
RE Co-RE
R
E
C

UNIVERSE OF SETS

NRNC

NR (non-recursive)
= (NRNC ∪ Co-RE) - REC

RE-
Complete

Some Quantification Examples

• <f,x> ∈ Halt ⇔∃t [STP(f,x,t)] RE
• f ∈ Total ⇔∀x∃t [STP(f,x,t)] NRNC
• f ∈ NotTotal ⇔∃x∀t [~STP(f,x,t)] NRNC
• f ∈ RangeAll ⇔∀x∃<y,t> [STP(f,y,t) &VALUE(f,y,t)=x] NRNC
• f ∈ RangeNotAll ⇔∃x∀<y,t> [STP(f,y,t) ⇒ VALUE(f,y,t)≠x] NRNC
• f ∈ HasZero ⇔∃<x,t> [STP(f,x,t) & VALUE(f,x,t)=0] RE
• f ∈ IsZero ⇔∀x∃t [STP(f,x,t) & VALUE(f,x,t)=0] NRNC
• f ∈ Empty ⇔∀<x,t> [~STP(f,x,t)] Co-RE
• f ∈ NotEmpty ⇔∃ <x,t> [STP(f,x,t)] RE

More Quantification Examples

• f ∈ Identity ⇔∀x∃t [STP(f,x,t) & VALUE(f,x,t)=x] NRNC
• f ∈ NotIdentity ⇔∃x∀t [~STP(f,x,t) | VALUE(f,x,t)≠x] or NRNC

∃x∀t [STP(f,x,t) ⇒ VALUE(f,x,t)≠x]
• f ∈ Constant = ∀<x,y>∃t [STP(f,x,t) & STP(f,y,t) & NRNC

VALUE(f,x,t)=VALUE(f,y,t)]
• f ∈ Infinite ⇔∀x∃<y,t> [y≥x & STP(f,y,t)] NRNC
• f ∈ Finite ⇔∃x∀<y,t> [y<x | ~STP(f,y,t)] or NRNC

∃x∀<y,t> [STP(f,y,t) ⇒ y<x] or [y≥x ⇒ ~STP(f,y,t)]
• f ∈ RangeInfinite ⇔∀x∃<y,t> [STP(f,y,t) & VALUE(f,y,t)≥x] NRNC
• f ∈ RangeFinite ⇔∃x∀<y,t> [STP(f,y,t) ⇒ VALUE(f,y,t)<x] NRNC
• f ∈ Stutter ⇔∃<x,y,t> [x≠y & STP(f,x,t) & STP(f,y,t) & RE

VALUE(f,x,t) = VALUE(f,y,t)]

Even More Quantification Examples

• <f,x> ∈ Fast20 ⇔ [STP(f,x,20)] REC
• f ∈ FastOne20 ⇔∃x [STP(f,x,20)] RE
• f ∈ FastAll20 ⇔∀x [STP(f,x,20)] Co-RE
• <f,x,K,C> ∈ LinearKC ⇔ [STP(f,x,K*x+C)] REC
• <f,K,C>∈ LinearKCOne ⇔∃x [STP(f,x,K*x+C)] RE
• <f,K,C> ∈ LinearKCAll ⇔∀x [STP(f,x,K*x+C)] Co-RE

• None of the above can be shown undecidable using Rice’s Theorem
• In fact, reduction from known undecidables is also a problem for all but

the first one which happens to be decidable.

Some Reductions and Rice Example

• NotEmpty ≤ Halt
Let f be an arbitrary index
Define ∀y gf(y) = ∃<x,t> STP(f,x,t)
f ∈ Notmpty ⇔ <gf,0> ∈ Halt
• Halt ≤ NotEmpty

Let f,x be an arbitrary index and input value
Define ∀y gf,x(y) = f(x)
<f,x> ∈ Halt⇔ gf,x ∈ NotEmpty
• Note: NotEmpty is RE-Complete
• Rice: NotEmpty is non-trivial Zero ∈ NotEmpty; ↑∉ NotEmpty

Let f,g be arbitrary indices such that Dom(f)=Dom(g)
f ∈NotEmpty ⇔ Dom(f) ≠ ∅ By Definition

⇔ Dom(g) ≠ ∅ Dom(g)=Dom(f)
⇔ g ∈ NotEmpty
Thus, Rice’s Theorem states that NotEmpty is undecidable.

