UNIVERSE OF SETS

NRNC
NR (non-recursive) $=($ NRNC \cup Co-RE) - REC

Some Quantification Examples

- $\langle\mathrm{f}, \mathrm{x}>\in$ Halt $\Leftrightarrow \exists \mathrm{t}[\operatorname{STP}(\mathrm{f}, \mathrm{x}, \mathrm{t})$]
- $\mathrm{f} \in$ Total $\Leftrightarrow \forall \mathrm{x} \exists \mathrm{t}$ [STP($\mathrm{f}, \mathrm{x}, \mathrm{t})$]

RE

- $\mathrm{f} \in$ NotTotal $\Leftrightarrow \exists \mathrm{x} \forall \mathrm{t}[\sim \mathrm{STP}(\mathrm{f}, \mathrm{x}, \mathrm{t})]$

NRNC

- $f \in$ RangeAll $\Leftrightarrow \forall x \exists<y, t>[\operatorname{STP}(f, y, t) \& V A L U E(f, y, t)=x$]
$\cdot \mathrm{f} \in$ RangeNotAll $\Leftrightarrow \exists \mathrm{x} \forall<\mathrm{y}, \mathrm{t}>[\operatorname{STP}(\mathrm{f}, \mathrm{y}, \mathrm{t}) \Rightarrow \operatorname{VALUE}(\mathrm{f}, \mathrm{y}, \mathrm{t}) \neq \mathrm{x}]$
- $\mathrm{f} \in$ HasZero $\Leftrightarrow \exists<\mathrm{x}, \mathrm{t}>$ [STP($\mathrm{f}, \mathrm{x}, \mathrm{t}) \& \operatorname{VALUE}(\mathrm{f}, \mathrm{x}, \mathrm{t})=0$]

NRNC

- $\mathrm{f} \in \operatorname{IsZero} \Leftrightarrow \forall \mathrm{x} \exists \mathrm{t}[\operatorname{STP}(\mathrm{f}, \mathrm{x}, \mathrm{t}) \& \operatorname{VALUE}(\mathrm{f}, \mathrm{x}, \mathrm{t})=0$]

NRNC

- $\mathrm{f} \in$ Empty $\Leftrightarrow \forall<\mathrm{x}, \mathrm{t}>[\sim \mathrm{STP}(\mathrm{f}, \mathrm{x}, \mathrm{t})]$
- $\mathrm{f} \in$ NotEmpty $\Leftrightarrow \exists<\mathrm{x}, \mathrm{t}>[\operatorname{STP}(\mathrm{f}, \mathrm{x}, \mathrm{t})]$

NRNC
RE
NRNC
Co-RE

More Quantification Examples

- $\mathrm{f} \in \operatorname{Identity} \Leftrightarrow \forall x \exists \mathrm{t}[\operatorname{STP}(\mathrm{f}, \mathrm{x}, \mathrm{t}) \& \operatorname{VALUE}(\mathrm{f}, \mathrm{x}, \mathrm{t})=\mathrm{x}$]

NRNC

- $\mathrm{f} \in$ Notldentity $\Leftrightarrow \exists \mathrm{x} \forall \mathrm{t}[\sim \operatorname{STP}(\mathrm{f}, \mathrm{x}, \mathrm{t}) \mid \operatorname{VALUE}(\mathrm{f}, \mathrm{x}, \mathrm{t}) \neq \mathrm{x}]$ or $\exists x \forall t[\operatorname{STP}(f, x, t) \Rightarrow \operatorname{VALUE}(f, x, t) \neq x]$
- $f \in$ Constant $=\forall<x, y>\exists t[S T P(f, x, t) \& S T P(f, y, t) \&$
$\operatorname{VALUE(f,x,t)=VALUE(f,y,t)]}$
- $f \in$ Infinite $\Leftrightarrow \forall x \exists<y, t>[y \geq x \& \operatorname{STP}(f, y, t)]$
- $f \in$ Finite $\Leftrightarrow \exists x \forall<y, t>[y<x \mid \sim S T P(f, y, t)]$ or $\exists x \forall<y, t>[\operatorname{STP}(f, y, t) \Rightarrow y<x]$ or $[y \geq x \Rightarrow \sim S T P(f, y, t)]$
- $f \in$ RangeInfinite $\Leftrightarrow \forall x \exists<y, t>[\operatorname{STP}(f, y, t) \& \operatorname{VALUE}(f, y, t) \geq x$]
- $f \in$ RangeFinite $\Leftrightarrow \exists x \forall<y, t>[\operatorname{STP}(f, y, t) \Rightarrow \operatorname{VALUE}(f, y, t)<x]$
- $f \in$ Stutter $\Leftrightarrow \exists<x, y, t>[x \neq y \& \operatorname{STP}(f, x, t) \& \operatorname{STP}(f, y, t) \&$ $\operatorname{VALUE}(f, x, t)=\operatorname{VALUE}(f, y, t)]$

