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Some Quantification Examples

• <f,x> ∈ Halt ⇔∃t [ STP(f,x,t) ] RE
• f ∈ Total ⇔∀x∃t [ STP(f,x,t) ] NRNC
• f ∈ NotTotal ⇔∃x∀t [ ~STP(f,x,t) ] NRNC
• f ∈ RangeAll ⇔∀x∃<y,t> [ STP(f,y,t) &VALUE(f,y,t)=x ] NRNC
• f ∈ RangeNotAll ⇔∃x∀<y,t> [STP(f,y,t) ⇒ VALUE(f,y,t)≠x ] NRNC
• f ∈ HasZero ⇔∃<x,t> [ STP(f,x,t) & VALUE(f,x,t)=0 ] RE
• f ∈ IsZero ⇔∀x∃t [ STP(f,x,t) & VALUE(f,x,t)=0 ] NRNC
• f ∈ Empty ⇔∀<x,t> [ ~STP(f,x,t) ] Co-RE
• f ∈ NotEmpty ⇔∃ <x,t> [ STP(f,x,t) ] RE



More Quantification Examples

• f ∈ Identity ⇔∀x∃t [ STP(f,x,t) & VALUE(f,x,t)=x ] NRNC
• f ∈ NotIdentity ⇔∃x∀t [ ~STP(f,x,t) | VALUE(f,x,t)≠x ] or NRNC

∃x∀t [ STP(f,x,t) ⇒ VALUE(f,x,t)≠x ] 
• f ∈ Constant = ∀<x,y>∃t [STP(f,x,t) & STP(f,y,t) & NRNC

VALUE(f,x,t)=VALUE(f,y,t)] 
• f ∈ Infinite ⇔∀x∃<y,t> [ y≥x & STP(f,y,t) ] NRNC
• f ∈ Finite ⇔∃x∀<y,t> [ y<x | ~STP(f,y,t) ] or NRNC

∃x∀<y,t> [ STP(f,y,t) ⇒ y<x ] or [ y≥x ⇒ ~STP(f,y,t) ] 
• f ∈ RangeInfinite ⇔∀x∃<y,t> [ STP(f,y,t) & VALUE(f,y,t)≥x ] NRNC
• f ∈ RangeFinite ⇔∃x∀<y,t> [ STP(f,y,t) ⇒ VALUE(f,y,t)<x ] NRNC
• f ∈ Stutter ⇔∃<x,y,t> [ x≠y & STP(f,x,t) & STP(f,y,t) & RE

VALUE(f,x,t) = VALUE(f,y,t) ]



Even More Quantification Examples

• <f,x> ∈ Fast20 ⇔ [ STP(f,x,20) ] REC
• f ∈ FastOne20 ⇔∃x [ STP(f,x,20) ] RE
• f ∈ FastAll20 ⇔∀x [ STP(f,x,20) ] Co-RE
• <f,x,K,C> ∈ LinearKC ⇔ [ STP(f,x,K*x+C) ] REC
• <f,K,C>∈ LinearKCOne ⇔∃x [ STP(f,x,K*x+C) ] RE
• <f,K,C> ∈ LinearKCAll ⇔∀x [ STP(f,x,K*x+C) ] Co-RE

• None of the above can be shown undecidable using Rice’s Theorem
• In fact, reduction from known undecidables is also a problem for all but 

the first one which happens to be decidable.



Some Reductions and Rice Example

• NotEmpty ≤ Halt
Let f be an arbitrary index
Define ∀y gf(y) = ∃<x,t> STP(f,x,t)
f ∈ Notmpty ⇔ <gf,0> ∈ Halt
• Halt ≤ NotEmpty

Let f,x be an arbitrary index and input value
Define ∀y gf,x(y) = f(x)
<f,x> ∈ Halt⇔ gf,x ∈ NotEmpty
• Note: NotEmpty is RE-Complete
• Rice: NotEmpty is non-trivial  Zero ∈ NotEmpty; ↑∉ NotEmpty

Let f,g be arbitrary indices such that Dom(f)=Dom(g)
f ∈NotEmpty ⇔ Dom(f) ≠ ∅ By Definition

⇔ Dom(g) ≠ ∅ Dom(g)=Dom(f)
⇔ g ∈ NotEmpty
Thus, Rice’s Theorem states that NotEmpty is undecidable.



