence of a’s but we still have N a’s in the other, so uwy∉L
(2) vx contains no a’s, then it must contain b’s only. Because |vx| >0 and
|vwx| ≤ N, it erases some b’s from just one sequence of b’s but we still have
N b’s in the other portion so uwy∉ L

• CONTRADICTION, so L is NOT a CFL
1/27/22 UCF @ CS 182

Non-Closure
• Intersection ({ anbncn | n≥0 } is not a CFL)

{ anbncn | n≥0 } =
{ anbncm | n,m≥0 } ∩ { ambncn | n,m≥0 }
Both of the above are CFLs

• Complement
If closed under complement, then would
be closed under Intersection as
A ∩ B = ~(~A ∪ ~B)

1/27/22 UCF @ CS 183

Max and Min of CFL
• Consider the two operations on languages max and min, where

– max(L) = { x | x ∈ L and, for no non-null y does xy ∈ L } and
– min(L) = { x | x ∈ L and, for no proper prefix of x, y, does y ∈ L }

• Describe the languages produced by max and min. for each of :
– L1 = { ai bj ck | k ≤ i or k ≤ j } CFL

• max(L1) = { ai bj ck | k =max(i, j) } Non-CFL
• min(L1) = { λ } (string of length 0) Regular

– L2 = { ai bj ck | k ≥ i or k ≥ j } CFL
• max(L2) = { } (empty) Regular
• min(L2) = { ai bj ck | k =min(i, j) } Non-CFL

• max(L1) shows CFL not closed under max
• min(L2) shows CFL not closed under min

1/27/22 UCF @ CS 184

Complement of ww
• Let L = { ww | w ∈ {a,b}+ }. L is not a CFL
• Consider L’s complement, it must be of form xayx’by’ or xbyx’ay’,

where |x|=|x’| and |y|=|y’| or else it’s an odd length string
• The hard part above reflects that this language contains even length

items with one “transcription error”
• It seems hard to write a CFG but it’s all a matter of how you view it
• We don’t care about what precedes or follows the errors so long as

the lengths are right
• Thus, we can view above as xax’yby’ or xbx’y’ay’,

where |x|=|x’| and |y|=|y’|
• The grammar for this has rules

S ➝ AB | BA | <ODD>; A ➝ XAX | a ; B ➝ XBX | b
<ODD> ➝ X | XX <ODD>; X ➝ a | b

1/27/22 UCF @ CS 185

Solvable CFL Problems
• Let L be an arbitrary CFL generated by CFG G

with start symbol S then the following are all
decidable
– Is w in L? Run CKY

If S in final cell, then w∈L
– Is L empty (non-empty)? Reduce G

If no rules left, then empty
– Is L finite (infinite)? Reduce G

Run DFS(S)
If no loops, then finite

1/27/22 UCF @ CS 186

Push Down Automata

CFL Recognizers

Formalization of PDA
• A = (Q, Σ, Γ, δ, q0, Z0, F)
• Q is finite set of states
• Σ is finite input alphabet
• Γ is finite set of stack symbols
• δ : Q×Σe×Γe → 2Q×Γ* is transition function

– Note: Can limit stack push to Γe but it’s equivalent!!
• Z0 ∈ Γ is an optional initial symbol on stack
• F ⊆ Q is final set of states and can be omitted

for some notions of a PDA
1/27/22 UCF @ CS 188

Notion of ID for PDA
• An instantaneous description for a PDA is

[q, w, γ] where
– q is current state
– w is remaining input
– γ is contents of stack (leftmost symbol is top)

• Single step derivation is defined by
– [q,ax,Zα] |— [p,x,βα] if δ(q,a,Z) contains (p,β)

• Multistep derivation (|—*) is the reflexive
transitive closure of single step.