NRNC
NRNC NRNC
NRNC
NRNC

NRNC

NRNC NRNC
RE

Even More Quantification Examples

- $\langle f, x>\in$ Fast20 $\Leftrightarrow[$ STP(f,x,20)]

REC

- $f \in$ FastOne20 $\Leftrightarrow \exists x[\operatorname{STP}(f, x, 20)]$
- $f \in$ FastAll20 $\Leftrightarrow \forall x[$ STP(f,x,20)]

RE

- $\langle f, x, K, C\rangle \in \operatorname{LinearKC} \Leftrightarrow\left[S T P\left(f, x, K^{*} x+C\right)\right]$

Co-RE

- <f,K,C>E LinearKCOne $\Leftrightarrow \exists x$ [STP(f, $\left.\left.x, K^{*} x+C\right)\right]$
- $\langle\mathrm{f}, \mathrm{K}, \mathrm{C}>\in \operatorname{LinearKCAll} \Leftrightarrow \forall \mathrm{x}$ [STP(f,x,K*x+C)]

REC

RE
Co-RE

- None of the above can be shown undecidable using Rice's Theorem
- In fact, reduction from known undecidables is also a problem for all but the first one which happens to be decidable.

Some Reductions and Rice Example

- NotEmpty \leq Halt Let f be an arbitrary index Define $\forall \mathrm{y} \mathrm{g}_{\mathrm{f}}(\mathrm{y})=\exists<\mathrm{x}, \mathrm{t}>\operatorname{STP}(\mathrm{f}, \mathrm{x}, \mathrm{t})$ $\mathrm{f} \in$ Notmpty $\Leftrightarrow\left\langle\mathrm{g}_{\mathrm{f}}, 0\right\rangle \in$ Halt
- Halt \leq NotEmpty Let f, x be an arbitrary index and input value Define $\forall y \mathrm{~g}_{\mathrm{f}, \mathrm{x}}(\mathrm{y})=\mathrm{f}(\mathrm{x})$
$<f, x>\in$ Halt $\stackrel{x}{\Leftrightarrow} g_{f, x} \in$ NotEmpty
- Note: NotEmpty is RE-Complete
- Rice: NotEmpty is non-trivial Zero \in NotEmpty; $\uparrow \notin$ NotEmpty Let f, g be arbitrary indices such that $\operatorname{Dom}(f)=\operatorname{Dom}(g)$ $\mathrm{f} \in$ NotEmpty $\Leftrightarrow \quad \operatorname{Dom}(\mathrm{f}) \neq \varnothing$

By Definition
$\Leftrightarrow \quad \operatorname{Dom}(\mathrm{g}) \neq \varnothing$
$\operatorname{Dom}(\mathrm{g})=\operatorname{Dom}(\mathrm{f})$
$\Leftrightarrow \mathrm{g} \in$ NotEmpty
Thus, Rice's Theorem states that NotEmpty is undecidable.