More Reductions and Rice Example

• Identity ≤ Total
Let f be an arbitrary index
Define gf(x) = μy [f(x) = x]
f ∈ Identity ⇔ gf ∈ Total
• Total ≤ Identity

Let f be an arbitrary index
Define gf(x) = f(x)-f(x) + x
f ∈ Total ⇔ gf,x ∈ Identity
• Rice: Identity is non-trivial I(x)=x ∈ Identity; Zero ∉ Identity

Let f,g be arbitrary indices such that ∀x f(x) = g(x)
f ∈Identity ⇔ ∀x f(x)=x By Definition

⇔ ∀x g(x)=x ∀x g(x) = f(x)
⇔ g ∈ Identity
Thus, Rice’s Theorem states that Identity is undecidable

Even More Reductions and Rice Example

• Stutter ≤ Halt
Let f be an arbitrary index
Define ∀y gf(y) = ∃<x,y,t> [x≠y & STP(f,x,t) & STP(f,y,t) &

VALUE(f,x,t) = VALUE(f,y,t)]
f ∈ Stutter ⇔ <gf,0> ∈ Halt

• Halt ≤ Stutter
Let f,x be an arbitrary index and input value
Define ∀y gf,x(y) = f(x)
<f,x> ∈ Halt⇔ gf,x ∈ Stutter

• Note: Stutter is RE-Complete
• Rice: Stutter is non-trivial Zero∈Stutter; I(x)=x ∉ Stutter

Let f,g be arbitrary indices such that ∀x f(x) = g(x)
f ∈Stutter ⇔ ∃<x,y> [x≠y & f(x)=f(y)] By Definition

⇔ ∃<x,y> [x≠y & g(x)=g(y)] ∀x g(x) = f(x)
⇔ g ∈Stutter
Thus, Rice’s Theorem states that Identity is undecidable

Yet More Reductions and Rice Example

• Constant ≤ Total
Let f be an arbitrary index
Define gf(0) = f(0)

gf(y+1) = μz [f(y+1) = f(y)]
f ∈ Constant ⇔ gf ∈ Total
• Total ≤ Identity

Let f be an arbitrary index
Define gf(x) = f(x)-f(x)
f ∈ Total ⇔ gf ∈ Constant
• Rice: Constant is non-trivial Zero ∈ Constant; I(x)=x ∉ Constant

Let f,g be arbitrary indices such that ∀x f(x) = g(x)
f ∈Constant ⇔ ∃C∀x f(x)=C By Definition

⇔ ∃C∀x g(x)=C ∀x g(x) = f(x)
⇔ g ∈ Constant
Thus, Rice’s Theorem states that Identity is undecidable

Last Reductions and Rice Example

• RangeAll ≤ Total
Let f be an arbitrary index
Define gf(x) = ∃y [f(y) = x]
f ∈ RangeAll ⇔ gf ∈ Total
• Total ≤ RangeAll

Let f be an arbitrary index
Define gf(x) = f(x)-f(x) + x
f ∈ Total ⇔ gf ∈ RangeAll
• Rice: RangeAll is non-trivial I(x)=x ∈ RangeAll; Zero ∉ RangeAll

Let f,g be arbitrary indices such that Range(f) = Range(g)
f ∈ RangeAll ⇔ Range(f) = א By Definition

⇔ Range(f) = א Range(g) = Range(f)
⇔ g ∈ RangeAll
Thus, Rice’s Theorem states that Identity is undecidable

Challenge

Semi-Constant(SC) = { f | ∃C, ∀x f(x)↓ ⇒ f(x) = C }
Note: ↑ ∈ SC and C0(x)=0 ∈ SC
Can describe as f ∈ SC ⇔

∃C ∀<x,t> [STP(f,x,t) ⇒ VALUE(f,x,t) = C]
This implies SC is as hard as Non-TOT={ f |∃x f(x)↑ } as

f ∈ Non-TOT ⇔∃x ∀t [~STP(f,x,t)]
However, SC only takes one quantifier and is undecidable (one of the weaker versions of
Rice shows its undecidability).
I can tell you that SC ºm HALT or SC ºm Non-HALT where Non-HALT = { <f,x> | f(x)↑ }.
Your job is to figure out which and rewrite the quantifier expression. You should also apply
Rice’s to verify undecidability.