1/27/22 UCF @ CS 189

Language Recognized by PDA
• Given A = (Q, Σ, Γ, δ, q0, Z0, F)

there are three senses of recognition
• By final state

L(A) = {w|[q0,w,Z0] |—* [f,λ,β]}, where f∈F
• By empty stack

N(A) = {w|[q0,w,Z0] |—* [q,λ,λ]}
• By empty stack and final state

E(A) = {w|[q0,w,Z0] |—* [f,λ,λ]}, where f∈F

1/27/22 UCF @ CS 190

Top Down Parsing by PDA
• Given G = (V, Σ, R, S), define

A = ({q}, Σ, Σ∪V, δ, q, S, ϕ)
• δ(q,a,a) = {(q,λ)} for all a ∈ Σ
• δ(q,λ,A) = {(q,α) | A → α ∈ R (guess) }
• N(A) = L(G)

• Has just one state, so is essentially
stateless, except for stack content

1/27/22 UCF @ CS 191

Example Top Down Parsing
by PDA

E à E + T | T
T à T * F | F
F à (E) | Int
•δ(q,+,+) = {(q,λ)}, δ(q,*,*) = {(q,λ)},
•δ(q,Int,Int) = {(q,λ)},
•δ(q,(,() = {(q,λ)}, δ(q,),)) = {(q,λ)}
•δ(q,λ,E) = {(q,E+T), (q,T)}
•δ(q,λ,T) = {(q,T*F), (q,F)}
•δ(q,λ,F) = {(q,(E)), (q,Int)}
1/27/22 UCF @ CS 192

Bottom Up Parsing by PDA
• Given G = (V, Σ, R, S), define

A = ({q,f}, Σ, Σ∪V∪{$}, δ, q, $, {f})
• δ(q,a,λ) = {(q,a)} for all a ∈ Σ , SHIFT
• δ(q,λ,αR) ⊇ {(q,A)} if A → α ∈ R, REDUCE

Cheat: looking at more than top of stack
• δ(q,λ,S) ⊇ {(f,λ)}
• δ(f,λ,$) = {(f,λ)} , ACCEPT
• E(A) = L(G)
• Could also do δ(q,λ,S$)⊇{(q,λ)}, N(A) = L(G)
1/27/22 UCF @ CS 193

Example Bottom Up Parsing
by PDA

E à E + T | T
T à T * F | F
F à (E) | Int
•δ(q,+,λ)={(q,+)}, δ(q,*,λ)={(q,*)}, δ(q,Int,λ)={(q,Int)},
δ(q,(,λ)={(q,()}, δ(q,),λ)={(q,))}
•δ(q,λ,T+E) = {(q,E)}, δ(q,λ,T) ⊇ {(q,E)}
•δ(q,λ,F*T) ⊇ {(q,T)}, δ(q,λ,F) ⊇ {(q,T)}
•δ(q,λ,)E() ⊇ {(q,F)}, δ(q,λ,Int) ⊇ {(q,F)}
•δ(q,λ,E) ⊇ {(f,λ)}
•δ(f,λ,$) = {(f,λ)}
•E(A) = L(G)
1/27/22 UCF @ CS 194

Challenge
• Use the two recognizers on some sets of

expressions like
– 5 + 7 * 2
– 5 * 7 + 2
– (5 + 7) * 2

1/27/22 UCF @ CS 195

Converting a PDA to CFG
• Sipser has one approach; here is another
• Let A = (Q, S, G, d, q0, Z, F) accept L by empty stack and final state
• Define A’ = (QÈ{q0’,f}, S, GÈ{$}, d’, q0’, $, {f}) where

– d’(q0’, λ, $) = {(q0, PUSH(Z)) or in normal notation {(q0, Z$)}
– d’ does what d does but only uses PUSH and POP instructions, always reading top of stack

Note1: we need to consider using the $ for cases of the original machine looking at empty
stack, when using λ for stack check. This guarantees we have top of stack until very end.
Note2: If original adds stuff to stack, we do pop, followed by a bunch of pushes.

