

COT 6410 Spring 2020 Final Exam Name:

• The Chomsky hierarchy classifies languages (sets over finite alphabets) into four types (Regular,
Context-Free, Context-Sensitive and Phrase-Structured). Associated with each is a grammar type
that generates languages of this type and a machine class that accepts languages of this type. The
grammars have names that correspond to the language type, e.g., Context-Free Grammars. The
machine hierarchy, corresponding to the language types, is Finite State, Pushdown, Linear Bounded
and Turing Machine. All but Pushdown Automata have the same capability whether deterministic or
non-deterministic. Only Finite State Automata have the property that they can be algorithmically
reduced to a minimal form (in this case, minimal state). Undecidability problems abound for all but
Regular Languages. However, all but Phrase-Structured languages have associated algorithms to
determine membership.

• The notation z = <x,y> denotes the pairing function with inverses x = <z>1 and y = <z>2.
• The minimization notation µ y [P(…,y)] means the least y (starting at 0) such that P(…,y) is true.

The bounded minimization (acceptable in primitive recursive functions) notation
µ y (u£y£v) [P(…,y)] means the least y (starting at u and ending at v) such that P(…,y) is true. I
define µ y (u£y£v) [P(…,y)] to be v+1, when no y satisfies this bounded minimization.

• The tilde symbol, ~, means the complement. Thus, set ~S is the set complement of set S, and the
predicate ~P(x) is the logical complement of predicate P(x).

• A function P is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus,
P(x) means P evaluates to true on x, but we can also take advantage of the fact that true is 1 and
false is 0 in formulas like y ´ P(x), which would evaluate to either y (if P(x)) or 0 (if ~P(x)).

• A set S is recursive if S has a total recursive characteristic function cS, such that x Î S Û cS(x).
Note cS is a total predicate. Thus, it evaluates to 0 (false), if x Ï S.

• When I say a set S is Recursively Enumerable (RE), unless I explicitly say otherwise, you may
assume any of the following equivalent characterizations:
1. S is either empty or the range of a total recursive function fS.
2. S is the domain of a partial recursive function gS.

• If I say a function g is partially computable, then there is an index g (we tend to overload the index
as the function name), such that Fg(x) = F(x, g) = g(x). Here F is a universal partially recursive
function.
Moreover, there is a primitive recursive function STP, such that
STP(g, x, t) is 1 (true), just in case g, started on x, halts in t or fewer steps.
STP(g, x, t) is 0 (false), otherwise.
Finally, there is another primitive recursive function VALUE, such that
VALUE(g, x, t) is g(x), whenever STP(g, x, t).
VALUE(g, x, t) is defined but meaningless if ~STP(g, x, t).

• The notation f(x)¯ means that f converges when computing with input x (x Î Dom(f)). The notation
f(x) means f diverges when computing with input x (x Ï Dom(f)).

• When I ask you to show one set of indices, A, is many-one reducible to another, B, denoted
A ≤m B, you must demonstrate a total computable function f, such that x Î A Û f(x) Î B. The
stronger relationship is that A and B are many-one equivalent, A ºm B, requires that you show
A ≤m B and B ≤m A. The related notion of one-one reducibility and equivalence require that the
reducing function, f above, be 1-1. The notation just replaces the m with a 1, as in A ≤1 B. We can
also replace the m or 1 with a t, as in A ≤t B, to indicate the notion of Turing reducibility. When we
say A ≤t B, we mean there is some computable algorithm that uses an Oracle for B to solve A.

COT 6410 – 2 – Spring 2020: Final – Hughes

COT 6410 – 3 – Spring 2020: Final – Hughes

• The Halting Problem for any effective computational system is the problem to determine of an
arbitrary effective procedure f and input x, whether or not f(x)¯. The set of all such pairs, K0, is a
classic re non-recursive set. K0 is also known as Lu, the universal language. The related set, K, is the
set of all effective procedures f such that f(f)¯ or more precisely Ff(f). K and K0 are classic RE-
Complete sets, meaning that every RE set many-one reduces to these hardest RE sets.