4/27/22 © UCF CS 10

NP Co-NP

UNIVERSE OF SETS

PNP-
Complete

Complexity Sample#1
Concept Description Concept

1 Problem A is in NP The classic NP-Complete problem 10

2 Problem A is in co-NP A is the problem TOTAL (set of Algorithms) 4

3 Problem A is in P A is decidable in deterministic polynomial time 3

4 Problem A is non-RE/non-Co-RE If B is in NP then B ≤P A 9

5 Problem A is NP-Complete A is in RE and, if B is in RE, then B ≤m A 8

6 Problem A is RE A is verifiable in deterministic polynomial time 1

7 Problem A is Co-RE A is in NP and if B is in NP then B ≤P A 5

8 Problem A is RE-Complete A is semi-decidable 6

9 Problem A is NP-Hard A is the complement of B and B is RE 7

10 Satisfiability A’s complement is in NP 2

Sample#2: 3SAT to SubsetSum
a b c ~a + b + ~c ~a + ~b + c

a 1 0 0 0 0
~a 1 0 0 1 1
b 0 1 0 1 0

~b 0 1 0 0 1
c 0 0 1 0 1

~c 0 0 1 1 0
C1 0 0 0 1 0
C1’ 0 0 0 1 0
C2 0 0 0 0 1
C2’ 0 0 0 0 1

1 1 1 3 3

(~a + b + ~c) (~a + ~b + c)

Sample#3: Scheduling

T1 T1 T1 T1 T3 T3 T5 T6 T6 T6 T6 T7 T7 T7 T7 T7 T7 T7 T7

T2 T2 T2 T2 T2 T4 T4 T4 T4 T4 T4 T4

T7 T7 T7 T7 T7 T7 T7 T7 T1 T1 T1 T1 T6 T6 T6 T6

T4 T4 T4 T4 T4 T4 T4 T2 T2 T2 T2 T2 T3 T3 T5

List Schedule (T1,4), (T2,5), (T3,2), (T4,7), (T5,1), (T6,4), (T7,8)

Sorted List Schedule (T7,8), (T4,7), (T2,5), (T1,4), (T6,4), (T3,2), (T5,1)

Independent set (IS) is NP-Complete

• We represent each clause in an instance of 3SAT with a triangle, one node per
literal. The key is that all nodes are connected in a triangle of nodes, so the best
you can do is to choose one node per clause to participate in an independent set.
By adding an edge between every instance of variable v and every instance of
variable ~v, we guarantee that we cannot choose nodes labeled v and ~v as part
of an independent set. Here, assume we have V Boolean variables
• When the required independent set must be C, where C is the number of clauses,

we must choose one node per clause and we must do this in a way so that no
nodes labeled with a variable and its complement are chosen. That can only be
done if there is an assignment to variables (true or false) that satisfy the original
instance of 3SAT. Thus IS is NP-Hard. But, we can check a proposed independent
set in time proportional to the size of the graph (which is actually linear in the
size of the 3SAT problem). Thus, IS is in NP. In conclusion, IS is NP-Complete.

Sample#4: Independent Set
(a + ~b + c) (~a + b + ~c) (a + b + c) (~a + b + b)

Place an edge between every node
labeled V and every node labeled ~V,
where V can be a, b or c.

Vertex Cover (VC) is NP-Complete

• We represent each clause (assume there are C of them) in an instance of 3SAT with a triangle, one
node per literal. One key is that two nodes in each clause triangle must be chosen to cover the
three internal edges. We represent each assignment to a variable v (assume there are V variables)
by a pair of connected nodes labeled v and ~v. The second key is that we must choose precisely
one of v or ~v for each variable to cover the edge that connects its pair. Thus, the minimum cover
set contains 2C+V nodes.

• We add an edge from each v and to all literals v in clauses, and each ~v to all literals ~v in clauses.
To cover all the edges added here for the variable nodes, we must choose nodes in each clause
that cover edges from variable nodes that are not chosen in the variable pair. If all clauses have at
least one of these incoming edges already covered (we chose an assignment to the variable that
matches a literal in this clause), then we will be able to cover all internal edges in each clause and
all edges entering the clause from a variable pair, by just choosing two nodes in the clause.