More Reductions and Rice Example

- Identity \leq Total Let f be an arbitrary index Define $g_{f}(x)=\mu y[f(x)=x]$ $\mathrm{f} \in$ Identity $\Leftrightarrow \mathrm{g}_{\mathrm{f}} \in$ Total
- Total \leq Identity Let f be an arbitrary index Define $g_{f}(x)=f(x)-f(x)+x$ $\mathrm{f} \in$ Total $\Leftrightarrow \mathrm{g}_{\mathrm{f}, \mathrm{x}} \in$ Identity
- Rice: Identity is non-trivial $I(x)=x \in$ Identity; Zero \notin Identity Let f, g be arbitrary indices such that $\forall x f(x)=g(x)$ feldentity $\Leftrightarrow \quad \forall \mathrm{xf}(\mathrm{x})=\mathrm{x}$
$\Leftrightarrow \quad \forall x \mathrm{~g}(\mathrm{x})=\mathrm{x}$
By Definition
$\forall x g(x)=f(x)$
$\Leftrightarrow \mathrm{g} \in$ Identity
Thus, Rice's Theorem states that Identity is undecidable

Even More Reductions and Rice Example

- Stutter \leq Halt

Let f be an arbitrary index
Define $\forall y g_{f}(y)=\exists<x, y, t>[x \neq y \& S T P(f, x, t) \& S T P(f, y, t) \&$
$\operatorname{VALLE}(f, x, t)=\operatorname{VALUE}(f, y, t)]$
$\mathrm{f} \in$ Stutter $\Leftrightarrow\left\langle\mathrm{g}_{\mathrm{f}}, 0\right\rangle \in$ Halt

- Halt \leq Stutter

Let f, x be an arbitrary index and input value
Define $\forall y g_{f x}(y)=f(x)$
$<f, x>\in$ Halt $\stackrel{\mu}{\Leftrightarrow} g_{f, x} \in$ Stutter

- Note: Stutter is RE-Complete
- Rice: Stutter is non-trivial Zero \in Stutter; $I(x)=x \notin$ Stutter Let f, g be arbitrary indices such that $\forall x f(x)=g(x)$

		$\exists<x, y>$	$x \neq y$ \& $f(x)=f$
	\Leftrightarrow	$\exists<x, y>$	$x \neq y \& g(x)=g(y)$

By Definition $\forall x g(x)=f(x)$
\Leftrightarrow g EStutter
Thus, Rice's Theorem states that Identity is undecidable

Yet More Reductions and Rice Example

- Constant \leq Total Let f be an arbitrary index
Define $g_{f}(0)=f(0)$
$g_{f}(y+1)=\mu z[f(y+1)=f(y)]$
$\mathrm{f} \in$ Constant $\Leftrightarrow \mathrm{g}_{\mathrm{f}} \in$ Total
- Total \leq Identity

Let f be an arbitrary index
Define $g_{f}(x)=f(x)-f(x)$
$\mathrm{f} \in$ Total $\Leftrightarrow \mathrm{g}_{\mathrm{f}} \in$ Constant

- Rice: Constant is non-trivial Zero \in Constant; $\mathrm{I}(\mathrm{x})=\mathrm{x} \notin$ Constant

Let f, g be arbitrary indices such that $\forall x f(x)=g(x)$
$\begin{array}{lll}\mathrm{f} \in \mathrm{Constant} \underset{ }{\Leftrightarrow} & \exists C \forall x f(x)=C & \text { By Definition } \\ \Leftrightarrow & \exists C \forall x \mathrm{~g}(\mathrm{x})=\mathrm{C} & \forall \mathrm{gg}(\mathrm{x})=\mathrm{f}(\mathrm{x})\end{array}$
$\Leftrightarrow \mathrm{g} \in$ Constant
Thus, Rice's Theorem states that Identity is undecidable

Last Reductions and Rice Example

- RangeAll \leq Total Let fo an arbitrary index Define $g_{f}(x)=\exists y[f(y)=x]$ $\mathrm{f} \in$ RangeAll $\Leftrightarrow \mathrm{g}_{\mathrm{f}} \in$ Total
- Total \leq RangeAll

Let f be an arbitrary index
Define $g_{f}(x)=f(x)-f(x)+x$
$\mathrm{f} \in$ Total $\stackrel{g_{f}}{ } \in$ RangeAll

