\qquad Grade: \qquad

6 1. In each case below, consider $\mathbf{R 1}$ to be Regular, $\mathbf{R} 2$ to be finite, and $\mathbf{L} 1$ and $\mathbf{L} 2$ to be non-regular CFLs. Fill in the three columns with \mathbf{Y} or \mathbf{N}, indicating what kind of language \mathbf{L} can be. No proofs are required. Read \subseteq as "contained in and may equal."
Put \mathbf{Y} in all that are possible and \mathbf{N} in all that are not.

Definition of \mathbf{L}	Regular?	CFL, non-Regular?	Not even a CFL?
$\mathbf{L}=\mathbf{L} 1 / \mathbf{L} 2$	Y	Y	Y
$\mathbf{L}=\mathbf{L} 1-\mathbf{R} 1$	Y	Y	N
$\mathbf{L}=\Sigma^{*}-\mathbf{L} 1$	N	Y	Y
$\mathbf{L} \subseteq \mathbf{R} 2$	Y	N	N

3 2. Choosing from among (D) decidable, (U) undecidable, (?) unknown, categorize each of the following decision problems. No proofs are required. \mathbf{L} is a language over $\boldsymbol{\Sigma} ; \mathbf{w}$ is a word in $\boldsymbol{\Sigma}^{*}$

Problem / Language Class	Regular	Context Free	Context Sensitive	Phrase Structured
$\mathrm{L}=\varnothing$?	Y	Y	N	N
L is $\Sigma^{*} ?$	Y	N	N	N

4 3. Prove that any class of languages, \boldsymbol{C}, closed under union, concatenation, intersection with regular languages, homomorphism and substitution (e.g., the Context-Free Languages) is closed under
Double Interior Retention with Regular Sets, denoted by the operator $\|$, where $\mathbf{L} \in \boldsymbol{C}, \mathbf{R}$ is
Regular, \mathbf{L} and \mathbf{R} are both over the alphabet $\boldsymbol{\Sigma}$, and
$\mathbf{L} \| \mathbf{R}=\left\{\mathbf{v x} \mid \mathbf{v}, \mathbf{x} \in \mathbf{R}\right.$ and $\exists \mathbf{u}, \mathbf{w} \in \mathbf{\Sigma}^{+}$such that $\left.\mathbf{u v w x} \in \mathbf{L}\right\}$.
You may assume substitution $\mathbf{f}(\mathbf{a})=\{\mathbf{a}, \mathbf{a}\}$, and homomorphisms $\mathbf{g}(\mathbf{a})=\mathbf{\mathbf { a } ^ { \prime }}$ and
$\mathbf{h}(\mathbf{a})=\mathbf{a}, \mathbf{h}\left(\mathbf{a}^{\prime}\right)=\boldsymbol{\lambda}$. Here $\mathbf{a} \in \boldsymbol{\Sigma}$ and \mathbf{a}^{\prime} is a new character associated with each such $\mathbf{a} \in \boldsymbol{\Sigma}$.
You only need give me the definition of $\mathbf{L}|\mid \mathbf{R}$ in an expression that obeys the above closure properties; you do not need to prove or even justify your expression.
$\mathbf{L} \| \mathbf{R}=\xrightarrow{h(f(L)} \cap g\left(\Sigma^{+}\right) R g\left(\Sigma^{\dagger}\right) R$
4 4. Specify True (T) or False (F) for each statement.

Statement	T or \mathbf{F}
An algorithm exists to determine if a Phrase Structured Grammar generates λ	\boldsymbol{F}
If \mathbf{P} is Unsolvable then Rice's Theorem can always show this	\boldsymbol{F}
The Context Sensitive Languages are closed under complement	\boldsymbol{T}
If $\mathbf{P} \leq_{\mathrm{m}}$ Halt then \mathbf{P} must be RE	\boldsymbol{T}
The $\mathbf{R E}$ sets are closed under intersection	\boldsymbol{T}
The correct traces of a Turing Machine's Computations form a Context Free Language	\boldsymbol{F}
The Post Correspondence Problem is decidable if $\|\boldsymbol{\Sigma}\|=\mathbf{1}$	\boldsymbol{T}
There is an algorithm to determine if \mathbf{L} is finite, for \mathbf{L} a Context Sensitive Language	\boldsymbol{F}