• Choosing 2C+V nodes that cover all edges can only be done if there is an assignment to variables
(true or false) that satisfy the original instance of 3SAT. Thus, VC is NP-Hard. But, we can check a
proposed cover set of vertices in time proportional to the size of the graph (which is actually
linear in the size of the 3SAT problem). Thus, VC is in NP. In conclusion, VC is NP-Complete.

Sample # 5: VC Gadgets

Sample#6: Vertex Cover
(a + ~b + c) (~a + b + ~c) (a + b + c) (~a + b + b)

a ~a

b

~c

~b

c
Place an edge between every variable node labeled V and every clause
node labeled ~V, where V can be a, b or c.

Variable Nodes/Edges

Clause Nodes/Edges

K = 2*C+V = 8+3 = 11

Consider the SAT instance:
(x1 ∨ x2 ∨ x4 ∨ x5) & (¬x1 ∨ ¬x2 ∨ x3 ∨ ¬x4 ∨ ¬x5) & (x1 ∨ ¬x4)

1. Recast this as an instance of 3SAT.

ANS:
(x1 ∨ x2 ∨ x6) & (x4 ∨ x5 ∨ ¬x6) & (¬x1 ∨ ¬x2 ∨ x7) & (x3 ∨ ¬x4 ∨ x8) & (¬x5 ∨ ¬x7 ∨ ¬x8) & (x1 ∨ ¬x4 ∨ x1)

ANS:
c1 = (x1 ∨ x2 ∨ x6)
c2 = (x4 ∨ x5 ∨ ¬x6)
c3 = (¬x1 ∨ ¬x2 ∨ x7)
c4 = (x3 ∨ ¬x4 ∨ x8)
c5 = (¬x5 ∨ ¬x7 ∨ ¬x8)
c6 = (x1 ∨ ¬x4 ∨ x1)

A simple solution is x1, x2, x3, x4, x5, x6, x7, ¬x8

x1 x2 x3 x4 x5 x6 x7 x8 C1 C2 C3 C4 C5 C6

x1 1 0 0 0 0 0 0 0 1 0 0 0 0 2

~x1 1 0 0 0 0 0 0 0 0 0 1 0 0 0

x2 0 1 0 0 0 0 0 0 1 0 0 0 0 0

~x2 0 1 0 0 0 0 0 0 0 0 1 0 0 0

x3 0 0 1 0 0 0 0 0 0 0 0 1 0 0

~x3 0 0 1 0 0 0 0 0 0 0 0 0 0 0

x4 0 0 0 1 0 0 0 0 0 1 0 0 0 0

~x4 0 0 0 1 0 0 0 0 0 0 0 1 0 1

x5 0 0 0 0 1 0 0 0 0 1 0 0 0 0

~x5 0 0 0 0 1 0 0 0 0 0 0 0 1 0

x6 0 0 0 0 0 1 0 0 1 0 0 0 0 0

~x6 0 0 0 0 0 1 0 0 0 1 0 0 0 0

x7 0 0 0 0 0 0 1 0 0 0 1 0 0 0

~x7 0 0 0 0 0 0 1 0 0 0 0 0 1 0

x8 0 0 0 0 0 0 0 1 0 0 0 1 0 0

~x8 0 0 0 0 0 0 0 1 0 0 0 0 1 0

C1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

C1’ 0 0 0 0 0 0 0 0 1 0 0 0 0 0

C2 0 0 0 0 0 0 0 0 0 1 0 0 0 0

C2’ 0 0 0 0 0 0 0 0 0 1 0 0 0 0

C3 0 0 0 0 0 0 0 0 0 0 1 0 0 0

C3 ‘ 0 0 0 0 0 0 0 0 0 0 1 0 0 0

C4 0 0 0 0 0 0 0 0 0 0 0 1 0 0

C4’ 0 0 0 0 0 0 0 0 0 0 0 1 0 0

C5 0 0 0 0 0 0 0 0 0 0 0 0 1 0

C5’ 0 0 0 0 0 0 0 0 0 0 0 0 1 0

C6 0 0 0 0 0 0 0 0 0 0 0 0 0 1

C6’ 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 3 3 3 3 3 3

2. Construct the SubsetSum instance equivalent to this and state what rows must be chosen.
(x1 ∨ x2 ∨ x6) & (x4 ∨ x5 ∨ ¬x6) & (¬x1 ∨ ¬x2 ∨ x7) & (x3 ∨ ¬x4 ∨ x8) & (¬x5 ∨ ¬x7 ∨ ¬x8) & (x1 ∨ ¬x4 ∨ x1)