- Rice: RangeAll is non-trivial $I(x)=x \in$ RangeAll; Zero \notin RangeAll Let f, g be arbitrary indices such that Range (f) = Range (g)
$\mathrm{f} \in$ RangeAll $\Leftrightarrow \quad$ Range $(\mathrm{f})=\boldsymbol{\kappa} \quad$ By Definition
$\Leftrightarrow \quad$ Range(f) $=\boldsymbol{N}$
Range (g) = Range(f)
$\Leftrightarrow g \in$ RangeAll
Thus, Rice's Theorem states that Identity is undecidable

Challenge

Semi-Constant(SC) $=\{\mathrm{f} \mid \exists \mathrm{C}, \forall \mathrm{xf}(\mathrm{x}) \downarrow \Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{C}\}$
Note: $\uparrow \in \mathbf{S C}$ and $\mathbf{C}_{\mathbf{0}}(\mathbf{x})=\mathbf{0} \in \mathbf{S C}$
Can describe as $\mathbf{f} \in \mathbf{S C} \Leftrightarrow$
$\exists C \forall<x, t>[\operatorname{STP}(f, x, t) \Rightarrow \operatorname{VALUE}(f, x, t)=C]$
This implies SC is as hard as Non-TOT=\{f|ヨxf(x)个\} as

$$
\mathrm{f} \in \operatorname{Non-TOT} \Leftrightarrow \exists \mathrm{x} \forall \mathrm{t}[\sim \mathrm{STP}(\mathrm{f}, \mathrm{x}, \mathrm{t})]
$$

However, SC only takes one quantifier and is undecidable (one of the weaker versions of Rice shows its undecidability).
I can tell you that $\mathbf{S C} \equiv_{\mathrm{m}}$ HALT or $\mathbf{S C} \equiv_{\mathrm{m}}$ Non-HALT where Non-HALT $=\{\langle f, x\rangle \mid f(x) \uparrow\}$.
Your job is to figure out which and rewrite the quantifier expression. You should also apply Rice's to verify undecidability.

UNIVERSE OF SETS

Complexity Sample\#1

$\#$	Concept	Description	Concept \#
$\mathbf{1}$	Problem A is in NP	The classic NP-Complete problem	$\mathbf{1 0}$
$\mathbf{2}$	Problem A is in co-NP	A is the problem TOTAL (set of Algorithms)	$\mathbf{4}$
$\mathbf{3}$	Problem A is in P	A is decidable in deterministic polynomial time	$\mathbf{3}$
$\mathbf{4}$	Problem A is non-RE/non-Co-RE	If B is in NP then B $\leq_{P} A$	$\mathbf{9}$
$\mathbf{5}$	Problem A is NP-Complete	A is in RE and, if B is in RE, then B $\leq_{m} A$	$\mathbf{8}$
$\mathbf{6}$	Problem A is RE	A is verifiable in deterministic polynomial time	$\mathbf{1}$
$\mathbf{7}$	Problem A is Co-RE	A is in NP and if B is in NP then B $\leq_{P} A$	$\mathbf{5}$
$\mathbf{8}$	Problem A is RE-Complete	A is semi-decidable	$\mathbf{6}$
$\mathbf{9}$	Problem A is NP-Hard	A is the complement of B and B is RE	$\mathbf{7}$
$\mathbf{1 0}$	Satisfiability	A's complement is in NP	$\mathbf{2}$

Sample\#2: 3SAT to SubsetSum

$$
(\sim \mathbf{a}+\mathbf{b}+\sim \mathbf{c})(\sim \mathbf{a}+\sim \mathbf{b}+\mathbf{c})
$$

	a	b	c	$\sim \mathrm{a}+\mathrm{b}+{ }^{\text {c }}$	$\sim \mathrm{a}+\sim \mathrm{b}+\mathrm{c}$
a	1	0	0	0	0
\sim	1	0	0	1	1
b	0	1	0	1	0
\sim	0	1	0	0	1
c	0	0	1	0	1
\sim_{c}	0	0	1	1	0
C1	0	0	0	1	0
C1'	0	0	0	1	0
C2	0	0	0	0	1
C2'	0	0	0	0	1
	1	1	1	3	3