4
5. Let $\mathbf{P}=\left\langle<\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{n}}\right\rangle,\left\langle\mathbf{y}_{\mathbf{1}}, \mathbf{y}_{\mathbf{2}}, \ldots, \mathbf{y}_{\mathbf{n}} \gg, \mathbf{x}_{\mathbf{i}}, \mathbf{y}_{\mathbf{1}} \in \boldsymbol{\Sigma}^{+}, \mathbf{1} \leq \mathbf{i} \leq \mathbf{n}\right.$, be an arbitrary instance of $\mathbf{P C P}$. We can use PCP's undecidability to show the undecidability of the problem to determine if a Context Free Grammar is ambiguous. Present grammars, G1 and G2, associated with an arbitrary instance of PCP, \mathbf{P}, such that $\mathcal{L}(\mathbf{G 1}) \cap \mathcal{L}(\mathbf{G 2})$ is non-empty if and only if there is a solution to \mathbf{P}.
Define $\mathbf{G 1}=(\{\mathbf{X}\}, \mathbf{\Sigma} \cup\{[\mathbf{i}] \mid \mathbf{1} \leq \mathbf{i} \leq \mathbf{n}\}, \mathbf{R} \mathbf{1}, \mathbf{X}), \mathbf{G} \mathbf{2}=(\{\mathbf{Y}\}, \Sigma \cup\{\mathbf{i}] \mid \mathbf{1} \leq \mathbf{i} \leq \mathbf{n}\}, \mathbf{R} \mathbf{1}, \mathbf{Y})$, where $\mathbf{R 1}$ and $\mathbf{R 2}$ are the sets of rules (this is your job):

$$
\begin{array}{ll}
X \rightarrow x_{i} X[i] \mid x_{i}[i] & 1 \leq i \leq n \\
Y \rightarrow y_{i} Y[i] \mid y_{i}[i] & 1 \leq i \leq n
\end{array}
$$

12 6. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.
a.) $A=\left\{f \mid\right.$ range $\left(\varphi_{f}\right)$ has no values greater than 10$\}$
$\forall<x, t>\lceil\operatorname{STP}(f, x, t) \Rightarrow \operatorname{VALUE}(f, x, t) \leq 10]$
CoRE
b.) $B=\{\langle f, x>| \varphi f$ converges on every value (input) greater than or equal to $x\}$
\square NRNC
c.) $C=\{f \mid \varphi f$ converges for at least one value (input) of \mathbf{x} in at most x steps $\}$
\square $\boldsymbol{R E}$
d.) $D=\left\{f \mid\right.$ if $\varphi_{f}(f)$ converges it takes more than f steps to do so $\}$
\qquad REC

2 7. Looking back at Question 6, which of these are candidates for using Rice's Theorem to show their unsolvability? Check all for which Rice Theorem might apply.
a) \underline{X}
b) \underline{X}
c) \qquad d) \qquad
8. Show that a set \mathbf{S} is an infinite decidable (solvable/recursive) set if and only if it can be described as the range of a monotonically increasing algorithm. I will start the proof.
3 a.) Let \mathbf{S} be an infinite recursive set. As \mathbf{S} is decidable, it has a characteristic function $\chi \mathbf{x}$ where $\chi \mathrm{S}(\mathbf{x})=1$, when $\mathbf{x} \in \mathrm{S}$, and $\chi \mathrm{S}(\mathbf{x})=\mathbf{0}$, otherwise. Using $\chi \mathrm{S}$ as a basis, we wish to define a monotonically increasing algorithm $\mathbf{f s}$ whose range is \mathbf{S}. Note that, since \mathbf{S} is non-empty, it has a smallest element and, since it is infinite, it has no largest element. I have started the proof using primitive recursion (induction). You must complete it by writing in the formula to compute $\mathbf{f s}(\mathbf{y}+1)$ given we know the value of $\mathbf{f s}(\mathbf{y})$.
Let $\mathrm{x} \in \mathrm{S} \Leftrightarrow \chi_{\mathrm{S}}(\mathrm{x})$
// list the smallest element
Define $\mathrm{fS}_{\mathrm{S}}(0)=\mu \mathrm{x} \boldsymbol{\chi S}(\mathrm{x})$
// list the next item in monotonically increasing order. That's your job!! $\mathrm{fs}(\mathrm{y}+1)=$ \qquad $\mu x\left[\chi_{S}(x) \& \& x>f_{S}(y)\right]$