More Reductions and Rice Example

• Identity ≤ Total
Let f be an arbitrary index
Define gf(x) = μy [ f(x) = x ]
f ∈ Identity ⇔ gf ∈ Total
• Total ≤ Identity

Let f be an arbitrary index
Define gf(x) = f(x)-f(x) + x
f ∈ Total ⇔ gf,x ∈ Identity
• Rice: Identity is non-trivial  I(x)=x ∈ Identity; Zero ∉ Identity

Let f,g be arbitrary indices such that ∀x f(x) = g(x)
f ∈Identity    ⇔ ∀x f(x)=x By Definition

⇔ ∀x g(x)=x ∀x g(x) = f(x)
⇔ g ∈ Identity
Thus, Rice’s Theorem states that Identity is undecidable



Even More Reductions and Rice Example

• Stutter ≤ Halt
Let f be an arbitrary index
Define ∀y gf(y) = ∃<x,y,t> [ x≠y & STP(f,x,t) & STP(f,y,t) &

VALUE(f,x,t) = VALUE(f,y,t) ] 
f ∈ Stutter ⇔ <gf,0> ∈ Halt

• Halt ≤ Stutter
Let f,x be an arbitrary index and input value
Define ∀y gf,x(y) = f(x)
<f,x> ∈ Halt⇔ gf,x ∈ Stutter

• Note: Stutter is RE-Complete
• Rice: Stutter is non-trivial  Zero∈Stutter; I(x)=x ∉ Stutter

Let f,g be arbitrary indices such that ∀x f(x) = g(x)
f ∈Stutter      ⇔ ∃<x,y> [ x≠y & f(x)=f(y) ] By Definition

⇔ ∃<x,y> [ x≠y & g(x)=g(y) ] ∀x g(x) = f(x)
⇔ g ∈Stutter
Thus, Rice’s Theorem states that Identity is undecidable



Yet More Reductions and Rice Example

• Constant ≤ Total
Let f be an arbitrary index
Define gf(0) = f(0)

gf(y+1) = μz [ f(y+1) = f(y) ]
f ∈ Constant ⇔ gf ∈ Total
• Total ≤ Identity

Let f be an arbitrary index
Define gf(x) = f(x)-f(x)
f ∈ Total ⇔ gf ∈ Constant
• Rice: Constant is non-trivial Zero ∈ Constant; I(x)=x ∉ Constant

Let f,g be arbitrary indices such that ∀x f(x) = g(x)
f ∈Constant ⇔ ∃C∀x f(x)=C By Definition

⇔ ∃C∀x g(x)=C ∀x g(x) = f(x)
⇔ g ∈ Constant
Thus, Rice’s Theorem states that Identity is undecidable



Last Reductions and Rice Example

• RangeAll ≤ Total 
Let f be an arbitrary index
Define gf(x) = ∃y [ f(y) = x ]
f ∈ RangeAll ⇔ gf ∈ Total
• Total ≤ RangeAll

Let f be an arbitrary index
Define gf(x) = f(x)-f(x) + x
f ∈ Total ⇔ gf ∈ RangeAll
• Rice: RangeAll is non-trivial I(x)=x ∈ RangeAll; Zero ∉ RangeAll

Let f,g be arbitrary indices such that Range(f) = Range(g)
f ∈ RangeAll ⇔ Range(f) = א By Definition

⇔ Range(f) = א Range(g) = Range(f)
⇔ g ∈ RangeAll
Thus, Rice’s Theorem states that Identity is undecidable



Challenge

Semi-Constant(SC) = { f | ∃C, ∀x f(x)↓ ⇒ f(x) = C }
Note: ↑ ∈ SC and C0(x)=0 ∈ SC 
Can describe as f ∈ SC ⇔