Sample\#3: Scheduling

List Schedule (T1,4), (T2,5), (T3,2), (T4,7), (T5,1), (T6,4), (T7,8)

T1	T1	T1	T1	T3	T3	T5	T6	T6	T6	T6	T7	
T2	T2	T2	T2	T2	T4							

Sorted List Schedule (T7,8), (T4,7), (T2,5), (T1,4), (T6,4), (T3,2), (T5,1)

T7	T1	T1	T1	T1	T6	T6	T6	T6				
T4	T2	T2	T2	T2	T2	T3	T3	T5				

Independent set (IS) is NP-Complete

- We represent each clause in an instance of 3SAT with a triangle, one node per literal. The key is that all nodes are connected in a triangle of nodes, so the best you can do is to choose one node per clause to participate in an independent set. By adding an edge between every instance of variable v and every instance of variable $\sim v$, we guarantee that we cannot choose nodes labeled v and $\sim v$ as part of an independent set. Here, assume we have V Boolean variables
- When the required independent set must be C , where C is the number of clauses, we must choose one node per clause and we must do this in a way so that no nodes labeled with a variable and its complement are chosen. That can only be done if there is an assignment to variables (true or false) that satisfy the original instance of 3SAT. Thus IS is NP-Hard. But, we can check a proposed independent set in time proportional to the size of the graph (which is actually linear in the size of the 3SAT problem). Thus, IS is in NP. In conclusion, IS is NP-Complete.

Sample\#4: Independent Set

$$
(\mathbf{a}+\sim \mathbf{b}+\mathbf{c})(\sim \mathbf{a}+\mathbf{b}+\sim \mathbf{c})(\mathbf{a}+\mathbf{b}+\mathbf{c})(\sim \mathbf{a}+\mathbf{b}+\mathbf{b})
$$

Place an edge between every node labeled V and every node labeled \sim V, where V can be a, b or c.

Vertex Cover (VC) is NP-Complete

- We represent each clause (assume there are C of them) in an instance of 3SAT with a triangle, one node per literal. One key is that two nodes in each clause triangle must be chosen to cover the three internal edges. We represent each assignment to a variable v (assume there are V variables) by a pair of connected nodes labeled v and ${ }^{\sim} \mathrm{v}$. The second key is that we must choose precisely one of v or ${ }^{\sim} v$ for each variable to cover the edge that connects its pair. Thus, the minimum cover set contains $2 \mathrm{C}+\mathrm{V}$ nodes.
- We add an edge from each vand to all literals vin clauses, and each $\sim v$ to all literals $\sim v$ in clauses. To cover all the edges added here for the variable nodes, we must choose nodes in each clause that cover edges from variable nodes that are not chosen in the variable pair. If all clauses have at least one of these incoming edges already covered (we chose an assignment to the variable that matches a literal in this clause), then we will be able to cover all internal edges in each clause and all edges entering the clause from a variable pair, by just choosing two nodes in the clause.
- Choosing $2 \mathrm{C}+\mathrm{V}$ nodes that cover all edges can only be done if there is an assignment to variables (true or false) that satisfy the original instance of 3SAT. Thus, VC is NP-Hard. But, we can check a proposed cover set of vertices in time proportional to the size of the graph (which is actually linear in the size of the 3SAT problem). Thus, VC is in NP. In conclusion, VC is NP-Complete.

Sample \# 5: VC Gadgets

Variable Gadgets

Clause Gadgets

t3

Sample\#6: Vertex Cover

Clause Nodes/Edges

$$
\sim \mathrm{a} \quad \sim \mathrm{c}
$$

$$
(\mathbf{a}+\sim \mathbf{b}+\mathbf{c})(\sim \mathbf{a}+\mathbf{b}+\sim \mathbf{c})(\mathbf{a}+\mathbf{b}+\mathbf{c})(\sim \mathbf{a}+\mathbf{b}+\mathbf{b})
$$

Variable Nodes/Edges
a
$\sim \mathbf{a}$
$b \longrightarrow \sim b$
c
Place an edge between every variable node labeled V and every clause node labeled $\sim \mathrm{V}$, where V can be a , b or c .