3 b.) Let \mathbf{S} be the range of some monotonically increasing enumerating algorithm $\mathbf{f s}$. Show that \mathbf{S} must be an infinite recursive set. First \mathbf{S} is infinite since $\forall \mathbf{x} \mathbf{f s}(\mathbf{x}+\mathbf{1})>\mathbf{f S}(\mathbf{x})$. You must now present a characteristic function $\chi \mathbf{s}$ that takes advantage of the infinite nature of \mathbf{S} and the fact that $\mathbf{f s}_{\mathbf{S}}$ is monotonically increasing and so enumerates any item \mathbf{x} in some known bounded amount of time.
$\chi \mathrm{S}(\mathrm{x})=\quad \exists y \leq x\left[f_{S}(y)=x\right]$
6 9. Let sets \mathbf{A} be a non-empty recursive (decidable) set and let \mathbf{B} be re non-recursive (undecidable). Consider $\mathbf{C}=\left\{\mathbf{z} \mid \mathbf{z}=\mathbf{y}^{\mathbf{x}}\right.$, where $\mathbf{x} \in \mathbf{A}$ and $\left.\mathbf{y} \in \mathbf{B}\right\}$.
Note: Here, we define $\mathbf{0}^{\boldsymbol{0}}$ to be $\mathbf{1}$ (yeah, I know that's a point of debate in Mathematics, but not in this question). For (a)-(c), either show sets \mathbf{A} and \mathbf{B} and the resulting set \mathbf{C}, such that \mathbf{C} has the specified property (argue convincingly that it has the correct property) or demonstrate (prove by construction) that this property cannot hold.
a. Can \mathbf{C} be recursive? Circle Y or \mathbf{N}.
$A=\{0\} ; B=H A L T ; C=\left\{x^{0} \mid x \in H A L T\right\}=\{1\}$, which is recursive
b. Can \mathbf{C} be re non-recursive? Circle Y or \mathbf{N}.
$A=\{1\} ; B=H A L T ; C=\left\{x^{1} \mid x \in H A L T\right\}=H A L T$, which is re, non-recursive
c. Can \mathbf{C} be non-re? Circle \mathbf{Y} or N.

Let Range $\left(f_{A}\right)=A$; Range $\left(f_{B}\right)=B$
Define $f_{C}(x, y)=f_{B}(x)^{\wedge} f_{C}(y)=\left\{x^{y} \mid x \in A, y \in B\right\}=C$
But then C is enumerated by f_{C} and hence is re.
10. Define CounterID $(\mathbf{C I})=(\mathbf{f} \mid$ for all input $\mathbf{x}, f(\mathbf{x}) \downarrow \& f(\mathbf{x}) \neq \mathbf{x}\}$.

2 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.)
$\forall x \exists t[\operatorname{STP}(f, x, t) \& \& \operatorname{VALUE}(f, x, t) \neq x\}$
5 b.) Use Rice's Theorem to prove that $\mathbf{C I}$ is undecidable.
Non-Trivial as: $S \in C I$ and $C 0 \notin C I$
Let f, g be arbitrary indices of procedures such that $\forall x f(x)=g(x)$

$$
\begin{aligned}
f \in C I \quad & \Leftrightarrow \quad \forall x f(x) \downarrow \& \& f(x) \neq x \\
& \Leftrightarrow \quad \forall x g(x) \downarrow \& \& g(x) \neq x \quad \text { since } \forall x f(x)=g(x) \\
& \Leftrightarrow \quad g \in C I
\end{aligned}
$$

Thus, using the Strong Form of Rice's we have that CI is undecidable.
5 c.) Show that TOTAL $\leq_{\mathrm{m}} \mathbf{C I}$, where TOTAL $=\{\mathbf{f} \mid \forall \mathbf{x} \mathbf{f}(\mathbf{x}) \downarrow\}$.
Let f be an arbitrary index of a procedure
Define $\forall x G_{f}(x)=f(x)-f(x)+x+1$
$f \in$ TOTAL $\quad \Leftrightarrow \quad \forall x f(x) \downarrow$
$\Leftrightarrow \quad \forall x G_{f}(x)=x+1$
$\Rightarrow \quad G_{f} \in C I$
$f \notin$ TOTAL $\quad \Leftrightarrow \quad \exists x f(x) \uparrow$
$\Rightarrow \quad G_{f} \notin C I$

1 d.) From a.) through \mathbf{c}.) what can you conclude about the complexity of CI (Recursive, RE, RECOMPLETE, CO-RE, CO-RE-COMPLETE, NON-RE/NON-CO-RE)?

NON-RE/NON-CO-RE