∃C ∀<x,t> [ STP(f,x,t) ⇒ VALUE(f,x,t) = C ]
This implies SC is as hard as Non-TOT={ f |∃x f(x)↑ } as

f ∈ Non-TOT ⇔∃x ∀t [ ~STP(f,x,t) ]
However, SC only takes one quantifier and is undecidable (one of the weaker versions of 
Rice shows its undecidability).
I can tell you that SC ºm HALT or SC ºm Non-HALT where Non-HALT = { <f,x> | f(x)↑ }.
Your job is to figure out which and rewrite the quantifier expression. You should also apply 
Rice’s to verify undecidability.
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Complexity Sample#1
# Concept Description Concept #

1 Problem A is in NP The classic NP-Complete problem 10

2 Problem A is in co-NP A is the problem TOTAL (set of Algorithms) 4

3 Problem A is in P A is decidable in deterministic polynomial time 3

4 Problem A is non-RE/non-Co-RE If B is in NP then B ≤P A 9

5 Problem A is NP-Complete A is in RE and, if B is in RE, then B ≤m A 8

6 Problem A is RE A is verifiable in deterministic polynomial time 1

7 Problem A is Co-RE A is in NP and if B is in NP then B ≤P A 5

8 Problem A is RE-Complete A is semi-decidable 6

9 Problem A is NP-Hard A is the complement of B and B is RE 7

10 Satisfiability A’s complement is in NP 2



Sample#2: 3SAT to SubsetSum
a b c ~a + b + ~c ~a + ~b + c

a 1 0 0 0 0
~a 1 0 0 1 1
b 0 1 0 1 0

~b 0 1 0 0 1
c 0 0 1 0 1

~c 0 0 1 1 0
C1 0 0 0 1 0
C1’ 0 0 0 1 0
C2 0 0 0 0 1
C2’ 0 0 0 0 1

1 1 1 3 3

(~a + b + ~c) (~a + ~b + c)



Sample#3: Scheduling

T1 T1 T1 T1 T3 T3 T5 T6 T6 T6 T6 T7 T7 T7 T7 T7 T7 T7 T7

T2 T2 T2 T2 T2 T4 T4 T4 T4 T4 T4 T4

T7 T7 T7 T7 T7 T7 T7 T7 T1 T1 T1 T1 T6 T6 T6 T6

T4 T4 T4 T4 T4 T4 T4 T2 T2 T2 T2 T2 T3 T3 T5

List Schedule (T1,4), (T2,5), (T3,2), (T4,7), (T5,1), (T6,4), (T7,8) 

Sorted List Schedule (T7,8), (T4,7), (T2,5), (T1,4), (T6,4), (T3,2), (T5,1)



Independent set (IS) is NP-Complete

• We represent each clause in an instance of 3SAT with a triangle, one node per 
literal. The key is that all nodes are connected in a triangle of nodes, so the best 
you can do is to choose one node per clause to participate in an independent set. 
By adding an edge between every instance of variable v and every instance of 
variable ~v, we guarantee that we cannot choose nodes labeled v and ~v as part 
of an independent set. Here, assume we have V Boolean variables
• When the required independent set must be C, where C is the number of clauses, 

we must choose one node per clause and we must do this in a way so that no 
nodes labeled with a variable and its complement are chosen. That can only be 
done if there is an assignment to variables (true or false) that satisfy the original 
instance of 3SAT. Thus IS is NP-Hard. But, we can check a proposed independent 
set in time proportional to the size of the graph (which is actually linear in the 
size of the 3SAT problem). Thus, IS is in NP. In conclusion, IS is NP-Complete.



Sample#4: Independent Set
(a + ~b + c) (~a + b + ~c) (a + b + c) (~a + b + b)

Place an edge between every node 
labeled V and every node labeled ~V, 
where V can be a, b or c.



Vertex Cover (VC) is NP-Complete

• We represent each clause (assume there are C of them) in an instance of 3SAT with a triangle, one 
node per literal. One key is that two nodes in each clause triangle must be chosen to cover the 
three internal edges. We represent each assignment to a variable v (assume there are V variables) 
by a pair of connected nodes labeled v and ~v. The second key is that we must choose precisely 
one of v or ~v for each variable to cover the edge that connects its pair. Thus, the minimum cover 
set contains 2C+V nodes. 