Consider the SAT instance:

$(x 1 \vee x 2 \vee x 4 \vee x 5) \&(\neg x 1 \vee \neg x 2 \vee x 3 \vee \neg x 4 \vee \neg x 5) \&(x 1 \vee \neg x 4)$

1. Recast this as an instance of 3SAT.

ANS:
$(x 1 \vee x 2 \vee x 6) \&(x 4 \vee x 5 \vee \neg x 6) \&(\neg x 1 \vee \neg x 2 \vee x 7) \&(x 3 \vee \neg x 4 \vee x 8) \&(\neg x 5 \vee \neg x 7 \vee \neg x 8) \&(x 1 \vee \neg x 4 \vee x 1)$

ANS:

$$
\begin{aligned}
& c 1=(x 1 \vee x 2 \vee x 6) \\
& c 2=(x 4 \vee x 5 \vee \neg x 6) \\
& c 3=(\neg x 1 \vee \neg x 2 \vee x 7) \\
& c 4=(x 3 \vee \neg x 4 \vee \times 8) \\
& c 5=(\neg x 5 \vee \neg x 7 \vee \neg x 8) \\
& c 6=(x 1 \vee \neg x 4 \vee x 1)
\end{aligned}
$$

A simple solution is $x 1, x 2, x 3, x 4, x 5, x 6, x 7, \neg x 8$
2. Construct the SubsetSum instance equivalent to this and state what rows must be chosen. $(x 1 \vee x 2 \vee x 6) \&(x 4 \vee x 5 \vee-x 6) \&(-x 1 \vee-x 2 \vee x 7) \&(x 3 \vee \neg x 4 \vee x 8) \&(-x 5 \vee \neg x 7 \vee-x 8) \&(x 1 \vee \neg x 4 \vee x 1)$

	x1	x2	x3	x4	x5	x6	x7	x8	C1	C2	C3	C4	C5	C6
x1	1	0	0	0	0	0	0	0	1	0	0	0	0	2
~x1	1	0	0	0	0	0	0	0	0	0	1	0	0	0
x2	0	1	0	0	0	0	0	0	1	0	0	0	0	0
~x2	0	1	0	0	0	0	0	0	0	0	1	0	0	0
x3	0	0	1	0	0	0	0	0	0	0	0	1	0	0
~x3	0	0	1	0	0	0	0	0	0	0	0	0	0	0
x4	0	0	0	1	0	0	0	0	0	1	0	0	0	0
~x4	0	0	0	1	0	0	0	0	0	0	0	1	0	1
x5	0	0	0	0	1	0	0	0	0	1	0	0	0	0
~x5	0	0	0	0	1	0	0	0	0	0	0	0	1	0
$\times 6$	0	0	0	0	0	1	0	0	1	0	0	0	0	0
~x6	0	0	0	0	0	1	0	0	0	1	0	0	0	0
x7	0	0	0	0	0	0	1	0	0	0	1	0	0	0
~x7	0	0	0	0	0	0	1	0	0	0	0	0	1	0
x8	0	0	0	0	0	0	0	1	0	0	0	1	0	0
~x8	0	0	0	0	0	0	0	1	0	0	0	0	1	0
C1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
C1'	0	0	0	0	0	0	0	0	1	0	0	0	0	0
C2	0	0	0	0	0	0	0	0	0	1	0	0	0	0
C2'	0	0	0	0	0	0	0	0	0	1	0	0	0	0
C3	0	0	0	0	0	0	0	0	0	0	1	0	0	0
C3'	0	0	0	0	0	0	0	0	0	0	1	0	0	0
C4	0	0	0	0	0	0	0	0	0	0	0	1	0	0
C4'	0	0	0	0	0	0	0	0	0	0	0	1	0	0
C5	0	0	0	0	0	0	0	0	0	0	0	0	1	0
C5'	0	0	0	0	0	0	0	0	0	0	0	0	1	0
C6	0	0	0	0	0	0	0	0	0	0	0	0	0	1
C6'	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	1	1	1	1	1	1	1	1	3	3	3	3	3	3