– We add (f, λ) = (f, POP) to d’(qf, λ, $) whenever qf is in F, so we jump to a fixed final state.

• Now, wlog, we can assume our PDA uses only POP and PUSH, has just
one final state and accepts by empty stack and final state. We will assume
the original machine is of this form and that its bottom of stack is $.

• Define G = (V, S, R, S) where
– V = {S} È { <q, X, p> | q,p Î Q, X Î G }
– R on next page

1/27/22 UCF @ CS 196

Rules for PDA to CFG
• R contains rules as follows:

S ® <q0,$,f> where F = {f}
meaning that we want to generate w whenever
[q0,w,$] |¾*[f,λ,λ]

• Remaining rules are:
<q,X,p> ® a<s,Y,t><t,X,p>
whenever d(q,a,X) ⊇ {(s,PUSH(Y))}
<q,X,p> ® a
whenever d(q,a,X) ⊇ {(p,POP)}

• Want <q,X,p>Þ*w when [q,w,X] |¾*[p,λ,λ]
1/27/22 UCF @ CS 197

Closure Properties

Context Free Languages

Intersection with Regular
• CFLs are closed under intersection with Regular sets

– To show this we use the equivalence of CFGs generative power
with the recognition power of PDAs (shown later).

– Let A0 = (Q0, S, G, d0, q0, $, F0) be an arbitrary PDA
– Let A1 = (Q1, S, d1, q1, F1) be an arbitrary DFA
– Define A2 = (Q0 ´ Q1, S, G, d2, <q0,q1> $, F0 ´ F1) where

d2(<q,s>, a, X) ⊇ {(<q’,s’>, a)}, aÎSÈ{l}, XÎG iff
d0(q, a, X) ⊇ {(q’, a)} and d1(s,a) = s’ (if a=l then s’ = s).

– Using the definition of derivation, we see that
[<q0,q1>, w, $] |¾* [<t,s>, l, b] in A2 iff
[q0, w, $] |¾* [t, l, b] in A0 and
[q1, w] |¾* [s, l] in A1

But then wÎ L(A2) iff tÎF0 and sÎF1 iff w Î L(A0) and w Î L(A1)

1/27/22 UCF @ CS 199

Substitution
• CFLs are closed under CFL substitution

– Let G=(V,S,R,S) be a CFG
– Let f be a substitution over S such that

• f(a) = La for a Î S
• Ga = (Va,Sa,Ra,Sa) is a CFG that produces La.
• No symbol appears in more than one of V or any Va

– Define Gf = (V ÈaÎSVa, ÈaÎSSa, R’ ÈaÎSRa, S)
• R’ = { A ® g(a) where A ® a is in R }
• g: (VÈS)* ® (V ÈaÎSSa)*
• g(l) = l; g(B) = B, B Î V; g(a) = Sa, a Î S
• g(aX) = g(a) g(X), |a| > 0, X Î VÈS

– Claim, f(L(G)) = L(Gf), and so CFLs closed under substitution and
homomorphism.

1/27/22 UCF @ CS 200

More on Substitution
• Consider G’f. If we limit derivations to the rules

R’ = { A ® g(a) where A ® a is in R } and consider only
sentential forms over the ÈaÎSSa , then
S Þ* Sa1 Sa2 … San in G’ iff S Þ* a1 a2 … an
iff a1 a2 … an Î L(G). But, then w Î L(G) iff f(w) Î L(Gf) and,
thus, f(L(G)) = L(Gf).

• Given that CFLs are closed under intersection, substitution,
homomorphism and intersection with regular sets, we can
recast previous proofs to show that CFLs are closed under
– Prefix, Suffix, Substring, Quotient with Regular Sets

• Later we will show that CFLs are not closed under Quotient
with CFLs.