• We add an edge from each v and to all literals v in clauses, and each ~v to all literals ~v in clauses. 
To cover all the edges added here for the variable nodes, we must choose nodes in each clause 
that cover edges from variable nodes that are not chosen in the variable pair. If all clauses have at 
least one of these incoming edges already covered (we chose an assignment to the variable that 
matches a literal in this clause), then we will be able to cover all internal edges in each clause and 
all edges entering the clause from a variable pair, by just choosing two nodes in the clause.

• Choosing 2C+V nodes that cover all edges can only be done if there is an assignment to variables 
(true or false) that satisfy the original instance of 3SAT. Thus, VC is NP-Hard. But, we can check a 
proposed cover set of vertices in time proportional to the size of the graph (which is actually 
linear in the size of the 3SAT problem). Thus, VC is in NP. In conclusion, VC is NP-Complete.



Sample # 5: VC Gadgets



Sample#6: Vertex Cover
(a + ~b + c) (~a + b + ~c) (a + b + c) (~a + b + b)

a ~a

b

~c

~b

c
Place an edge between every variable node labeled V and every clause 
node labeled ~V, where V can be a, b or c.

Variable Nodes/Edges

Clause Nodes/Edges

K = 2*C+V = 8+3 = 11



Consider the SAT instance:
(x1 ∨ x2 ∨ x4 ∨ x5) & (¬x1 ∨ ¬x2 ∨ x3 ∨ ¬x4 ∨ ¬x5) & (x1 ∨ ¬x4 )

1. Recast this as an instance of 3SAT.

ANS: 
(x1 ∨ x2 ∨ x6) & (x4 ∨ x5 ∨ ¬x6) & (¬x1 ∨ ¬x2 ∨ x7) & (x3 ∨ ¬x4 ∨ x8) & (¬x5 ∨ ¬x7 ∨ ¬x8) & (x1 ∨ ¬x4 ∨ x1)

ANS:
c1 = (x1 ∨ x2 ∨ x6) 
c2 = (x4 ∨ x5 ∨ ¬x6) 
c3 = (¬x1 ∨ ¬x2 ∨ x7) 
c4 = (x3 ∨ ¬x4 ∨ x8)
c5 = (¬x5 ∨ ¬x7 ∨ ¬x8)  
c6 = (x1 ∨ ¬x4 ∨ x1)

A simple solution is x1, x2, x3, x4, x5, x6, x7, ¬x8



x1 x2 x3 x4 x5 x6 x7 x8 C1 C2 C3 C4 C5 C6 

x1 1 0 0 0 0 0 0 0 1 0 0 0 0 2

~x1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 

x2 0 1 0 0 0 0 0 0 1 0 0 0 0 0 

~x2 0 1 0 0 0 0 0 0 0 0 1 0 0 0 

x3 0 0 1 0 0 0 0 0 0 0 0 1 0 0 

~x3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

x4 0 0 0 1 0 0 0 0 0 1 0 0 0 0

~x4 0 0 0 1 0 0 0 0 0 0 0 1 0 1 

x5 0 0 0 0 1 0 0 0 0 1 0 0 0 0 

~x5 0 0 0 0 1 0 0 0 0 0 0 0 1 0 

x6 0 0 0 0 0 1 0 0 1 0 0 0 0 0 

~x6 0 0 0 0 0 1 0 0 0 1 0 0 0 0 

x7 0 0 0 0 0 0 1 0 0 0 1 0 0 0 

~x7 0 0 0 0 0 0 1 0 0 0 0 0 1 0 

x8 0 0 0 0 0 0 0 1 0 0 0 1 0 0 

~x8 0 0 0 0 0 0 0 1 0 0 0 0 1 0 

C1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

C1’ 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

C2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

C2’ 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

C3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

C3 ‘ 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

C4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

C4’ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

C5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

C5’ 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

C6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

C6’ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 1 1 1 1 1 1 1 3 3 3 3 3 3 

2. Construct the SubsetSum instance equivalent to this and state what rows must be chosen.
(x1 ∨ x2 ∨ x6) & (x4 ∨ x5 ∨ ¬x6) & (¬x1 ∨ ¬x2 ∨ x7) & (x3 ∨ ¬x4 ∨ x8) & (¬x5 ∨ ¬x7 ∨ ¬x8) & (x1 ∨ ¬x4 ∨ x1)



3. Recast the SubsetSum instance in Part 2 as a Partition instance (really easy). Show the Partitioning into equal subsets.