3. Recast the SubsetSum instance in Part 2 as a Partition instance (really easy). Show the Partitioning into equal subsets.

Ans:
G = 11111111333333
sum= 22222222555555
2 ∗ sum − G = 33333333777777
sum + G = 33333333888888
sum is the sum of all rows.

Note: If you use 1 in X1/C6 then
sum is 22222222555554 and so
2 ∗ sum − G = 33333333777775
sum + G = 33333333888887

The partitions for the case where we use 2 in x1/C6 are as follows:

Partition 1:

33333333 777777 2*sum -G
10000000 100002 x1
01000000 100000 x2
00100000 000100 x3
00010000 010000 x4
00001000 010000 x5
00000100 100000 x6
00000010 001000 x7
00000001 000010 ¬x8
00000000 010000 C2
00000000 010000 C3
00000000 001000 C3’
00000000 000100 C4
00000000 000010 C5
00000000 000010 C5’
00000000 000001 C6

c1 = (x1 ∨ x2 ∨ x6)
c2 = (x4 ∨ x5 ∨ ¬x6)
c3 = (¬x1 ∨ ¬x2 ∨ x7)
c4 = (x3 ∨ ¬x4 ∨ x8)
c5 = (¬x5 ∨ ¬x7 ∨ ¬x8)
c6 = (x1 ∨ ¬x4 ∨ x1)

A simple solution is x1, x2, x3, x4, x5, x6, x7, ¬x8

Partition 2:

33333333 888888 sum+G
10000000 001000 ~x1
01000000 001000 ~x2
00100000 000000 ~x3
00010000 000101 ~x4
00001000 000010 ~x5
00000100 010000 ~x6
00000010 000010 ~x7
00000001 000100 x8
00000000 100000 C1
00000000 100000 C1’
00000000 010000 C2’
00000000 000100 C4’
00000000 000001 C6’

c1 = (x1 ∨ x2 ∨ x6)
c2 = (x4 ∨ x5 ∨ ¬x6)
c3 = (¬x1 ∨ ¬x2 ∨ x7)
c4 = (x3 ∨ ¬x4 ∨ x8)
c5 = (¬x5 ∨ ¬x7 ∨ ¬x8)
c6 = (x1 ∨ ¬x4 ∨ x1)

A simple solution is x1, x2, x3, x4, x5, x6, x7, ¬x8

4. Recast the original SAT as a 0-1 Integer Linear Programming instance:

(x1 ∨ x2 ∨ x4 ∨ x5) & (¬x1 ∨ ¬x2 ∨ x3 ∨ ¬x4 ∨ ¬x5) & (x1 ∨ ¬x4)

ANS:

Assume 0 <= x1, x2, x3, x4, x5 <= 1
x1 + x2 + x4 + x5 >= 1
(1-x1) + (1-x2) + x3 + (1-x4) + (1-x5) >= 1
x1 + (1-x4) >= 1
We choose: x1 = 1, x2 = 1, x3 = 1, x4 = 1, x5 = 1

5. Consider the following set of independent tasks with associated task
times:

(T1,3), (T2,5), (T3,7), (T4,6), (T5,2), (T6,8), (T7,1)

Fill in the schedules for these tasks under the associated strategies
below.