3. Recast the SubsetSum instance in Part 2 as a Partition instance (really easy). Show the Partitioning into equal subsets.
```
Ans:
G = 11111111333333
sum= 22222222555555
2* sum - G = 33333333777777
sum + G = 33333333888888
sum is the sum of all rows.
Note: If you use 1 in X1/C6 then
    sum is 22222222555554 and so
    2* sum - G = 33333333777775
    sum + G = 33333333888887
```

The partitions for the case where we use 2 in x1/C6 are as follows:

Partition 1:

33333333777777	2*sum -G	
10000000100002	x1	$\mathrm{c} 1=(\mathrm{x} 1 \vee \mathrm{x} 2 \vee \mathrm{x} 6)$
01000000100000	x2	c2 $=(x 4 \vee \times 5 \vee-x 6)$
00100000000100	x3	$\mathrm{c} 3=(-\times 1 \vee-x 2 \vee \times 7)$
00010000010000	x4	$\mathrm{c} 4=(\mathrm{x} 3 \vee-\mathrm{x} 4 \vee \mathrm{x} 8)$
00001000010000	x5	$c 5=(-x 5 \vee-x 7 \vee-x 8)$
00000100100000	x6	c6 $=(x 1 \vee \neg x 4 \vee x 1)$
00000010001000	x7	
00000001000010	-x8	A simple solution is $\mathbf{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4, \mathrm{x} 5, \mathrm{x} 6, \mathrm{x} 7, \sim \mathrm{x} 8$
00000000010000	C2	
00000000010000	C3	
00000000001000	C3'	
00000000000100	C4	
00000000000010	C5	
00000000000010	C5'	
00000000000001	C6	

Partition 2:

33333333888888 sum+G
$10000000001000 \sim x 1$
$01000000001000 \sim \times 2$
$00100000000000 \sim x 3$
$00010000000101 \sim \times 4$
$00001000000010 \sim x 5$
$00000100010000 \sim \times 6$
$00000010000010 \sim x 7$
00000001000100 x8
00000000100000 C1
$00000000100000 \quad$ C1'
$00000000010000 \quad$ C2'
00000000000100 C4'
00000000000001 C6’

$$
\begin{aligned}
& c 1=(x 1 \vee \times 2 \vee x 6) \\
& c 2=(x 4 \vee x 5 \vee-x 6) \\
& c 3=(-x 1 \vee-x 2 \vee x 7) \\
& c 4=(x 3 \vee-x 4 \vee \times 8) \\
& c 5=(-x 5 \vee \neg-x 7 \vee-x 8) \\
& c 6=(x 1 \vee \neg-x 4 \vee x 1)
\end{aligned}
$$

A simple solution is $\mathbf{x} 1, x 2, x 3, x 4, x 5, x 6, x 7, \neg x 8$
4. Recast the original SAT as a 0-1 Integer Linear Programming instance:
$(x 1 \vee x 2 \vee x 4 \vee x 5) \&(\neg x 1 \vee \neg x 2 \vee x 3 \vee \neg x 4 \vee \neg x 5) \&(x 1 \vee \neg x 4)$
ANS:

Assume $0<=x 1, x 2, x 3, x 4, x 5<=1$
$x 1+x 2+x 4+x 5>=1$
$(1-x 1)+(1-x 2)+x 3+(1-x 4)+(1-x 5)>=1$
$x 1+(1-x 4)>=1$
We choose: $x 1=1, x 2=1, x 3=1, x 4=1, x 5=1$
5. Consider the following set of independent tasks with associated task times:

(T1,3), (T2,5), (T3,7), (T4,6), (T5,2), (T6,8), (T7,1)

Fill in the schedules for these tasks under the associated strategies below.