Ans:
G =                    11111111333333
sum=                22222222555555
2 ∗ sum − G =  33333333777777
sum + G =        33333333888888
sum is the sum of all rows.

Note: If you use 1 in X1/C6 then 
sum is 22222222555554 and so 
2 ∗ sum − G =  33333333777775
sum + G =        33333333888887

The partitions for the case where we use 2 in x1/C6 are as follows: 



Partition 1:

33333333 777777     2*sum -G
10000000 100002      x1
01000000 100000      x2
00100000 000100      x3
00010000 010000      x4
00001000 010000      x5
00000100 100000      x6 
00000010 001000      x7
00000001 000010    ¬x8
00000000 010000      C2 
00000000 010000      C3 
00000000 001000      C3’
00000000 000100      C4 
00000000 000010      C5
00000000 000010      C5’
00000000 000001      C6

c1 = (x1 ∨ x2 ∨ x6) 
c2 = (x4 ∨ x5 ∨ ¬x6) 
c3 = (¬x1 ∨ ¬x2 ∨ x7) 
c4 = (x3 ∨ ¬x4 ∨ x8)
c5 = (¬x5 ∨ ¬x7 ∨ ¬x8)  
c6 = (x1 ∨ ¬x4 ∨ x1)

A simple solution is x1, x2, x3, x4, x5, x6, x7, ¬x8



Partition 2:

33333333 888888     sum+G
10000000 001000    ~x1 
01000000 001000    ~x2
00100000 000000    ~x3 
00010000 000101    ~x4
00001000 000010    ~x5 
00000100 010000    ~x6 
00000010 000010    ~x7 
00000001 000100      x8 
00000000 100000     C1
00000000 100000     C1’
00000000 010000     C2’
00000000 000100     C4’ 
00000000 000001     C6’ 

c1 = (x1 ∨ x2 ∨ x6) 
c2 = (x4 ∨ x5 ∨ ¬x6) 
c3 = (¬x1 ∨ ¬x2 ∨ x7) 
c4 = (x3 ∨ ¬x4 ∨ x8)
c5 = (¬x5 ∨ ¬x7 ∨ ¬x8)  
c6 = (x1 ∨ ¬x4 ∨ x1)

A simple solution is x1, x2, x3, x4, x5, x6, x7, ¬x8



4. Recast the original SAT as a 0-1 Integer Linear Programming instance:

(x1 ∨ x2 ∨ x4 ∨ x5) & (¬x1 ∨ ¬x2 ∨ x3 ∨ ¬x4 ∨ ¬x5) & (x1 ∨ ¬x4 )

ANS:

Assume 0 <= x1, x2,  x3, x4, x5 <= 1  
x1 + x2 + x4 + x5 >= 1
(1-x1) + (1-x2) + x3 + (1-x4) + (1-x5) >= 1 
x1 + (1-x4) >= 1
We choose: x1 = 1, x2 = 1, x3 = 1, x4 = 1, x5 = 1



5. Consider the following set of independent tasks with associated task 
times:

(T1,3), (T2,5), (T3,7), (T4,6), (T5,2), (T6,8), (T7,1)

Fill in the schedules for these tasks under the associated strategies 
below.

