Assign\#6 Key

Spring 2022

1. Consider the 3SAT instance:
$E=(x 1 \vee x 2 \vee x 4) \&(\neg x 1 \vee \neg x 3 \vee \neg x 4) \&(\neg x 2 \vee \neg x 3 \vee x 4)$ \& ($\neg \mathrm{x} 2 \vee \neg \mathrm{x} 3 \vee \neg \mathrm{x} 4)$
a. Recast \mathbf{E} as an instance of k-Vertex Covering and present a solution to the latter
b. Recast \mathbf{E} as an instance of 3-Coloring and present a solution to the latter

Question 1 (a)

$E=(x 1 \vee x 2 \vee x 4) \&(\neg x 1 \vee \neg x 3 \vee \neg x 4) \&(\neg x 2 \vee \neg x 3 \vee x 4) \&(\neg x 2 \vee \neg x 3 \vee \neg x 4)$

Variable Gadgets:

Clause Gadgets:

$E=(x 1 \vee x 2 \vee x 4) \&(\neg x 1 \vee \neg x 3 \vee \neg x 4) \&(\neg x 2 \vee \neg x 3 \vee x 4) \&(\neg x 2 \vee \neg x 3 \vee \neg x 4)$

Combined Gadgets:

$$
E=(x 1 \vee x 2 \vee x 4) \&(\neg x 1 \vee \neg x 3 \vee \neg x 4) \&(\neg x 2 \vee \neg x 3 \vee x 4) \&(\neg x 2 \vee \neg x 3 \vee \neg x 4)
$$

Selecting Vertex Cover:

Question 1(b):

2. Task set (T1,2), (T2,1), (T3,1), (T4,3), (T5,3), (T6,2), (T7,5), with partial order
T1<T3; T1<T5, T2<T5, T3<T4; T3<T7; T6<T1; T5<T7
a. Draw the graph that depicts these relationships.

b. Show the 2-processor schedule that results when the task number is the priority; a smaller task number means higher priority.

T2		T1	T1	T3	T4	T4	T4													
T6	T6			T5	T5	T5	T7	T7	T7	T7	T7									

3. Consider the following 2SAT instance.

$(\neg x \vee y)(\neg y \vee z)(\neg z \vee x)(z \vee y)$

a. Draw the implication graph associated with this formula.

b. Draw circles around the strongly connected components (see red circles) c. Provide a solution based on the SCCs or highlight the conflict exposed by the SCCs - the cluster with three elements has no outgoing edges, so $\mathbf{x}=\mathbf{y}=\mathbf{z}=\mathbf{T}$
4. Consider the following instance of Positive Min-Ones-2SATt, $(A \vee B)(A \vee C)(C \vee E)(D \vee E)(D \vee G)(E \vee F)(F \vee G)(F \vee H)(G \vee H)$
a. Convert this instance of Positive 2SAT to a graph for which Min Vertex Cover is equivalent to the Min-Ones problem.

b. Show solution for Min Vertex Cover for (a) and correspondingly for the Positive Min-Ones-2SAT instance.
Solution: Min Cover is 4 choosing $\mathbf{A}, \mathbf{E}, \mathbf{F}, \mathbf{G}$; True assignments are is $\mathbf{A}=\mathbf{E}=\mathbf{F}=\mathbf{G}=\mathbf{T}$ See circled nodes and covered edges with green slashes.