• The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure f,
whether or not f is an algorithm (halts on all input). This set, TOTAL, is a classic non-RE, non-Co-
RE set. It is also called RE-Hard in our terminology.

• In the computability domain, we usually categorize problems as Recursive, Recursively
Enumerable (RE), Co-Recursively Enumerable (co-RE), RE-Complete, Co-RE-Complete, and
RE-Hard (my own term to describe a set for which we can show a Turing reduction from some RE-
Complete, e.g., TOTAL is RE-Hard since K ≤t TOTAL).

• When I ask for a reduction of one set of indices to another, the formal rule is that you must produce a
function that takes an index of one function and produces the index of another having whatever
property you require. However, I allow some laxness here. You can start with a function, given its
index, and produce another function, knowing it will have a computable index. For example, given f,
a unary function, I might define Gf, another unary function, by
Gf(0) = f(0); Gf(y+1) = Gf(y) + f(y+1)
This would get Gf(x) as the sum of the values of f(0)+f(1)+…+f(x).

• The Post Correspondence Problem (PCP) is known to be undecidable. This problem is
characterized by instances that are described by a number n>0 and two n-ary sequences of non-
empty words <x1,x2,…,xn>, <y1,y2,…,yn>. The question is whether or not there exists a sequence,
i1,i2,…,ik, such that 1≤ij≤n, 1≤j≤k, and xi1xi2

…xik = yi1yi2
…yik

• The related notion of polynomial reducibility and equivalence require that the reducing function, f
above, be computable in polynomial time in the size of the instance of the element being checked.
The notation just replaces the m with a p, as in A ≤p B and A ºp B.

• A decision problem R is in NP if it can be solved by a non-deterministic Turing machine in
polynomial time. Alternatively, Q is in NP if a proposed proof of any instance having answer yes
can be verified by a deterministic Turing machine in polynomial time. The set Co-NP contains the
complements of all problems in NP.

• A decision problem R is NP-Complete if and only if it is in NP and, for any problem Q in NP, it is
the case that Q ≤p R. A decision problem R is Co-NP-Complete if and only if it is in Co-NP and,
for any problem Q in Co-NP, it is the case that Q ≤p R.

• A function problem (typically optimization problem) F is NP-Hard if and only if there is an NP-
Complete problem Q that is polynomial time Turing-reducible (≤tp) to F. By saying Q ≤tp F, we
mean that Q can be solved in polynomial time so long as it has an oracle for F. We often limit our
domain of consideration to decision problems when talking of NP-Hard, but the concept also
applies to function problems, especially to optimizations of problems in NP-Complete.

• A function problem F is NP-Easy if and only if it is polynomial time Turing-reducible (≤tp) to some
NP problem Q. By saying F ≤tp Q, we mean that F can be solved in polynomial time so long as it
has an oracle for Q.

• A function problem F is NP-Equivalent if and only if it is both NP-Hard and NP-Easy.

COT 6410 Spring2020 Sample Final Exam

 1. Let set A be infinite recursive, B be re non-recursive and C be non-re. Using the terminology
(REC) recursive, (RE) re, non-recursive, (NR) non-re (possibly co-re), categorize each set by
dealing with the cases I present, saying whether or not the set can be of the given category and
briefly, but convincingly, justifying each answer (BE COMPLETE). You may assume sets like À
are infinite REC; K and K0 are RE; and TOTAL is non-re. You may also assume, for any set S, the
existence of comparably hard sets
SE = {2x|xÎS} and SD = {2x+1|xÎS}.

a.) A + B = { x | x = y + z, for some y Î A and some z Î B }
REC:

b.) A Ç C = { x | x Î A and x Î C and x Ï A }

RE:

 2. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive,
(NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by
showing some minimal quantification of some known recursive predicate.

a) A = { <f,g> | $x jf(x)¯ and jg(x) = jf(x) }.