1/27/22 UCF @ CS 201

Context Sensitive

Will revisit on Complexity Theory

Context Sensitive Grammar
G = (V, S, R, S) is a PSG where
Each member of R is a rule whose right side is no shorter than its left
side.
The essential idea is that rules are length preserving, although we do
allow S ® λ so long as S never appears on the right-hand side of any
rule.
A context sensitive grammar is denoted as a CSG and the language
generated is a Context Sensitive Language (CSL).
The recognizer for a CSL is a Linear Bounded Automaton (LBA), a form
of Turing Machine (soon to be discussed), but with the constraint that it
is limited to moving along a tape that contains just the input surrounded
by a start and end symbol.

1/27/22 UCF @ CS 203

Phrase Structured Grammar
We previously defined PSGs. The language generated by a
PSG is a Phrase Structured Language (PSL) but is more
commonly called a recursively enumerable (re) language.
The reason for this will become evident a bit later in the
course.

The recognizer for a PSL (re language) is a Turing
Machine, a model of computation we will soon discuss.

1/27/22 UCF @ CS 204

CSG Example#1
L = { anbncn | n>0 }
G = ({A,B,C}, {a,b,c}, R, A) where R is
A → aBbc | abc
B → aBbC | abC
Note: A ⇒ aBbc ⇒n an+1(bC)n bc // n>0
Cb → bC // Shuttle C over to a c
Cc → cc // Change C to a c
Note: an+1(bC)n bc ⇒* an+1bn+1cn+1

Thus, A ⇒* anbncn , n>0

1/27/22 UCF @ CS 205

CSG Example#2
L = { ww | w ∈{0,1}+ }
G = ({S,A,X,Z,<0>,<1>}, {0,1}, R, S) where R is
S → 00 | 11 | 0A<0> | 1A<1>
A → 0AZ | 1AX | 0Z | 1X
Z0 → 0Z Z1 → 1Z // Shuttle Z (for owe zero)
X0 → 0X X1 → 1X // Shuttle X (for owe one)
Z<0> → 0<0> Z<1> → 1<0> // New 0 must be on rhs of old 0/1’s
X<0> → 0<1> X<1> → 1<1> // New 1 must be on rhs of old 0/1’s
<0> → 0 // Guess we are done
<1> → 1 // Guess we are done

1/27/22 UCF @ CS 206

Side Commentary

These are slides that will not be
discussed directly but summarize

side comments I have made

Lexical Analysis
In earlier discussions I have alluded to the fact that
compilers have two early phases – lexical and syntax
analysis.
Lexical analysis typically is driven by regular expressions
that specify keywords, operators, special symbols, and
identifiers. The job of lexical analysis is to identify and
characterize these components, called tokens or lexemes,
so syntax analysis can ignore individual characters, treating
categories as terminals, e.g., age and height are both
identifiers, but while is a keyword, and both * and / are
multiplicative operators.

1/27/22 UCF @ CS 208

Syntax Analysis
As noted, syntax analysis depends on lexical analysis to
acquire the tokens associated with an input stream (a
presumed program in some source language).
While lexical analysis has no concept of what tokens mean
when they are contextually laid out, syntax analysis
understands the structure of a valid program. Its job is to
check for syntax errors (bad structural combinations) and
semantic issues related to type mismatch, use before
definition, or function signature errors – these are possible
due to the use of a symbol table even though not
checkable based on pure grammatical analysis.

1/27/22 UCF @ CS 209

Order Analysis
Lexical analysis can be done with a DFA and so this is an
O(N) process.
The cost of syntax analysis using a CFG is bounded above
by O(N2.37) due to CKY but we don’t use arbitrary CFGs
because we are focused on unambiguous CFLs and can
use either an LR(1) (any unambiguous CFL) or LL(1) (any
useful unambiguous CFL) grammar. This gets us O(N)
parsing but requires the use of a symbol table to get
around context sensitive issues.
It seems we could go to Context Sensitive Grammars
(CSGs) to handle typing, etc., but that might put us in (2N)
territory, so we avoid this approach in practice.
1/27/22 UCF @ CS 210