Greedy using the list order above:

Greedy using a reordering of the list so that longest-running tasks
appear earliest in the list:

Greedy then sorted high to low

T1 T1 T1 T3 T3 T3 T3 T3 T3 T3 T5 T5 T7

T2 T2 T2 T2 T2 T4 T4 T4 T4 T4 T4 T6 T6 T6 T6 T6 T6 T6 T6

(T1,3), (T2,5), (T3,7), (T4,6), (T5,2), (T6,8), (T7,1)

T6 T6 T6 T6 T6 T6 T6 T6 T2 T2 T2 T2 T2 T1 T1 T1

T3 T3 T3 T3 T3 T3 T3 T4 T4 T4 T4 T4 T4 T5 T5 T7

(T6,8), (T3,7), (T4,6), (T2,5), (T1,3), (T5,2), (T7,1)

6. Consider the 3SAT instance:
E = (x1 ∨ x2 ∨ x4) & (¬x1 ∨ ¬x3 ∨ ¬x4) & (¬x2 ∨ ¬x3 ∨ x4)
& (¬x2 ∨ ¬x3 ∨ ¬x4)
a. Recast E as an instance of k-Vertex Covering and present a
solution to the latter
b. Recast E as an instance of 3-Coloring and present a solution to
the latter

Question 6 (a)
E = (x1 ∨ x2 ∨ x4) & (¬x1 ∨ ¬x3 ∨ ¬x4) & (¬x2 ∨ ¬x3 ∨ x4) & (¬x2 ∨ ¬x3 ∨ ¬x4)

Variable Gadgets:

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

x2 x4 ¬x3 ¬x4 ¬x3 x4 ¬x3 ¬x4

x1 ¬x1 ¬x2 ¬x2

Clause Gadgets:

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

E = (x1 ∨ x2 ∨ x4) & (¬x1 ∨ ¬x3 ∨ ¬x4) & (¬x2 ∨ ¬x3 ∨ x4) & (¬x2 ∨ ¬x3 ∨ ¬x4)

Combined Gadgets:

x2 x4 ¬x3 ¬x4 ¬x3 x4 ¬x3 ¬x4

x1 ¬x1 ¬x2 ¬x2

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

E = (x1 ∨ x2 ∨ x4) & (¬x1 ∨ ¬x3 ∨ ¬x4) & (¬x2 ∨ ¬x3 ∨ x4) & (¬x2 ∨ ¬x3 ∨ ¬x4)

Selecting Vertex Cover:

x2 x4 ¬x3 ¬x4 ¬x3 x4 ¬x3 ¬x4

x1 ¬x1 ¬x2 ¬x2

T

B

F

¬x1

¬x2

¬x4

x1

x2

x4

Question 6(b):

True

False

Base

Not¬

¬x3 x3

7. Task set (T1,2), (T2,1), (T3,1), (T4,3), (T5,3), (T6,2), (T7,5),
with partial order
T1<T3; T1<T5, T2<T5, T3<T4; T3<T7; T6<T1; T5<T7
a. Draw the graph that depicts these relationships.

b. Show the 2-processor schedule that results when the task number is
the priority; a smaller task number means higher priority.
T2 T1 T1 T3 T4 T4 T4

T6 T6 T5 T5 T5 T7 T7 T7 T7 T7

T1

T3

T6

T5

T4 T7

T2

8. Consider the following 2SAT instance.
(¬x ∨ y) (¬y ∨ z) (¬z ∨ x) (z ∨ y)
a. Draw the implication graph associated with this formula.
x ® y; ¬y ® ¬x; y ® z; ¬z ® ¬y; z ® x; ¬x ® ¬z; ¬z ® y; ¬y ® z

b. Draw circles around the strongly connected components (see red circles)
c. Provide a solution based on the SCCs or highlight the conflict exposed by
the SCCs – the cluster with three elements has no outgoing edges, so
x = y = z = T

y

zx

¬y

¬z ¬x

9. Consider the following instance of Positive Min-Ones-2SATt,
(A ∨ B) (A ∨ C) (C ∨ E) (D ∨ E) (D ∨ G) (E ∨ F) (F ∨ G) (F ∨ H) (G ∨ H)
a. Convert this instance of Positive 2SAT to a graph for which Min Vertex Cover is equivalent
to the Min-Ones problem.

b. Show solution for Min Vertex Cover for (a) and correspondingly for the Positive Min-
Ones-2SAT instance.
Solution: Min Cover is 4 choosing A, E, F, G; True assignments are is A = E = F = G = T
See circled nodes and covered edges with green slashes.

A

B

C

DE

GF

H