Greedy using the list order above:

Greedy using a reordering of the list so that longest-running tasks 
appear earliest in the list:



Greedy then sorted high to low 

T1 T1 T1 T3 T3 T3 T3 T3 T3 T3 T5 T5 T7

T2 T2 T2 T2 T2 T4 T4 T4 T4 T4 T4 T6 T6 T6 T6 T6 T6 T6 T6

(T1,3), (T2,5), (T3,7), (T4,6), (T5,2), (T6,8), (T7,1)

T6 T6 T6 T6 T6 T6 T6 T6 T2 T2 T2 T2 T2 T1 T1 T1

T3 T3 T3 T3 T3 T3 T3 T4 T4 T4 T4 T4 T4 T5 T5 T7

(T6,8), (T3,7), (T4,6), (T2,5), (T1,3), (T5,2), (T7,1)



6. Consider the 3SAT instance:
E = (x1 ∨ x2 ∨ x4 ) & (¬x1 ∨ ¬x3 ∨ ¬x4 ) & (¬x2 ∨ ¬x3 ∨ x4 ) 
& (¬x2 ∨ ¬x3 ∨ ¬x4)
a. Recast E as an instance of k-Vertex Covering and present a 
solution to the latter
b. Recast E as an instance of 3-Coloring and present a solution to 
the latter



Question 6 (a)
E = (x1 ∨ x2 ∨ x4 ) & (¬x1 ∨ ¬x3 ∨ ¬x4 ) & (¬x2 ∨ ¬x3 ∨ x4 ) & (¬x2 ∨ ¬x3 ∨ ¬x4)

Variable Gadgets:

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

x2 x4 ¬x3 ¬x4 ¬x3 x4 ¬x3 ¬x4

x1 ¬x1 ¬x2 ¬x2

Clause Gadgets:



x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

E = (x1 ∨ x2 ∨ x4 ) & (¬x1 ∨ ¬x3 ∨ ¬x4 ) & (¬x2 ∨ ¬x3 ∨ x4 ) & (¬x2 ∨ ¬x3 ∨ ¬x4)

Combined Gadgets:

x2 x4 ¬x3 ¬x4 ¬x3 x4 ¬x3 ¬x4

x1 ¬x1 ¬x2 ¬x2



x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

E = (x1 ∨ x2 ∨ x4 ) & (¬x1 ∨ ¬x3 ∨ ¬x4 ) & (¬x2 ∨ ¬x3 ∨ x4 ) & (¬x2 ∨ ¬x3 ∨ ¬x4)

Selecting Vertex Cover:

x2 x4 ¬x3 ¬x4 ¬x3 x4 ¬x3 ¬x4

x1 ¬x1 ¬x2 ¬x2



T

B

F

¬x1

¬x2

¬x4

x1

x2

x4

Question 6(b):

True

False

Base

Not¬

¬x3 x3



7. Task set (T1,2), (T2,1), (T3,1), (T4,3), (T5,3), (T6,2), (T7,5), 
with partial order
T1<T3; T1<T5, T2<T5, T3<T4; T3<T7; T6<T1; T5<T7
a. Draw the graph that depicts these relationships.

b. Show the 2-processor schedule that results when the task number is 
the priority; a smaller task number means higher priority.
T2 T1 T1 T3 T4 T4 T4

T6 T6 T5 T5 T5 T7 T7 T7 T7 T7

T1

T3

T6

T5

T4 T7

T2



8. Consider the following 2SAT instance.
(¬x ∨ y) (¬y ∨ z) (¬z ∨ x) (z ∨ y)
a. Draw the implication graph associated with this formula.
x ® y; ¬y ® ¬x; y ® z; ¬z ® ¬y; z ® x; ¬x ® ¬z; ¬z ® y; ¬y ® z

b. Draw circles around the strongly connected components (see red circles)
c. Provide a solution based on the SCCs or highlight the conflict exposed by 
the SCCs – the cluster with three elements has no outgoing edges, so
x = y = z = T

y

zx

¬y

¬z ¬x



9. Consider the following instance of Positive Min-Ones-2SATt,
(A ∨ B) (A ∨ C) (C ∨ E) (D ∨ E) (D ∨ G) (E ∨ F) (F ∨ G) (F ∨ H) (G ∨ H)
a. Convert this instance of Positive 2SAT to a graph for which Min Vertex Cover is equivalent 
to the Min-Ones problem.

b. Show solution for Min Vertex Cover for (a) and correspondingly for the Positive Min-
Ones-2SAT instance. 
Solution: Min Cover is 4 choosing A, E, F, G; True assignments are is A = E = F = G = T 
See circled nodes and covered edges with green slashes.

A

B

C

DE

GF

H