b.) B = { f | range(jf) is empty }

c.) C = { <f ,x> | jf(x)¯ but takes at least 10 steps to do so }

d.) D = { f | jf diverges for some value of x }

 3. Looking back at Question 1, which of these are candidates for using Rice’s Theorem to show their

unsolvability? Check all for which Rice Theorem might apply.

 a) b) c) d)

 4. Let S be an arbitrary semi-decidable set. By definition, S is the domain of some partial recursive

function gS. Using gS, constructively show that S is the range of some partial recursive function, fS.
No proof is required; just the construction is needed here.

COT 6410: Spring 2020 – 2 – Sample Final – Hughes

 5. Using the definition that S is recursively enumerable iff S is the range of some effective procedure fS

(partial recursive function), prove that if both S and its complement ~S are recursively enumerable
(using enumerating effective procedures fS and f~S) then S is decidable. To get full credit, you must
show the characteristic function for S, cS, in all cases. Also, be sure to discuss why your cS works.

 6. Rice’s Theorem deals with attributes of certain types of problems P about partial recursive functions
and their corresponding sets of indices SP. The following image describing a function fx,y,r is central
to understanding Rice’s Theorem.

Explain the meaning of this by indicating:

 a.) What assumption do we make about what kind of functions are not in P?

 b.) What is r, how is it chosen and how can we guarantee its existence?

 c.) Using recursive function notations, write down precisely what fx,y,r computes for the Strong Form of
Rice’s Theorem.

 How does this function fx,y,r behave with respect to x,y and r, and how does that relate to the

original problem, P, and set, SP?

x
y

j
x
(y)

j
r
(z) z

f
x,y,r

(z)

COT 6410: Spring 2020 – 3 – Sample Final – Hughes

 7. Define NAT = { f | range(f) = À }. That is, f ÎNAT iff f’s range includes every natural number.
 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound

for the complexity of NAT.

 b.) Use Rice’s Theorem to prove that NAT is undecidable.

 c.) Show that TOT ≤m NAT, where TOT = { f | "x jf(x)¯ }.

 8. Why does Rice’s Theorem have nothing to say about the following? Explain by showing some

condition of Rice’s Theorem that is not met by the stated property.
 AT-LEAST-LINEAR = { f | "y jf(y) converges in no fewer than y steps }.

 9. Consider the following set of independent tasks with associated task times:

(T1,4), (T2,5), (T3,2), (T4,7), (T5,1), (T6,4), (T7,8)
Fill in the schedules for these tasks under the associated strategies below.
Greedy using the list order above:

Greedy using a reordering of the list so that longest running tasks appear earliest in the list:

COT 6410: Spring 2020 – 4 – Sample Final – Hughes

10. We described the proof that 3SAT is polynomial reducible to Subset-Sum. You must repeat that.

 a.) Assuming a 3SAT expression (a + a + ~b) (~a + b + c), fill in all omitted values (zeroes elements
can be left as omitted) of the reduction from 3SAT to Subset-Sum.

 a b c a + a + ~b ~a + b + c
a

~a
b

~b
c

~c
C1
C1’
C2
C2’

 1 1 1 3 3

 b.) List some subset of the numbers above (each associated with a row) that sums to 1 1 1 3 3. Indicate
what the related truth values are for a, b and c.

 11. Present a gadget used in the reduction of 3-SAT to some graph theoretic problem where the gadget

guarantees that each variable is assigned either True or False, but not both. Of course, you must tell
me what graph theoretic problem is being shown NP-Complete and you must explain why the
gadget works.

COT 6410: Spring 2020 – 5 – Sample Final – Hughes

 12. Let Q be some problem (an optimization or decision problem). Assuming ≤ p means many-one

reducible in polynomial time and ≤ tp means Turing-reducible in polynomial time, categorize Q as
being in one of P, NP, co-NP, NP-Complete, NP-Easy, NP-Hard, or NP-Equivalent (see first two
pages for definitions of each of these concepts). For each case, choose the most precise category. I
filled in one answer already.