Greedy using the list order above:
Greedy using a reordering of the list so that longest-running tasks appear earliest in the list:

Greedy then sorted high to low

| T1 | T1 | T1 | T3 | T5 | T5 | T7 | | | | | | | |
| :--- |
| T2 | T2 | T2 | T2 | T2 | T4 | T4 | T4 | T4 | T4 | T4 | T6 | |

(T1,3), (T2,5), (T3,7), (T4,6), (T5,2), (T6,8), (T7,1)

T6	T2	T2	T2	T2	T2	T1	T1	T1					
T3	T4	T4	T4	T4	T4	T4	T5	T5	T7				

(T6,8), (T3,7), (T4,6), (T2,5), (T1,3), (T5,2), (T7,1)
6. Consider the 3SAT instance:
$E=(x 1 \vee x 2 \vee x 4) \&(\neg x 1 \vee \neg x 3 \vee \neg x 4) \&(\neg x 2 \vee \neg x 3 \vee x 4)$ \& ($\neg \mathrm{x} 2 \vee \neg \mathrm{x} 3 \vee \neg \mathrm{x} 4)$
a. Recast \mathbf{E} as an instance of k-Vertex Covering and present a solution to the latter
b. Recast E as an instance of 3-Coloring and present a solution to the latter

Question 6 (a)

$E=(x 1 \vee x 2 \vee x 4) \&(\neg x 1 \vee \neg x 3 \vee \neg x 4) \&(\neg x 2 \vee \neg x 3 \vee x 4) \&(\neg x 2 \vee \neg x 3 \vee \neg x 4)$

Variable Gadgets:

Clause Gadgets:

$E=(x 1 \vee x 2 \vee x 4) \&(\neg x 1 \vee \neg x 3 \vee \neg x 4) \&(\neg x 2 \vee \neg x 3 \vee x 4) \&(\neg x 2 \vee \neg x 3 \vee \neg x 4)$

Combined Gadgets:

$$
E=(x 1 \vee x 2 \vee x 4) \&(\neg x 1 \vee \neg x 3 \vee \neg x 4) \&(\neg x 2 \vee \neg x 3 \vee x 4) \&(\neg x 2 \vee \neg x 3 \vee \neg x 4)
$$

Selecting Vertex Cover:

Question 6(b):

7. Task set (T1,2), (T2,1), (T3,1), (T4,3), (T5,3), (T6,2), (T7,5), with partial order
T1<T3; T1<T5, T2<T5, T3<T4; T3<T7; T6<T1; T5<T7
a. Draw the graph that depicts these relationships.

b. Show the 2-processor schedule that results when the task number is the priority; a smaller task number means higher priority.

T2		T1	T1	T3	T4	T4	T4													
T6	T6			T5	T5	T5	T7	T7	T7	T7	T7									

8. Consider the following 2SAT instance.
$(\neg \mathbf{x} \vee \mathbf{y})(\neg \mathbf{y} \vee \mathbf{z})(\neg \mathbf{z} \vee \mathbf{x})(\mathbf{z} \vee \mathbf{y})$
a. Draw the implication graph associated with this formula.

b. Draw circles around the strongly connected components (see red circles) c. Provide a solution based on the SCCs or highlight the conflict exposed by the SCCs - the cluster with three elements has no outgoing edges, so $x=y=z=T$
9. Consider the following instance of Positive Min-Ones-2SATt, $(A \vee B)(A \vee C)(C \vee E)(D \vee E)(D \vee G)(E \vee F)(F \vee G)(F \vee H)(G \vee H)$
a. Convert this instance of Positive 2SAT to a graph for which Min Vertex Cover is equivalent to the Min-Ones problem.

b. Show solution for Min Vertex Cover for (a) and correspondingly for the Positive Min-Ones-2SAT instance.
Solution: Min Cover is 4 choosing $\mathbf{A}, \mathbf{E}, \mathbf{F}, \mathbf{G}$; True assignments are is $\mathbf{A}=\mathbf{E}=\mathbf{F}=\mathbf{G}=\mathbf{T}$ See circled nodes and covered edges with green slashes.
