
COT6410 Topics for Final Exams 
 
Formal Languages 

Recognition models (Finite States, Single Stack (can be stateless, Linear Bounded, 
TM) 

Grammar hierarchy 
Regular 

DFA == NFA 
Exponential explosion when go from DFA to NFA 
Arden’s Theorem: R = Q + RP, Q does not contain lambda, R = QP* 
MyHill-Nerode (Consequences: unique min state and alternative to PL) 

CFLs 
DPDA != NPDA (PDA) 
Ambiguity (inherent versus just incidental to a grammar) 
Reduced Grammars and CNF (implications not constructions) 
O(N3) CFL parser based on CNF grammar – Dynamic Programming 
Incorrect traces (related result on complement of ww) 

Pumping Lemmas (What they are; not their proofs or applications) 
CSLs 

DLBA (LBA) == NLBA 
Trace languages 

Closure and non-closure: Meta approach with intersection with regular and subst. 
Why does it fail on CSLs? 

PSLs (RE Languages) 
DTM (TM) == NDTM (provided time is irrelevant) 

What happens when sets interact: Can we get Regular, CFL non-Reg, CSL non-
CFL, RE non-CSL? 

Decidable Problems and why they are decidable 
Examples: Membership, Emptiness, S* 

Various operations on CSLs, CFLs and Regular Languages  
Examples: Union, Intersection, Quotient, Complement, Prefix, Suffix, Substring 

  



Computability Theory 
Models of computation and required elements (divergence, ability to branch on 
absence/presence) 
Determinism vs non-determinism; why non-det is not always better 
Relationships between rec, re, co-re, re-complete, non-re/non-co-re 
Proofs about relations, e.g., re & co-re iff rec; re iff semi-dec.;  

inf. rec iff range of monotonically increasing total function 
Various operations on non-re/non-co-re, re and recursive sets (Examples Sum, 
Product) 
Use of quantified decidable predicates to get upper bound on complexity 
Reduction (many-one); degrees of unsolvability (many-one) 
Rice’s Theorem (including its proof) 
Applications of Rice’s Theorem; when does it fail? 
Proof of re-completeness (re and known re-complete reduces to problem) 
Trace languages (CSL) and complement of trace languages (CFL) 

L = S* for CFL, L ¹ Æ for CSL 
For CFL L, L = L2? 
For CFL L, does there exist an n such that Ln = Ln+1? 

Post Correspondence Problem 
Semi-Thue word problem to PCP (No details, quick pathway) 
PCP and context free grammars 

From any PCP instance, P, can specify CFGs, G1 and G2, such that  
L(G1) Ç L(G2) ¹ Æ iff P has a solution 
Merging these together to new grammar G with start symbol S and rule 
S ® S1 | S2 where S1 is start symbol of G1 and S2 is start symbol of G2  

we have that G is ambiguous iff P has a solution 
PCP and context sensitive grammars 

From any PCP instance, P, can specify CSG, G, such that  
L(G) ¹ Æ iff P has a solution; it is also the case that L(G) is infinite if so 
Note that this is second proof of undecidability of emptiness for CSG 

PSG 
Given TM, M, can specify PSG, G, such that L(G) = L(M) 
Every PSL is homomorphic image of a CSL 
Closure of CSL’s under l–free homomorphisms 

Quotient 
Given TM, M, specify CFGs, G1 and G2, such that L(G1) / L(G2) = L(M) 

Consider terminal traces (even/odd; odd/even correctness) 
  



More Computability Theory 
Two-Variable Implication Calculus 

Starts with axioms and rules of inference 
Derivation versus refutation 
MP and Substitution versus Resolution (great for refutation but incomplete 

for Derivation/Inference) 
Constrained to no associativity 
Reduce HALT to deciding what theorems follow from some set of axioms 

Representation as two stacks, each of which uses a composition (not 
simple linear) encoding.  
One variable is used for left stack (state, scanned symbol, right side of 
tape)  
Other variable for left side of tape 
“Shape” of outer expression form is contents of top of stack 
Shape of substitution for variable in outer shape determines next item on 
stack and so on 
Bottom of stack has its own special shape, so we know when stack is 
empty 

Constant execution time (uniform halting) 
Notion of arbitrary starting point 
Why is this re and not worse? 
What is notion of an infinite rather than unbounded tape? 
What is mortality and how does constant time TM relate to mortal TM? 

Finite Power of CFLs 
Reducing is L = S* to is L = L2  

Remember start point is to check if S È {l} 
Reducing traces that have a fixed maximum length to $n Ln = Ln+1  

Remember trick of a language with three parts (bad traces, pairs of 
configs, {l}) 

Factor Replacement Systems with Residue 
Use residue to check for non-divisibility, thereby avoiding determinism 
2x + 1 ® 6x +4 
2x       ® x 
Collatz Conjecture is that starting at any positive integer this eventually 
reaches 1 and cycles there on 1 ® 4 ® 2 ® 1 
Collatz Function 

T(x) = x/2 if x even; T(x) = 3x+1 if x is odd 
Reaches 1 for starting numbers up to 268 
If a counterexample exists, it is greater than 300 quintillion!!!!!! 

