Sample Question\#1. Part a

1. Prove that the following are equivalent
a) \mathbf{S} is an infinite recursive (decidable) set.
b) S is the range of a monotonically increasing total recursive function.

Note: f is monotonically increasing means that $\forall x f(x+1)>f(x)$.
a) Implies b)

Let $x \in S \Leftrightarrow \chi_{s}(x)$
Define $f_{R}(0)=\mu x \chi_{s}(x) ; f_{R}(y+1)=\mu x\left[\chi_{S}(x) \& \&\left(x>f_{R}(y)\right)\right]$
Clearly, since S is non-empty, it has a least one value and so there exist a smallest value such that $\chi_{s}(x)$; we will enumerate this as $f_{R}(0)=\mu x \chi_{s}(x)$. Assume we have enumerated the y-th value in S as $f_{R}(y)$. Since S is infinite, there will be values in S greater than $f_{R}(y)$ and our search $\mu x\left[\chi_{s}(x) \& \&(x>\right.$ $\left.f_{R}(y)\right)$ will find the next largest value for which $\chi_{S}(x)$. Thus, inductively, we will enumerate the elements of S in increasing order, as desired.

Sample Question\#1 Part b

1. Prove that the following are equivalent
a) S is an infinite recursive (decidable) set.
b) S is the range of a monotonically increasing total recursive function.
Note: f is monotonically increasing means that $\forall x f(x+1)>f(x)$.
b) Implies a)

Let S be enumerated by the monotonically increasing algorithm f_{s}.
Define χ_{s} by
$\chi_{\mathrm{s}}(\mathrm{x})=\left(\mathrm{f}_{\mathrm{s}}\left(\left(\mu \mathrm{z}\left[\mathrm{f}_{\mathrm{s}}(\mathrm{z}) \geq \mathrm{x}\right]\right)==\mathrm{x}\right)\right.$
Clearly, if \mathbf{x} is enumerated, it must appear before any values greater than it are enumerated and consequently this is a bounded search to find the first element listed that is at least as large as x. If this element is x, then x is in S, else it is not. The fact that f_{s} is monotonically increasing makes S infinite. The fact that it has a characteristic function makes it decidable.

Sample Question\#2

2. Let A and B be re sets. For each of the following, either prove that the set is re, or give a counterexample that results in some known non-re set.

Let A be semi decided by f_{A} and B by f_{B}
a) $A \cup B$: must be re as it is semi-decided by

$$
f_{A \cup B}(x)=\exists t\left[\operatorname{stp}\left(f_{A}, x, t\right) \| \operatorname{stp}\left(f_{B}, x, t\right)\right]
$$

b) $A \cap B$: must be re as it is semi-decided by $f_{A \cap B}(x)=\exists t\left[\operatorname{stp}\left(f_{A}, x, t\right) \& \& \operatorname{stp}\left(f_{B}, x, t\right)\right]$
c) ${ }^{\sim} A$: can be non-re. If $\sim A$ is always re, then all re are recursive as any set that is re and whose complement is $r e$ is decidable. However, $A=K$ is a non-rec, re set and so $\sim A$ is not re.

Sample Question\#3

3. Present a demonstration that the even function is primitive recursive. even $(x)=1$ if x is even even $(x)=0$ if x is odd You may assume only that the base functions are prf and that prf's are closed under a finite number of applications of composition and primitive recursion.
$\operatorname{even}(0)=1 ; \operatorname{even}(y+1)=!$ even $(y)=1-e v e n(y)$

Sample Question\#4

4. Given that the predicate STP and the function VALUE are prf's, show that we can semi-decide
\{ $\mathrm{f} \mid \varphi_{\mathrm{f}}$ evaluates to 0 for some input $\}$
This can be shown re by the predicate $\{f \mid \exists<x, t>[\operatorname{stp}(f, x, t) \& \&$ value($f, x, t)=0]\}$

Sample Question\#5

5. Let \mathbf{S} be an re (recursively enumerable), non-recursive set, and \mathbf{T} be re, non-empty, possibly recursive set. Let $E=\{z \mid z=x+y$, where $x \in S$ and $y \in T\}$.
(a) Can \mathbf{E} be non re? No as we can let S and T be semi-decided by f_{S} and f_{T}, resp., E is then semi-dec. by $f_{E}(z)=\exists<x, y, t>\left[\operatorname{stp}\left(f_{s}, x, t\right) \& \& \operatorname{stp}\left(f_{p}, y, t\right) \& \&\right.$
($\mathbf{z}=$ value $\left(f_{5}, x, t\right)+\operatorname{value}\left(f_{T}, y, t\right)$)]
(b) Can \mathbf{E} be re non-recursive? Yes, just let $\mathrm{T}=\{0\}$, then $\mathrm{E}=\mathrm{S}$ which is known to be re, non-rec.
(c) Can E be recursive? Yes, let $\mathrm{T}=\boldsymbol{\aleph}$, then
$E=\{x \mid x \geq \min (S)\}$ which is a co-finite set and hence rec.