Description of Q Category
Q is decidable in deterministic polynomial time
For some R in NP, Q ≤ tp R
Q is both NP-Easy and NP-Hard
Q is in NP and if R is in NP then R ≤ p Q
A solution to Q is verifiable in deterministic polynomial time
Q’s complement is in NP

 13. A graph G is k-Colorable if its vertices can be colored using just k (or fewer colors) such that

adjacent vertices have different colors. The Chromatic Number of a graph G is the smallest number
k for which G is k-Colorable. k-Colorable is a decision problem that has parameters (G, k),
whereas the Chromatic Number problem is a function with a single parameter G. In all cases,
assume G has n vertices.

 a.) Show that k-Colorable ≤ tp Chromatic Number (≤ tp means Turing reducible in polynomial time).

 b.) Show that Chromatic Number ≤ tp k-Colorable (≤ tp means Turing reducible in polynomial time).

 14. Partition refers to the decision problem as to whether some set of positive integers S can be

partitioned into two disjoint subsets whose elements have equal sums. Subset-Sum refers to the
decision problem as to whether there is a subset of some set of positive integers S that precisely
sums to some goal number G.

 a.) Show that Partition ≤p Subset-Sum.

 b.) Show that Subset-Sum ≤p Partition.

COT 6410: Spring 2020 – 6 – Sample Final – Hughes

 15. QSAT is the decision problem to determine if an arbitrary fully quantified Boolean expression is

true. Note: SAT only uses existential, whereas QSAT can have universal qualifiers as well so it
includes checking for Tautologies as well as testing Satisfiability. What can you say about the
complexity of QSAT (is it in P, NP, NP-Complete, NP-Hard)? Justify your conclusion.

 16. Given the following instance of 2SAT, E=(a ∨ b) ∧ (¬a ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (a ∨ c), display the
associated implication graph, show its strongly connected components and then show how this leads
to an assignment of variables that satisfies E.

COT 6410: Spring 2020 – 7 – Sample Final – Hughes

 17. Specify True (T) or False (F) for each statement.

Statement T or F
Every Regular Language is also a Context Free Language
Phrase Structured Languages are the same as RE Languages
The Context Free Languages are closed under Complement
A language is recursive iff it and its complement are re
PCP is undecidable even for one letter systems
Membership in Context Sensitive Languages is undecidable
Every RE language is Turing reducible to its complement
Emptiness is undecidable for Context Sensitive Languages
The complement of a trace language is Context Free
The word problem for two-letter Semi-Thue Systems is decidable

 18. Consider the following graph. We wish to show it has vertex cover solution of 3. Our approach is to
reduce this to the 2SAT related problem of determine if we can satisfy some associated positive
2SAT expression, S, so that the minimum solution for S involves at most 3 variables being set to
true? What is that corresponding positive 2SAT expression S? What is a minimal positive solution
for the expression S and the vertex cover solution for the graph with which we started?

 19. Let L be an arbitrary CFL. Show that L = L2 is undecidable by reducing L = S* to L = L2.

A

B

E

D

C

F

COT 6410: Spring 2020 – 8 – Sample Final – Hughes

Alternative 1 to #5
 5. Using the definition that S is a recursively enumerable, non-empty set iff S is the range of some

algorithm fS, prove that if both S and its complement ~S are recursively enumerable (using
enumerating algorithms fS and f~S) then S is decidable. To get full credit, you must show the
characteristic function for S, cS, in all cases. Also, be sure to discuss why your cS works

Alternative 2 to #5
 5. Using the definition that S is a recursively enumerable, non-empty set iff S is the domain of some

effective procedure fS, prove that if both S and its complement ~S are recursively enumerable (using
the domains of procedures fS and f~S) then S is decidable. To get full credit, you must show the
characteristic function for S, cS, in all cases. Also, be sure to discuss why your cS works