 
  



Complexity Theory 
P, NP (verification vs non-det. solution), co-NP, NP-Complete 
Polynomial many-one versus polynomial Turing reductions 
Problems I will focus on 

Polynomial-time bounded NDTM to SAT (basic idea) 
SAT to 3-SAT; 3SAT to Independent Set problem (IS) for undirected graph 
3SAT to SubsetSum; SubsetSum to Partition 
Integer Linear Programming Feasibility  

Is there an assignment that satisfies the constraints?  
3SAT and 0-1 case. 

k-vertex cover, k-coloring (3-coloring),  
Optimization versions: min vertex cover; min coloring 

Knapsack is limited to one bin and asks for best fit (values & weights) 
SubsetSum optimization problem for £ G when weight and value are same 

BinPacking allows multiple bins and optimizes number of bins of some fixed size 
Scheduling with fixed number (p) of processors and no deadlines 

Goal is to finish all tasks as soon as possible 
This is an optimization version of a p-partition problem 

Deadline scheduling 
BinPacking uses all items in list so list could be times of tasks leading to an 

Optimization problem to minimize the number of processors while 
obeying a deadline  

Scheduling heuristics and anomalies 
Unit execution scheduling of tree/forest and of anti-tree/anti-forest 
Hamiltonian circuit (cycle) 

Traveling Salesman adds distances (weights); seeks circuit of distance £ K 
Reduce HC to TSP set K to |V| and distances to 1 where links  
and to K+1 otherwise 

Optimization version looks for minimum distance circuit 
Knapsack 0-1 Problem  

Dynamic Programming (differing dimensions – n,W/O(n*W) vs n/O(2n)) 
Tiling the plane (basic concepts) 

Halting problem to Tiling 
Polynomial step bounded NDTM to Bounded Tiling 

Bounded PCP based on Semi-Thue simulation of NDTM (NP-Complete) 
Parallels and non-parallels to Recursive, RE, RE-Complete,  

Co-RE, Co-RE-Complete, RE-Hard (Turing versus many-one reductions) 
NP-Easy, NP-Hard, NP-Equivalent 
NP-Equivalent Optimization Problems associated with  

SubsetSum (max SubsetSum less than a Goal value) –  
reduction using power of two values 

K-Coloring (min coloring) – binary search 
 
 



2SAT 
Use of Implication Graph and SCC (Strongly Connected Components) 
Positive Min-Ones 2SAT and relation to VC (Vertex Cover) 
NP-Equivalence based on VC 

Finding Triangle Strips is NP-Complete ( 
NP-Hard by reducing Hamiltonian Path to Triangle Strips 

Weakly versus Strongly NP-Hard/Complete 
P Í NP Í PSPACE = NPSPACE ⊆ EXPTIME Í NEXPTIME Í EXPSPACE  

⊈ 2-EXPTIME ⊈ 3-EXPTIME ⊈ … ⊈ ELEMENTARY ⊈ PRF ⊈ REC 
P ¹ EXPTIME; At least one of these is true 

P ⊈ NP; NP ⊈ PSPACE; PSPACE ⊈ EXPTIME 
NP ¹ NEXPTIME 

Note that EXPTIME = NEXPTIME iff P=NP 
Note that k-EXPTIME ⊈ (k+1)-EXPTIME, k>0  

PSPACE ¹ EXPSPACE; At least one of these is true 
PSPACE ⊈ EXPTIME; EXPTIME ⊈ EXPSPACE 

ATM (Alternating Turing Machine) – This is just concept stuff with no details 
 AP = PSPACE, where AP is solvable in polynomial time on an ATM 

QSAT is solvable by an alternating TM in polynomial time and polynomial 
space (Why?) 
QSAT is PSPACE-Complete 
Petri net reachability is EXPSPACE-hard and requires 2-EXPTIME 
Presburger arithmetic is at least in 2-EXPTIME, at most in 3-EXPTIME, and 

can be solved by an ATM with n alternating quantifiers in doubly 
exponential time 

Savitch’s Theorem: NPSPACE(f(n)) ⊆ DPSPACE(f(n)2) 
 Uses extreme time-space tradeoff – we don’t care about time, only space 
 Limit depth of recursion in search for path from start to ending configuration  
 Do this by a recursive binary search using all possible intermediaries 
 Bad for time but good for max level of recursion 

Assume space is lg N (valid for retaining node number or SAT assignments) 
Time for DFS (non-det or det) is O(N).  
Space for non-det is lg N; for det is N lg N (why?) 
With ignoring time can get (lg N)2 space. Shows poly growth. 
Time is O(Nlg N) – big time tradeoff 

Khot’s Conjecture 
Graph Coloring with pairwise constraints is NP-Hard even when we know 
there is a coloring that satisfies almost all constraints, and we just need a 
coloring that satisfies a small percentage 
if Khot’s conjecture is true and P ≠ NP, then NP-Hard problems not only 
require exponential time but also getting good, generally applicable, 
polynomial-time approximations is hard 

 