Sample Question\#6

6. Assuming TOTAL is undecidable, use reduction to show the undecidability of Incr $=\left\{\mathrm{f} \mid \forall \mathrm{x} \varphi_{\mathrm{f}}(\mathrm{x}+1)>\varphi_{\mathrm{f}}(\mathrm{x})\right\}$ Let f be arb.
Define $G_{f}(x)=\varphi_{f}(x)-\varphi_{f}(x)+x$ $f \in$ TOTAL iff $\forall x \varphi_{f}(x) \downarrow$ iff $\forall x G_{f}(x) \downarrow$ iff $\forall x \varphi_{f}(x)-\varphi_{f}(x)+x=x$ implies $G_{f} \in \operatorname{Incr}$ $f \notin$ TOTAL iff $\exists x \varphi_{f}(x) \uparrow$ iff $\exists x G_{f}(x) \uparrow$ iff $\exists x\left(\varphi_{f}(x)-\varphi_{f}(x)+x\right) \uparrow$ implies $G_{f} \notin \operatorname{lncr}$

Sample Question\#7

7. Let Incr $=\left\{\mathbf{f} \mid \forall \mathbf{x}, \varphi_{f}(\mathbf{x}+\mathbf{1})>\varphi_{\mathrm{f}}(\mathbf{x})\right\}$. Let TOT $=\left\{\mathbf{f} \mid \forall \mathbf{x}, \varphi_{f}(\mathbf{x}) \downarrow\right\}$.
Prove that $\operatorname{Incr} \equiv_{\mathrm{m}}$ TOT. Note Q\#6 starts this one.
Let f be arb.
Define $\mathrm{G}_{\mathrm{f}}(\mathrm{x})=\exists \mathrm{t}[\operatorname{stp}(\mathrm{f}, \mathrm{x}, \mathrm{t}) \& \& \operatorname{stp}(\mathrm{f}, \mathrm{x}+1, \mathrm{t})$
\&\& (value $(f, x+1, t)>$ value $(f, x, t))]$
$\mathrm{f} \in \operatorname{Incr}$ iff $\forall \mathrm{x} \varphi_{\mathrm{f}}(\mathrm{x}+1)>\varphi_{\mathrm{f}}(\mathrm{x})$ iff
$\forall x \mathrm{G}_{\mathrm{f}}(\mathrm{x}) \downarrow$ iff $\mathrm{G}_{\mathrm{f}} \in$ TOT

Sample Question\#8

8. Let Incr $=\left\{\mathbf{f} \mid \forall \mathbf{x} \varphi_{\mathrm{f}}(\mathbf{x + 1})>\varphi_{\mathrm{f}}(\mathbf{x})\right\}$. Use Rice's theorem to show Incr is not recursive.
Non-Trivial as
$C_{0}(x)=0 \notin \operatorname{Incr} ; \mathbf{S}(x)=x+1 \in \operatorname{Incr}$
Let f, g be arb. Such that $\forall x \varphi_{f}(x)=\varphi_{g}(x)$
$f \in$ Incr iff $\forall x \varphi_{f}(x+1)>\varphi_{f}(x)$ iff
$\forall x \varphi_{g}(x+1)>\varphi_{g}(x)$ iff $g \in$ Incr

Sample Question\#9

9. Let \mathbf{S} be a recursive (decidable set), what can we say about the complexity (recursive, re non-recursive, non-re) of \mathbf{T}, where $\mathbf{T} \subset \mathbf{S}$?

Nothing. Just let $S=\aleph$, then T could be any subset of \aleph. There are an uncountable number of such subsets and some are clearly in each of the categories above.

Sample Question\#10

10. Define the pairing function $\langle x, y\rangle$ and its two inverses $\langle z\rangle_{1}$ and $\langle z\rangle_{2}$, where if
$z=\langle x, y\rangle$, then $x=\langle z\rangle_{1}$ and $y=\langle z\rangle_{2}$.

$$
\operatorname{pair}(x, y)=\left\langle x, y>=2^{x}(2 y+1)-1\right.
$$

with inverses

$$
\begin{aligned}
& \langle z\rangle_{1}=\log _{2}(z+1) \\
& \langle z\rangle_{2}=\left(\left((z+1) / / 2^{\langle z\rangle_{1}}\right)-1\right) / / 2
\end{aligned}
$$

Sample Question\#11

11. Assume $\mathbf{A} \leq_{m} \mathbf{B}$ and $\mathbf{B} \leq_{m} \mathbf{C}$. Prove $\mathbf{A} \leq_{m} \mathbf{C}$. In this proof, we will assume the universe for each set \mathbf{S} is $\mathbf{U}_{\mathbf{s}}$. In general $\mathbf{U}_{\mathbf{S}}=\boldsymbol{\aleph}$
$\mathbf{A} \leq_{m} \mathbf{B}$ iff there exists an $m-1$ algorithm $\mathrm{f} 1: \mathrm{U}_{\mathrm{A}} \rightarrow \mathrm{U}_{\mathrm{B}}$ such that $\mathrm{x} \in \mathrm{A} \Leftrightarrow \mathrm{f} 1(\mathrm{x}) \in \mathrm{B}$ $\mathbf{B} \leq_{\mathrm{m}} \mathbf{C}$ iff there exists an $\mathrm{m}-1$ algorithm f2: $\mathrm{U}_{\mathrm{B}} \rightarrow \mathrm{U}_{\mathrm{C}}$ such that $\mathbf{x \in B} \Leftrightarrow \mathbf{f 2}(\mathbf{x}) \in \mathrm{C}$ Define $\mathbf{f 3}(\mathbf{x})=\mathbf{f 2}(\mathbf{f 1}(\mathbf{x})), \mathrm{f} 3: \mathrm{U}_{\mathbf{A}} \rightarrow \mathrm{U}_{\mathrm{C}}$ is an m-1 algorithm and $\mathbf{x} \in \mathbf{A} \Leftrightarrow \mathbf{f 3}(\mathbf{x}) \in \mathbf{C}$ implies
$\mathbf{A} \leq_{m} \mathbf{C}$ as was desired

Sample Question\#12

12. Let $\mathbf{P}=\{\mathbf{f} \mid \exists \mathbf{x}[\operatorname{STP}(\mathbf{f}, \mathbf{x}, \mathbf{x})]\}$. Why does Rice's theorem not tell us anything about the undecidability of \mathbf{P} ?

This is not an I/O property as we can have implementations of C_{0} that are efficient and satisfy P and others that do not.

